Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (22): 4813-4825.doi: 10.3864/j.issn.0578-1752.2021.22.009

• PLANT PROTECTION • Previous Articles     Next Articles

Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum

TAN YongAn(),JIANG YiPing,ZHAO Jing,XIAO LiuBin()   

  1. Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014
  • Received:2021-04-16 Accepted:2021-06-10 Online:2021-11-16 Published:2021-11-19
  • Contact: LiuBin XIAO E-mail:kellytan001@163.com;xlb@jaas.ac.cn

Abstract:

【Objective】The objective of this study is to clone the full-length cDNA of the G protein-coupled receptor kinase 2 (AlGRK2) in Apolygus lucorum, clarify its expression profiles and the effect of exogenous ecdysterone hormone 20E on the expression of AlGRK2, analyze the role of AlGRK2 in the growth and development of A. lucorum, and to provide a preliminary research basis for further study of its function in the ecdysone signaling transduction pathway. 【Method】The AlGRK2 was cloned and obtained by RACE method. Using the qRT-PCR method, the relative expression levels of AlGRK2 in different days (1-16 day-old) and tissues (head, thorax, wing, leg, midgut, ovary and fat body) in female adults in A. lucorum were determined. Finally, the response of the AlGRK2 mRNA expression in A. lucorum after exogenous 20E induction and RNAi treatment and their effects on the main parameters (development progress, nymphs weight and adult emergence rate) in the growth and development of the A. lucorum were analyzed.【Result】The full length of AlGRK2 cDNA is 2 715 bp, and ORF is 2 106 bp, which encodes 701 amino acids. ExPASy predicts that the protein molecular weight is 80.2 kD and the theoretical isoelectric point is 6.56. Protein structure analysis shows that AlGRK2 contains 4 domains: G protein signalling domain (RGS, 54-175 aa), serine/threonine protein kinases domain (S-TKc, 191-454 aa), extension to Ser/Thr-type protein kinases (S-TK-X, 455-534 aa) and pleckstrin homology domain (PH, 558-655 aa), and the PH domain is a typical protein feature in the GRK2 subtype. Phylogenetic analysis showed that GRK2 in A. lucorum had the closest genetic relationship with Halyomorpha halys GRK2. qRT-PCR results showed that AlGRK2 was expressed in 1-day-old to 16-day-old nymphs of A. lucorum, and the mRNA expression showed a fluctuating downward pattern. The expression level of AlGRK2 was higher in the initial instar, but decreased significantly in the last instar of A. lucorum. The AlGRK2 was highly expressed in the ovary and fat body of female adults and less expressed in the thorax and leg. After exogenous 20E treatment, the expression of AlGRK2 was significantly down-regulated in nymphs at the 1-day-old and 3-day-old. The relative expression of AlGRK2 in all tissues of females was up-regulated after treating with 20E which compared with ethanol control, especially in ovary and fat body. In contrast, the expression of AlGRK2 treated with U73122 (PLC inhibitor) was down-regulated. Compared with ethanol control, the developmental duration of nymph, the body weight of the last instar nymph and the emergence rate of adult in A. lucorum were significantly decreased after 20E treatment. On the contrary, the development duration of nymph stage in U73122 treatment group was significantly prolonged. In addition, compared with the dsGFP group, AlGRK2 expression level of A. lucorum was significantly decreased after injection of dsAlGRK2, and nymphs mortality and developmental stages were significantly increased, while adult emergence rate and weight of the 5th instar nymph were significantly decreased. 【Conclusion】The expression profile of AlGRK2 in A. lucorum showed the specificity of the developmental stage and the tissue. Exogenous 20E inhibitor and RNAi treatment can inhibit the expression of AlGRK2, and have adverse effects on the growth and development of A. lucorum, such as delaying the development progress of A. lucorum, reducing the weight of 5th instar nymph and adult emergence rate.

Key words: Apolygus lucorum, G protein-coupled receptor kinase 2 (GRK2), ecdysterone hormone, gene cloning, expression profile, RNAi

Table 1

Primers used in this study"

目的 Purpose 引物名称 Primer name 引物序列Primer sequence (5′ to 3′)
克隆Cloning AlGRK-F AGYGTNMGVAGYGTNATGCA
AlGRK-R TCVGCKGCRTARAAYTTCAT
5′-AlGRK2-F TGAAGAGAAGGAATCCCAGA
5′-AlGRK2-R ACTTCGTTCTTCTTTTCGAG
3′-AlGRK2-F GCTGGCACTCAACGAAAGGATCAT
3′-AlGRK2-R GTATGACTTACGCCTTCCACACGC
dsRNA AlGRK2-F TTCCCGACTCCTTCTCATC
AlGRK2-R TTTCCGTTTCTGCTCCG
AlGRK2-T7F TAATACGACTCACTATAGGGTTCCCGACTCCTTCTCATC
AlGRK2-T7R TAATACGACTCACTATAGGGTTTCCGTTTCTGCTCCG
GFP-F CACAAGTTCAGCGTGTCCG
GFP-R CACCTTGATGCCGTTC
GFP-T7F TAATACGACTCACTATAGGGCACAAGTTCAGCGTGTCCG
GFP-T7R TAATACGACTCACTATAGGGCACCTTGATGCCGTTC
qRT-PCR AlGRK2-QF AGGAGCGTGATGCACAAATA
AlGRK2-QR CGCAGTAGTCCTTGAAGAGAAG
β-Actin-QF ACCTGTACGCCAACACCGT
β-Actin-QR TGGAGAGAGAGGCGAGGAT

Fig. 1

Nucleotide and amino acid sequences of AlGRK2 Green, red, yellow and blue shaded amino acids indicate the RGS, S-TKc, S-TK-X and PH domains, respectively"

Fig. 2

Phylogenetic tree based on amino acid sequences of AlGRK and other known insects"

Fig. 3

Relative expression levels of AlGRK2 in different days (A) and tissues (B) of A. lucorum Data in the figure are means±standard error, and different lowercases above bars indicate significant difference (P<0.05). The same as below"

Table 2

The developmental period of A. lucorum nymph under different treatments"

处理
Treatment
若虫历期Developmental period of nymphs (d)
1龄1st instar 2龄2nd instar 3龄3rd instar 4龄4th instar 5龄5th instar 若虫期Nymph
乙醇Ethanol (CK) 2.62±0.07bc 3.51±0.07b 3.60±0.07b 3.55±0.07a 3.77±0.09a 17.04±0.18b
20E 2.42±0.07c 3.17±0.05c 3.02±0.09c 2.96±0.04b 3.38±0.08b 14.94±0.19c
U73122 2.93±0.09a 3.85±0.05a 3.80±0.06a 3.67±0.07a 3.83±0.09a 18.09±0.18a
20E+U73122 2.79±0.07ab 3.66±0.07b 3.79±0.06ab 3.62±0.07a 3.89±0.11a 17.77±0.21a

Fig. 4

The effect of different treatments on 5th instar nymph body weight (A) and adult emergence rate (B) of A. lucorum"

Fig. 5

Relative expression levels of AlGRK2 in different days (A) and tissues (B) of A. lucorum under different treatments"

Fig. 6

Relative expression levels of AlGRK2 of A. lucorum nymph after dsRNA-injection treatments"

Fig. 7

The effect of dsRNA-injection treatments on the nymph mortality (A), adult emergence rate (B), 5th instar nymph body weight (C) and developmental period (D) of A. lucorum "

[1] 陆宴辉, 吴孔明. 棉花盲椿象及其防治. 北京: 金盾出版社, 2008.
LU Y H, WU K M. The Cotton Mirids and Its Control. Beijing: Jindun Publishing House, 2008. (in Chinese)
[2] LU Y H, WU K M, JIANG Y Y, XIAO B, LI P, FENG H Q, WYCKHUYS K A G, GUO Y Y. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science, 2010, 328(5982): 1151-1154.
doi: 10.1126/science.1187881
[3] PAN H S, LIU B, LU Y H, WYCKHUYS K A G. Seasonal alterations in host range and fidelity in the polyphagous mirid bug, Apolygus lucorum (Heteroptera: Miridae). PLoS ONE, 2015, 10(2): e0117153.
doi: 10.1371/journal.pone.0117153
[4] COSTANTINO B F B, BRICHE D K, ALEXANDRE K, SHEN K, MERRIAM J R, ANTONIEWSKI C, CALLENDER J L, HENRICH V C, PRESENTE A, ANDRES A J. A novel ecdysone receptor mediates steroid-regulated developmental events during the mid-third instar of Drosophila. PLoS Genetics, 2008, 4(6): e1000102.
doi: 10.1371/journal.pgen.1000102
[5] CHEN C H, PAN J, DI Y Q, LIU W, HOU L, WANG J X, ZHAO X F. Protein kinase C delta phosphorylates ecdysone receptor B1 to promote gene expression and apoptosis under 20-hydroxyecdysone regulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(34): E7121-E7130.
[6] 谭永安, 肖留斌, 郝德君, 赵静, 孙洋, 柏立新. 绿盲蝽AlEcR-A的单克隆抗体制备及在外源20E诱导下的应答. 中国农业科学, 2017, 50(1): 86-93.
TAN Y A, XIAO L B, HAO D J, ZHAO J, SUN Y, BAI L X. Preparation of monoclonal antibody against AlEcR-A protein and its response induced by exogenous 20-hydroxyecdysone in Apolygus lucorum. Scientia Agricultura Sinica, 2017, 50(1): 86-93. (in Chinese)
[7] LIU W, CAI M J, WANG J X, ZHAO X F. In a nongenomic action, steroid hormone 20-hydroxyecdysone induces phosphorylation of cyclin-dependent kinase 10 to promote gene transcription. Endocrinology, 2014, 155(5): 1738-1750.
doi: 10.1210/en.2013-2020
[8] 谭永安. 磷脂酶C、E75在绿盲蝽蜕皮激素信号传导中的功能分析[D]. 南京: 南京林业大学, 2019.
TAN Y A. The functional of phospholipase C and E75 in 20E pathway of Apolygus lucorum[D]. Nanjing: Nanjing Forestry University, 2019. (in Chinese)
[9] PENELA P, RIBAS C, MAYOR F. Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cellular Signalling, 2003, 15(11): 973-981.
doi: 10.1016/S0898-6568(03)00099-8
[10] ZHANG X, KIM K M. Multifactorial regulation of G protein-coupled receptor endocytosis. Biomolecules and Therapeutics, 2017, 25(1): 26-43.
doi: 10.4062/biomolther.2016.186
[11] GUREVICH E V, TEAMER J J G, MUSHEGIAN A, GUREVICH V V. G protein-coupled receptor kinases: More than just kinases and not only for GPCRs. Pharmacology and Therapeutics, 2012, 133(1): 40-69.
doi: 10.1016/j.pharmthera.2011.08.001
[12] KOMOLOV K E, BENOVIC J L. G protein-coupled receptor kinases: Past, present and future. Cellular Signalling, 2018, 41: 17-24.
doi: 10.1016/j.cellsig.2017.07.004
[13] INGLESE J, KOCH W J, CARON M G, LEFKOWITZ R J. Isoprenylation in regulation of signal transduction by G-protein- coupled receptor kinases. Nature, 1992, 359(6391): 147-150.
doi: 10.1038/359147a0
[14] BENOVIC J L, MAYOR F, SOMERS R L, CARON M G, LEFKOWITZ R J. Light-dependent phosphorylation of rhodopsin by β-adrenergic receptor kinase. Nature, 1986, 321(6073): 869-872.
doi: 10.1038/321869a0
[15] BOEKHOFF I, INGLESE J, SCHLEICHER S, KOCH W J, LEFKOWITZ R J, BREER H. Olfactory desensitization requires membrane targeting of receptor kinase mediated by βγ-subunits of heterotrimeric G proteins. The Journal of Biological Chemistry, 1994, 269(1): 37-40.
doi: 10.1016/S0021-9258(17)42306-4
[16] OPPERMANN M, DIVERSE-PIERLUISSI M, DRAZNER M H, DYER S L, FREEDMAN N J, PEPPEL K C, LEFKOWITZ R J. Monoclonal antibodies reveal receptor specificity among G-protein- coupled receptor kinases. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(15): 7649-7654.
[17] STOFFEL R H, RANDALL R R, PREMONT R T, LEFKOWITZ R J, INGLESE J. Palmitoylation of G protein-coupled receptor kinase, GRK6. Lipid modification diversity in the GRK family. The Journal of Biological Chemistry, 1994, 269(45): 27791-27794.
doi: 10.1016/S0021-9258(18)46852-4
[18] PREMONT R T, MACRAE A D, STOFFEL R H, CHUNG N J, PITCHER J A, AMBROSE C, INGLESE J, MACDONALD M E, LEFKOWITZ R J. Characterization of the G protein-coupled receptor kinase GRK4. Identification of four splice variants. The Journal of Biological Chemistry, 1996, 271(11): 6403-6410.
doi: 10.1074/jbc.271.11.6403
[19] ZHAO W L, WANG D, LIU C Y, ZHAO X F. G-protein-coupled receptor kinase 2 terminates G-protein-coupled receptor function in steroid hormone 20-hydroxyecdysone signaling. Scientific Reports, 2016, 6: 29205.
doi: 10.1038/srep29205
[20] GARCIA-GUERRA L, VILA-BEDMAR R, CARRASCO-RANDO M, CRUCES-SANDE M, MARTÍN M, RUIZ-GÓMEZ A, RUIZ-GÓMEZ M, LORENZO M, FERNÁNDEZ-VELEDO S, MAYOR F, MURGA C, NIETO-VÁZQUEZ I. Skeletal muscle myogenesis is regulated by G protein-coupled receptor kinase 2. Journal of Molecular Cell Biology, 2014, 6(4): 299-311.
doi: 10.1093/jmcb/mju025
[21] KUBO I, KLOCKE J A, ASANO S. Insect ecdysis inhibitors from the East African medicinal plant Ajuga remota (Labiatae). Agricultural and Biological Chemistry, 1981, 45(8): 1925-1927.
[22] BLACKFORD M J P, DINAN L. The effects of ingested 20- hydroxyecdysone on the larvae of Aglais urticae, Inachis io, Cynthia cardui (Lepidoptera: Nymphalidae) and Tyria jacobaeae (Lepidoptera: Arctiidae). Journal of Insect Physiology, 1997, 43(4): 315-327.
pmid: 12769893
[23] KLEIN R R, BOURDON D M, COSTALES C L, WAGNER C D, WHITE W L, WILLIAMS J D, HICKS S N, SONDEK J, THAKKER D R. Direct activation of human phospholipase C by its well known inhibitor U73122. The Journal of Biological Chemistry, 2011, 286(14): 12407-12416.
doi: 10.1074/jbc.M110.191783
[24] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262
[25] KARLSON P. On the hormonal control of insect metamorphosis. A historical review. The International Journal of Developmental Biology, 1996, 40(1): 93-96.
[26] LANOT R, THIEBOLD J, COSTET-CORIO M F, BENVENISTE P, HOFFMANN J A. Further experimental evidence for the involvement of ecdysone in the control of meiotic reinitiation in oocytes of Locusta migratoria (Insecta, Orthoptera). Developmental Biology, 1988, 126(1): 212-214.
doi: 10.1016/0012-1606(88)90255-2
[27] LOEB M J, DE LOOF A, GELMAN D B, HAKIM R S, JAFFE H, KOCHANSKY J P, MEOLA S M, SCHOOFS L, STEEL C, VAFOPOULOU X, WAGNER R M, WOODS C W. Testis ecdysiotropin, an insect gonadotropin that induces synthesis of ecdysteroid. Archives of Insect Biochemistry and Physiology, 2010, 47(4): 181-188.
doi: 10.1002/(ISSN)1520-6327
[28] DAIMON T, UCHIBORI M, NAKAO H, SEZUTSU H, SHINODA T. Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(31): E4226-E4235.
[29] MALAUSA T, SALLES M, MARQUET V, GUILLEMAUD T, ALLA S, MARION-POLL F, LAPCHIN L. Within-species variability of the response to 20-hydroxyecdysone in peach-potato aphid (Myzus persicae Sulzer). Journal of Insect Physiology, 2006, 52(5): 480-486.
doi: 10.1016/j.jinsphys.2006.01.007
[30] SUN L J, LIU Y J, SHEN C P. The effects of exogenous 20-hydroxyecdysone on the feeding, development, and reproduction of Plutella xylostella (Lepidoptera: Plutellidae). Florida Entomologist, 2015, 98(2): 606-612.
doi: 10.1653/024.098.0233
[31] MARINISSEN M J, GUTKIND J S. G-protein-coupled receptors and signaling networks: Emerging paradigms. Trends in Pharmacological Sciences, 2001, 22(7): 368-376.
doi: 10.1016/S0165-6147(00)01678-3
[32] BELMONTE S L, BLAXALL B C. G protein coupled receptor kinases as therapeutic targets in cardiovascular disease. Circulation Research, 2011, 109(3): 309-319.
doi: 10.1161/CIRCRESAHA.110.231233
[33] KANG J H, TOITA R, KAWANO T, MURATA M, ASAI D. Design of substrates and inhibitors of G protein-coupled receptor kinase 2 (GRK2) based on its phosphorylation reaction. Amino Acids, 2020, 52(6): 863-870.
doi: 10.1007/s00726-020-02864-x
[34] APPLE R T, FRISTROM J W. 20-Hydroxyecdysone is required for, and negatively regulates, transcription of Drosophila pupal cuticle protein genes. Developmental Biology, 1991, 146(2): 569-582.
doi: 10.1016/0012-1606(91)90257-4
[35] DOCTOR J, FRISTRIM D, FRISTRIM J W. The pupal cuticle of Drosophila: Biphasic synthesis of pupal cuticle proteins in vivo and in vitro in response to 20-hydroxyecdysone. The Journal of Cell Biology, 1985, 101(1): 189-200.
doi: 10.1083/jcb.101.1.189
[36] SALCEDO A, MAYOR F, PENELA P. Mdm2 is involved in the ubiquitination and degradation of G-protein-coupled receptor kinase 2. The EMBO Journal, 2006, 25(20): 4752-4762.
doi: 10.1038/sj.emboj.7601351
[37] HUANG J A, NALLI A D, MSHAVADI S, KUMAR D P, MURTHY K S. Inhibition of Gαi activity by Gβγ is mediated by PI 3-kinase-γ- and cSrc- dependent tyrosine phosphorylation of Gαi and recruitment of RGS12. American Journal of Physiology Gastrointestinal and Liver Physiology, 2014, 306(9): G802-G810.
doi: 10.1152/ajpgi.00440.2013
[38] WALDSCHMIDT H V, HOMAN K T, CRUZ-RODRIGUEZ O, CATO M C, WANINGER-SARONI J, LARIMORE K M, CANNAVO A, SONG J, CHEUNG J Y, KIRCHHOFF P D, KOCH W J, TESMER J J G, LARSEN S D. Structure-based design, synthesis and biological evaluation of highly selective and potent G protein-coupled receptor kinase 2 inhibitors. Journal of Medicinal Chemistry, 2016, 59(8): 3793-3807.
doi: 10.1021/acs.jmedchem.5b02000
[39] JABER M, KOCH W J, ROCKMAN H, SMITH B, BOND R A, SULIK K K, ROSS J, LEFKOWITZ R J, CARON M G, GIROS B. Essential role of β-adrenergic receptor kinase 1 in cardiac development and function. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(23): 12974-12979.
[40] PHILIPP M, FRALISH G B, MEIONI A R, CHEN W, MACINNES A W, BARAK L S, CARON M G. Smoothened signaling in vertebrates is facilitated by a G protein-coupled receptor kinase. Molecular Biology of the Cell, 2008, 19(12): 5478-5489.
doi: 10.1091/mbc.e08-05-0448
[41] WANG J J, LUO J S, ARYAL D K, WETSEL W C, NASS R, BENOVIC J L. G protein-coupled receptor kinase-2 (GRK-2) regulates serotonin metabolism through the monoamine oxidase AMX-2 in Caenorhabditis elegans. The Journal of Biological Chemistry, 2017, 292(14): 5943-5956.
doi: 10.1074/jbc.M116.760850
[42] ISAAC R E, REES H H. Isolation and identification of ecdysteroid phosphates and acetylecdysteroid phosphates from developing eggs of the locust, Schistocerca gregaria. The Biochemical Journal, 1984, 221(2): 459-464.
doi: 10.1042/bj2210459
[43] JIANG X, YANG P, MA L. Kinase activity-independent regulation of cyclin pathway by GRK2 is essential for zebrafish early development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(25): 10183-10188.
[44] 杨中侠, 文礼章, 吴青君, 王少丽, 徐宝云, 张友军. RNAi技术在昆虫功能基因研究中的应用进展. 昆虫学报, 2008, 51(10): 1077-1082.
YANG Z X, WEN L Z, WU Q J, WANG S L, XU B Y, ZHANG Y J. Application of RNA interference in studying gene functions in insects. Acta Entomologica Sinica, 2008, 51(10): 1077-1082. (in Chinese)
[45] MCFARLANE M, LAURETI M, LEVEE T, TERRY S, KOHL A, PONDEVILLE E. Improved transient silencing of gene expression in the mosquito female Aedes aegypti. Insect Molecular Biology, 2021, 30(3): 355-365.
doi: 10.1111/imb.v30.3
[46] ZHU J H, LIU X Q, ZHU K M, ZHOU H Y, LI L, LI Z X, QIN W W, HE Y P. Knockdown of TRPV genes affects the locomotion and feeding behavior of Nilaparvata lugens (Hemiptera: Delphacidae). Journal of Insect Science, 2020, 20(1): 9.
[47] 黄海山. 家蚕脂动激素受体信号转导机制研究[D]. 杭州: 浙江大学, 2010.
HUANG H S. The mechanism of signal transduction of adipokinetic hormone receptor in Bombyx mori[D]. Hangzhou: Zhejiang University, 2010. (in Chinese)
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[3] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[4] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[5] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[6] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[7] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[8] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[9] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[10] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[11] HaiXia ZHENG,YuLin GAO,FangMei ZHANG,ChaoXia YANG,Jian JIANG,Xun ZHU,YunHui ZHANG,XiangRui LI. Cloning of Heat Shock Protein Gene Ld-hsp70 in Leptinotarsa decemlineata and Its Expression Characteristics under Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(6): 1163-1175.
[12] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[13] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
[14] YE FangTing,PAN XinFeng,MAO ZhiJun,LI ZhaoWei,FAN Kai. Molecular Evolution and Function Analysis of bZIP Family in Nymphaea colorata [J]. Scientia Agricultura Sinica, 2021, 54(21): 4694-4708.
[15] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!