Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2552-2561.doi: 10.3864/j.issn.0578-1752.2022.13.006

• PLANT PROTECTION • Previous Articles     Next Articles

Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci

QU Cheng(),WANG Ran,LI FengQi,LUO Chen()   

  1. Institute of Plant Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097
  • Received:2021-12-17 Accepted:2022-01-18 Online:2022-07-01 Published:2022-07-08
  • Contact: Chen LUO E-mail:quch1990@sina.com;luochen1010@126.com

Abstract:

【Objective】Bemisia tabaci is an important agricultural and invasive pest worldwide. Although B. tabaci has many host plants, there are differences in the tropism of B. tabaci to these different hosts. The gustatory receptor genes (GRs) play an important role in its feeding selection and other behaviors. The objective of this study is to clone the two gustatory receptor genes (GR1 and GR2) of B. tabaci, and clarify their expression profiles at different developmental stages and in different adult tissues, so as to provide a theoretical basis for further functional study of the two gustatory receptor genes.【Method】The gustatory receptor genes were screened from the adult head transcriptome of B. tabaci. The open reading frame (ORF) of two gustatory receptor genes was cloned by nest PCR, and the two genes were named BtabGR1 and BtabGR2, respectively. Encoded amino acid sequence features and structure characteristics of BtabGR1 and BtabGR2 were analyzed by multiple bioinformatics methods. Phylogenetic tree between BtabGR1, BtabGR2 and other Hemiptera insects GRs was constructed using neighbor-joining method. The expression levels of the two genes at different developmental stages (egg, 1-4 instar nymphs, female and male adults), in different adult tissues (head, thorax, abdomen, leg) were detected by qRT-PCR.【Result】The cDNA sequences of BtabGR1 and BtabGR2 (GenBank accession number: OL845904 and OL845905) were obtained. The complete ORFs of these two genes are 1 287 and 1 344 bp in length, encoding 428 and 447 amino acids with the predicted molecular weight of 48.54 and 51.50 kD, the isoelectric point of 8.85 and 8.74, 4 and 6 transmembrane domains. Amino acid sequence alignment and phylogenetic analysis showed that BtabGR1 and BtabGR2 were closely related to the GR28b and GR43a-like genes of other Hemiptera insects. Developmental stages expression results showed that BtabGR1 and BtabGR2 were expressed at different developmental stages of B. tabaci. The expression level of BtabGR1 in female and male adults was higher than that in other developmental stages, while BtabGR2 was highly expressed in the egg. Tissue expression results showed that BtabGR1 and BtabGR2 were expressed in different tissues of adult B. tabaci, and the two genes were both highly expressed in the head of adults.【Conclusion】BtabGR1 and BtabGR2 have the typical characteristics of insect gustatory receptor genes, and both of them are highly expressed in the head of B. tabaci adults. It is speculated that these two genes play an important role in host plant adaptation of B. tabaci, and can be used as potential targets for novel control measures of B. tabaci.

Key words: Bemisia tabaci, gustatory receptor, gene cloning, sequence analysis, expression profile

Table 1

Primer sequences"

引物
Primer
引物序列
Primer sequence (5′-3′)
引物用途
Usage of primers
GR1-1441-F CCTCTAGTTGTTCTTCTATCG 开放阅读框扩增
Amplification of ORF
GR1-1441-R TGTCTGAATCATTTTTTATCC
GR1-ORF-F ATGCAATTCCACTTGATTCCGACAT
GR1-ORF-R TTATGAAGTTGAATTATGTGAAAAT
GR2-1495-F AAAAAGGAAACATGAAAAAAA
GR2-1495-R GAACTGTACGTATAAGAGCTG
GR2-ORF-F ATGAAATTTAAAAACCGCACATTCT
GR2-ORF-R TTAAGACACCATGTTTTGTTTTTCC
GR1-117-F ACCTAAACAGTCCCAAGTGCT 实时荧光定量PCR
qRT-PCR
GR1-117-R CTTCGAACCCGTCACACGAA
GR2-181-F AAAAGACAAGCTGGTCCCCG
GR1-181-R GTCGGCTAAACTGTGGGTGT
EF1α-110-F TAGCCTTGTGCCAATTTCCG
EF1α-110-R CCTTCAGCATTACCGTCC
RPL29-144-F TCGGAAAATTACCGTGAG
RPL29-144-R GAACTTGTGATCTACTCCTCTCGTG

Fig. 1

Identification of PCR products of BtabGR1 and BtabGR2"

Fig. 2

The predicted transmembrane domains of BtabGR1"

Fig. 3

The predicted transmembrane domains of BtabGR2"

Fig. 4

Amino acid sequence alignment of BtabGR1, BtabGR2 with other Hemiptera GRs"

Fig. 5

Phylogenetic tree of BtabGR1 and BtabGR2 with other Hemiptera GRs based on amino acid sequences"

Fig. 6

Relative expression levels of BtabGR1 and BtabGR2 at different developmental stages Relative expression levels are indicated as mean±SEM. The different letters above each bar indicate significant differences (P<0.05). The same as Fig. 7"

Fig. 7

Relative expression levels of BtabGR1 and BtabGR2 in different tissues of adults"

[1] DE BARRO P J, DRIVER F. Use of RAPD PCR to distinguish the B biotype from other biotypes of Bemisia tabaci (Gennadius)(Hemiptera: Aleyrodidae). Australian Journal of Entomology, 1997, 36(2): 149-152.
doi: 10.1111/j.1440-6055.1997.tb01447.x
[2] DE BARRO P J, LIU S S, BOYKIN L M, DINSDALE A B. Bemisia tabaci: A statement of species status. Annual Review of Entomology, 2011, 56: 1-19.
doi: 10.1146/annurev-ento-112408-085504
[3] PAN H P, CHU D, YAN W Q, SU Q, LIU B M, WANG S L, WU Q J, XIE W, JIAO X G, LI R M, et al. Rapid spread of tomato yellow leaf curl virus in China is aided differentially by two invasive whiteflies. PLoS ONE, 2012, 7(4): e34817.
doi: 10.1371/journal.pone.0034817
[4] TANG X, SHI X B, ZHANG D Y, LI F, YAN F, ZHANG Y J, LIU Y, ZHOU X G. Detection and epidemic dynamic of ToCV and CCYV with Bemisia tabaci and weed in Hainan of China. Virology Journal, 2017, 14: 169.
doi: 10.1186/s12985-017-0833-2
[5] CHU D, ZHANG Y J, BROWN J K, CONG B, XU B Y, WU Q J, ZHU G R. The introduction of the exotic Q biotype of Bemisia tabaci from the Mediterranean region into China on ornamental crops. Florida Entomologist, 2006, 89(2): 168-174.
doi: 10.1653/0015-4040(2006)89[168:TIOTEQ]2.0.CO;2
[6] HU J, DE BARRO P, ZHAO H, WANG J, NARDI F, LIU S S. An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoS ONE, 2011, 6(1): e16061.
doi: 10.1371/journal.pone.0016061
[7] TANG X T, CAI L, SHEN Y, XU L L, DU Y Z. Competitive displacement between Bemisia tabaci MEAM1 and MED and evidence for multiple invasions of MED. Insects, 2020, 11(1): 35.
doi: 10.3390/insects11010035
[8] XUE Y T, LIN C T, WANG Y Z, ZHANG Y B, JI L Q. Ecological niche complexity of invasive and native cryptic species of the Bemisia tabaci species complex in China. Journal of Pest Science, 2022, 95: 1245-1259.
doi: 10.1007/s10340-021-01450-8
[9] OLIVEIRA M R V, HENNEBERRY T J, ANDERSON P. History, current status, and collaborative research projects for Bemisia tabaci. Crop Protection, 2001, 20(9): 709-723.
doi: 10.1016/S0261-2194(01)00108-9
[10] 张永军, 梁革梅, 倪云霞, 吴孔明, 郭予元. 烟粉虱成虫对不同寄主植物的选择性. 植物保护, 2003, 29(2): 20-22.
ZHANG Y J, LIANG G M, NI Y X, WU K M, GUO Y Y. Selection of the adult of Bemisia tabaci (Gennadius) to different host plants. Plant Protection, 2003, 29(2): 20-22. (in Chinese)
[11] 周福才, 黄振, 王勇, 李传明, 祝树德. 烟粉虱(Bemisia tabaci)的寄主选择性. 生态学报, 2008, 28(8): 3825-3831.
ZHOU F C, HUANG Z, WANG Y, LI C M, ZHU S D. Host plant selection of Bemisia tabaci (Gennadius)(Hemiptera: Aleyrodidae). Acta Ecologica Sinica, 2008, 28(8): 3825-3831. (in Chinese)
[12] WAN F H, ZHANG G F, LIU S S, LUO C, CHU D, ZHANG Y J, ZANG L S, JIU M, LÜ Z Q, CUI X H, et al. Invasive mechanism and management strategy of Bemisia tabaci (Gennadius) biotype B:Progress report of 973 Program on invasive alien species in China. Science in China Series C-Life Sciences, 2009, 52(1): 88-95.
[13] LI Y F, ZHONG S T, QIN Y C, ZHANG S Q, GAO Z L, DANG Z G, PAN W L. Identification of plant chemicals attracting and repelling whiteflies. Arthropod-Plant Interactions, 2014, 8(3): 183-190.
doi: 10.1007/s11829-014-9302-7
[14] SACCHETTI P, ROSSI E, BELLINI L, VERNIERI P L, CIONI P L, FLAMINI G. Volatile organic compounds emitted by bottlebrush species affect the behaviour of the sweet potato whitefly. Arthropod- Plant Interactions, 2015, 9(4): 393-403.
doi: 10.1007/s11829-015-9382-z
[15] SADEH D, NITZAN N, SHACHTER A, CHAIMOVITSH D, DUDAI N, GHANIM M. Whitefly attraction to rosemary (Rosmarinus officinialis L.) is associated with volatile composition and quantity. PLoS ONE, 2017, 12(5): e0177483.
doi: 10.1371/journal.pone.0177483
[16] OZAKI K, RYUDA M, YAMADA A, UTOGUCHI A, ISHIMOTO H, CALAS D, MARION-POLL F, TANIMURA T, YOSHIKAWA H. A gustatory receptor involved in host plant recognition for oviposition of a swallowtail butterfly. Nature Communications, 2011, 2: 542.
doi: 10.1038/ncomms1548
[17] BRISCOE A D, MACIAS-MUNOZ A, KOZAK K M, WALTERS J R, YUAN F R, JAMIE G A, MARTIN S H, DASMAHAPSATRA K K, FERGUSON L C, MALLET J, JACQUIN-JOLY E, JIGGINS C D. Female behaviour drives expression and evolution of gustatory receptors in butterflies. PLoS Genetics, 2013, 9(7): e1003620.
doi: 10.1371/journal.pgen.1003620
[18] SCHOONHOVEN L M, VAN LOON J J A. An inventory of taste in caterpillars: Each species its own key. Acta Zoologica Academiae Scientiarum Hungaricae, 2002, 48(Suppl. 1): 215-263.
[19] LIU X L, YAN Q, YANG Y L, HOU W, MIAO C L, PENG Y C, DONG S L. A gustatory receptor GR8 tunes specifically to D-fructose in the common cutworm Spodoptera litura. Insects, 2019, 10(9): 272.
doi: 10.3390/insects10090272
[20] CLYNE P J, WARR C G, CARLSON J R. Candidate taste receptors in Drosophila. Science, 2000, 287(5459): 1830-1834.
doi: 10.1126/science.287.5459.1830
[21] XU W, ZHANG H J, ANDERSON A. A sugar gustatory receptor identified from the foregut of cotton bollworm Helicoverpa armigera. Journal of Chemical Ecology, 2012, 38(12): 1513-1520.
doi: 10.1007/s10886-012-0221-8
[22] HE P, ENGSONTIA P, CHEN G L, YIN Q, WANG J, LU X, ZHANG Y N, LI Z Q, HE M. Molecular characterization and evolution of a chemosensory receptor gene family in three notorious rice planthoppers, Nilaparvata lugens, Sogatella furcifera and Laodelphax striatellus, based on genome and transcriptome analyses. Pest Management Science, 2018, 74(9): 2156-2167.
doi: 10.1002/ps.4912
[23] KANG K, YANG P, CHEN L E, PANG R, YU L J, ZHOU W W, ZHU Z R, ZHANG W Q. Identification of putative fecundity-related gustatory receptor genes in the brown planthopper Nilaparvata lugens. BMC Genomics, 2018, 19(1): 970.
doi: 10.1186/s12864-018-5391-5
[24] SMAGJA C, SHI P, BUTLIN R K, ROBERTSON H M. Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the pea aphid, Acyrthosiphon pisum. Molecular Biology and Evolution, 2009, 26(9): 2073-2086.
doi: 10.1093/molbev/msp116
[25] WANG R, LI F Q, ZHANG W, ZHANG X M, QU C, TETREAU G, SUN L J, LUO C, ZHOU J J. Identification and expression profile analysis of odorant binding protein and chemosensory protein genes in Bemisia tabaci MED by head transcriptome. PLoS ONE, 2017, 12(2): e0171739.
doi: 10.1371/journal.pone.0171739
[26] ZENG Y, YANG Y T, WU Q J, WANG S L, XIE W, ZHANG Y J. Genome-wide analysis of odorant-binding proteins and chemosensory proteins in the sweet potato whitefly, Bemisia tabaci. Insect Science, 2019, 26(4): 620-634.
doi: 10.1111/1744-7917.12576
[27] LI R M, XIE W, WANG S L, WU Q J, YANG N N, YANG X, PAN H P, ZHOU X M, BAI L Y, XU B Y, ZHOU X G, ZHANG Y Y. Reference gene selection for qRT-PCR analysis in the sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS ONE, 2013, 8(1): e53006.
doi: 10.1371/journal.pone.0053006
[28] SATO K, TANAKA K, TOUHARA K. Sugar-regulated cation channel formed by an insect gustatory receptor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(28): 11680-11685.
[29] MANG D Z, SHU M, ENDO H, YOSHIZAWA Y, NAGATA S, KIKUTA S, SATO R. Expression of a sugar clade gustatory receptor, BmGr6, in the oral sensory organs, midgut, and central nervous system of larvae of the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology, 2016, 70: 85-98.
doi: 10.1016/j.ibmb.2015.12.008
[30] JIANG X J, NING C, GUO H, JIA Y Y, HUANG L Q, QU M J, WANG C Z. A gustatory receptor tuned to D-fructose in antennal sensilla chaetica of Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 2015, 60: 39-46.
doi: 10.1016/j.ibmb.2015.03.002
[31] MIYAMOTO T, SLONE J, SONG X Y, AMREIN H. A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell, 2012, 151(5): 1113-1125.
doi: 10.1016/j.cell.2012.10.024
[32] SANG J, RIMAL S, LEE Y. Gustatory receptor 28b is necessary for avoiding saponin in Drosophila melanogaster. EMBO Reports, 2019, 20(2): e47328.
[33] XIANG Y, YUAN Q, VOGT N, LOOGER L L, JAN L Y, JAN Y N. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature, 2010, 468(7326): 921-926.
doi: 10.1038/nature09576
[34] NI L N, BRONK P, CHANG E C, LOWELL A M, FLAM J O, PANZANO V C, THEOBALD D L, GRIFFITH L C, GARRITY P A. A gustatory receptor paralogue controls rapid warmth avoidance in Drosophila. Nature, 2013, 500(7464): 580-584.
doi: 10.1038/nature12390
[35] 刘一鹏, 刘杨, 杨婷, 桂富荣, 王桂荣. 小菜蛾普通气味受体基因PxylOR9的鉴定及功能研究. 昆虫学报, 2015, 58(5): 507-515.
LIU Y P, LIU Y, YANG T, GUI F R, WANG G R. Identification and characterization of a general odorant receptor gene PxylOR9 in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Acta Entomologica Sinica, 2015, 58(5): 507-515. (in Chinese)
[36] SAINA M, BUSENGDAL H, SINIGAGLIA C, PETRONE L, OLIVERI P, RENTZSCH F, BENTON R. A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning. Nature Communications, 2015, 6: 6243.
doi: 10.1038/ncomms7243
[37] ABDEL-LATIEF M. A family of chemoreceptors in Tribolium castaneum (Tenebrionidae: Coleoptera). PLoS ONE, 2007, 2(12): e1319.
doi: 10.1371/journal.pone.0001319
[38] XU W, PAPANICOLAOU A, LIU N Y, DONG S L, ANDERSON A. Chemosensory receptor genes in the oriental tobacco budworm Helicoverpa assulta. Insect Molecular Biology, 2015, 24(2): 253-263.
doi: 10.1111/imb.12153
[39] AHMED T, ZHANG T T, WANG Z Y, HE K L, BAI S X. Gene set of chemosensory receptors in the polyembryonic endoparasitoid Macrocentrus cingulum. Scientific Reports, 2016, 6: 24078.
doi: 10.1038/srep24078
[40] YI J K, YANG S, WANG S, WANG J, ZHANG X X, LIU Y, XI J H. Identification of candidate chemosensory receptors in the antennal transcriptome of the large black chafer Holotrichia parallela Motschulsky (Coleoptera: Scarabaeidae). Comparative Biochemistry and Physiology. Part D, Genomics and Proteomics, 2018, 28: 63-71.
[41] SUN L, ZHANG Y N, QIAN J L, KANG K, ZHANG X Q, DENG J D, TANG Y P, CHEN C, HANSEN L, XU T, ZHANG Q H, ZHANG L W. Identification and expression patterns of Anoplophora chinensis (Forster) chemosensory receptor genes from the antennal transcriptome. Frontiers in Physiology, 2018, 9: 90.
doi: 10.3389/fphys.2018.00090
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[3] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[4] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[5] HaiXia ZHENG,YuLin GAO,FangMei ZHANG,ChaoXia YANG,Jian JIANG,Xun ZHU,YunHui ZHANG,XiangRui LI. Cloning of Heat Shock Protein Gene Ld-hsp70 in Leptinotarsa decemlineata and Its Expression Characteristics under Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(6): 1163-1175.
[6] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
[7] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[8] YE FangTing,PAN XinFeng,MAO ZhiJun,LI ZhaoWei,FAN Kai. Molecular Evolution and Function Analysis of bZIP Family in Nymphaea colorata [J]. Scientia Agricultura Sinica, 2021, 54(21): 4694-4708.
[9] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[10] ZHAO FuMei,WANG Shuang,TIAN YuTing,QIAO Qi,WANG YongJiang,ZHANG DeSheng,ZHANG ZhenChen. An Investigation into Key Factors Influencing the Occurrence of Virus Disease in Sweet Potato [J]. Scientia Agricultura Sinica, 2021, 54(15): 3232-3240.
[11] TAN YongAn,ZHAO XuDong,JIANG YiPing,ZHAO Jing,XIAO LiuBin,HAO DeJun. Cloning, Preparation of Antibody and Response Induced by 20-Hydroxyecdysone of Target of Rapamycin in Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(10): 2118-2131.
[12] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[13] SHEN JingYuan,TANG MeiLing,YANG QingShan,GAO YaChao,LIU WanHao,CHENG JieShan,ZHANG HongXia,SONG ZhiZhong. Cloning, Expression and Electrophysiological Function Analysis of Potassium Channel Gene VviSKOR in Grape [J]. Scientia Agricultura Sinica, 2020, 53(15): 3158-3168.
[14] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[15] JIANG MengTing,ZHU Ning,GONG HongYong,HOU YingJun,YU XinYi,QU ShenChun. Cloning and Function Analysis of Gibberellin Insensitive DkGAI2 Gene in Nantongxiaofangshi (Diospyros kaki Linn. cv. nantongxiaofangshi) [J]. Scientia Agricultura Sinica, 2019, 52(19): 3417-3429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!