Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (11): 2152-2164.doi: 10.3864/j.issn.0578-1752.2015.11.007

• PLANT PROTECTION • Previous Articles     Next Articles

Advances in Research on Maize Resistance to Ear Rot

DUAN Can-xing, WANG Xiao-ming, SONG Feng-jing, SUN Su-li, ZHOU Dan-ni, ZHU Zhen-dong   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081
  • Received:2015-01-12 Online:2015-06-01 Published:2015-06-01

Abstract:  Maize is one of the most important crops in the world. The percentage of maize yields is 38.12% in gross cereal yields of China. Ear rot is a serious disease of maize, which often leads to a decline in yield and quality, and that hazards animals and human health because of the toxins that are produced in the ear rot. The development and utilization of resistant cultivars is the most economical, safe, and effective method for controlling ear rot. So far, many studies on pathogens causing maize ear rot have been reported and more than 40 pathogenic fungi have been isolated and identified. The ear rots caused by Fusarium verticillioides, F. graminearum and Aspergillus flavus are very common and serious diseases. The four methods of resistance identification have been established, i.e. two toothpicks method, silk spraying, silk channel injection and kernel injection. Thousands of maize germplasm have been identified and evaluated for resistance to ear rot, and some accessions with resistance to F. verticillioides, F. graminearum or A. flavus also have been screened out. Resistance inheritance and gene mapping have been conducted for some materials, and more than 60 quantitative trait loci (QTL) associated with resistance to A. flavus infection and aflatoxin accumulation in maize have been mapped on chromosomes 1-8. Furthermore, 55, 29 and 16 QTLs resistance to F. verticillioides, F. graminearum and fumonisin and deoxynivalenol (DON) accumulation have been discovered, respectively. Based on QTL associated with ear rot resistance in maize, the meta-QTL analysis has been projected and some stable QTLs have been detected. Also, more than 10 ear rot resistant accessions have been developed and some new varieties with different levels of resistance have been bred. In addition, physical and biochemical resistance mechanisms were demonstrated, which mainly reflected in anti-infection and anti-diffusion. However, there are few successful cases that the resistance research and disease-resistant breeding results are applied to production practice, resulting in lack of maize cultivars with stable resistance as well as high yield and quality. In this paper, the advances including pathogens, identification of resistant maize germplasm, resistance inheritance, discovery and mapping of resistance genes, resistance mechanism, and breeding resistant varieties in research of maize resistance to ear rot are reviewed, and several important directions for the future researches are prospected. The main aim is to supply useful information so as to promote the development of the research on maize resistance to ear rot.

Key words: maize (Zea mays L.), ear rot, resistance

[1]    王晓鸣, 石洁, 晋齐鸣, 李晓, 孙世贤. 玉米病虫害田间手册. 北京: 中国农业科学技术出版社, 2010.
Wang X M, Shi J, Jin Q M, Li X, Sun S X. The Field Manual of Maize Diseases and Pests. Beijing: China Agriculture Science and Technology Press, 2010. (in Chinese)
[2]    段灿星, 朱振东, 武小菲, 杨知还, 王晓鸣. 玉米种质资源对六种重要病虫害的抗性鉴定与评价. 植物遗传资源学报, 2012, 13(2): 169-174.
Duan C X, Zhu Z D, Wu X F, Yang Z H, Wang X M. Screening and evaluation of maize germplasm for resistance to five diseases and Asian corn borer. Journal of Plant Genetic Resources, 2012, 13(2): 169-174. (in Chinese)
[3]    马秉元, 李亚玲, 龙书生, 李多川. 玉米穗粒腐病接种技术及品种抗病性鉴定研究. 植物保护学报, 1999, 26(2): 121-124.
Ma B Y, Li Y L, Long S S, Li D C. Inoculation technique of corn kernel or ear rot and identification of variety resistance. Acta Phytophylacica Sinica, 1999, 26(2): 121-124. (in Chinese)
[4]    Atanasova-Penichon V, Pons S, Pinson-Gadais L, Picot A, Marchegay G, Bonnin-Verdal M N, Ducos C, Barreau C, Roucolle J, Sehabiague P, Carolo P, Richard-Forget F. Chlorogenic acid and maize ear rot resistance: A dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation. Molecular Plant-Microbe Interactions, 2012, 25(12): 1605-1616.
[5]    Mesterházy A, Lemmens M, Reid L M. Breeding for resistance to ear rots caused by Fusarium spp. in maize-a review. Plant Breeding, 2012, 131: 1-19.
[6]    Calvert O H, Zuber M S. Ear-rotting potential of Helminthosporium maydis race T in corn. Phytopathology, 1973, 63(6): 769-772.
[7]    宋立秋, 魏利民, 王振营, 何康来, 丛斌. 亚洲玉米螟与串珠镰孢菌复合侵染对玉米产量损失的影响. 植物保护学报, 2009, 36(6): 487-490.
Song L Q, Wei L M, Wang Z Y, He K L, Cong B. Effect of infestation by the Asian corn borer together with Fusarium verticillioides on corn yield loss. Acta Phytophylacica Sinica, 2009, 36(6): 487-490. (in Chinese)
[8]    Gelderblom W C, Jaskiewicz K, Marasas W F, Thiel P G, Horak R M, Vleggaar R, Kriek N P J. Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Applied and Environment Microbiology, 1988, 54(7): 1806-1811.
[9]    Harrison L R, Colvin B M, Greene J T, Newman L E, Cole J R Jr. Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. Journal of Veterinary Diagnostic Investigation, 1990, 2(3): 217-221.
[10]   Yoshizawa T, Yamashita A, Luo Y. Fumonisin occurrence in corn form high-risk and low-risk areas for human esophageal cancer in China. Applied and Environmental Microbiology, 1994, 60(5): 1626-1629.
[11]   Bush B J, Carson M L, Cubeta M A, Hagler W M, Payne G A. Infection and fumonisin production by Fusarium verticillioides in developing maize kernels. Phytopathology, 2004, 94(1): 88-93.
[12]   秦子惠, 任旭, 江凯, 武小菲, 杨知还, 王晓鸣. 中国玉米穗腐病致病镰孢种群及禾谷镰孢复合种的鉴定. 植物保护学报, 2014, 41(5): 589-596.
Qin Z H, Ren X, Jiang K, Wu X F, Yang Z H, Wang X M. Identification of Fusarium species and F. graminearum species complex causing maize ear rot in China. Acta Phytophylacica Sinica, 2014, 41(5): 589-596. (in Chinese)
[13]   Ullstrup A J. An undescribed ear rot of corn caused by Physalospora zeae. Phytopathology, 1946, 36(3): 201-212.
[14]   Kumar V, Shetty H S. A new ear and kernel rot of maize caused by Trichoderma viride pers ex Fries. Current Science, 1982, 5(12): 620- 621.
[15]   Atlin G N, Enersom P M, Mcgirr L G, Hunter R B. Gibberella ear rot development and zearalenone and vomitoxin production as affected by maize genotype and Gibberella zeae strain. Canadian Journal of Plant Science, 1983, 63(4): 847-853.
[16]   Zummo N, Scott G E. Cob and kernel infected by Aspergillus flavus and Fusarium moniliforme in inoculated, field-grown maize ears. Plant Disease, 1990, 74(9): 627-631.
[17]   Flett B C. Evaluation of maize hybrids for kernel colonization by Fusarium moniliforme and F. subglutinans. South African Journal of Plant and Soil, 1994, 11(1): 41-44.
[18]   Munkvold G P, Desjardins A E. Fumonisins in maize: Can we reduce their occurrence? Plant Disease, 1997, 81(6): 556-565.
[19]   Fandohan P H, Marasas W F O, Wingfield M J. Infection of maize by Fusarium species and contamination with fumonisin in Africa. African Journal of Biotechnology, 2003, 2(12): 570-579.
[20]   Schaafsma A W, Limay-rios V, Tamburic-illincic L. Mycotoxins and Fusarium species associated with maize ear rot in Ontario, Canada. Cereal Research Communications, 2008, 36(Suppl.B): 525-527.
[21]   Görtz A, Oerke E C, Steiner U, Waalwijk C, Vries P M de, Dehne H  W. Biodiversity of Fusarium species causing ear rot of maize in Germany. Cereal Research Communications, 2008, 36: 617-622.
[22]   Pamphile J A, Azevedo J L. Molecular characterization of endophytic strains of Fusarium verticillioides (= Fusarium moniliforme) from maize (Zea mays L.). World Journal of Microbiology and Biotechnology, 2002, 18(5): 391-396.
[23]   Stumpf R, dos Santos J, Gomes L B, Silva C N, Tessmann D J, Ferreira F D, Machinski M Junior, Del Ponte E M. Fusarium species and fumonisins associated with maize kernels produced in Rio Grande do Sul State for the 2008/09 and 2009/10 growing seasons. Brazilian Journal of Microbiology, 2013, 44(1): 89-95.
[24]   Sampietro D A, Díaz C G, Gonzalez V, Vattuone M A, Ploper L D, Catalan C A, Ward T J. Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in northwest Argentina. International Journal of Food Microbiology, 2011, 145(1): 359-364.
[25]   Covarelli L, Stifano S, Beccari G, Raggi L, Lattanzio V M T, Albertini E. Characterization of Fusarium verticillioides strains isolated from maize in Italy: Fumonisin production, pathogenicity and genetic variability. Food Microbiology, 2012, 31: 17-24.
[26]   Ivic D, Cabric M, Palaversic B, Cvjetkovic B. No correlation between pericarp thickness and Fusarium ear rot (Fusarium verticillioides) in Croatian maize hybrids and lines. Maydica, 2008, 53: 297-301.
[27]   Small I M, Flett B C, Marasas W F O, McLeod A, Stander M A, Viljoen A. Resistance in maize inbred lines to Fusarium verticillioides and fumonisin accumulation in South Africa. Plant Disease, 2012, 96(6): 881-888.
[28]   Aliakbari F, Mirabolfathy M, Emami M, Mazhar S F, Karami-Osboo R. Natural occurrence of Fusarium species in maize kernels at Gholestan Province in Northern Iran. Asian Journal of Plant Sciences, 2007, 6(8): 1276-1281.
[29]   Desjardins A E, Munkvold G P, Plattner R D, Proctor R H. FUM1-a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Molecular Plant-Microbe Interactions, 2002, 15(11): 1157-1164.
[30] Desjardins A, Proctor R H. Genetic diversity and trichothecene chemotypes of the Fusariurn graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Fungal Biology, 2011, 115: 38-48.
[31]   Schaafsma A W, Nicol R W, Reid L M. Evaluating commercial maize hybrids for resistance to Gibberella ear rot. European Journal of Plant Pathology, 1997, 103: 737-746.
[32]   Goertz A, Zuehlke S, Spiteller M, Steiner U, Dehne H W, Waalwijk C, de Vries I, Oerke E C. Fusarium species and mycotoxin profiles on commercial maize hybrids in Germany. European Journal of Plant Pathology, 2010, 128: 101-111.
[33]   Dragich M, Nelson S. Gibberella and Fusarium ear rots of maize in Hawai‘i. http://www.ctahr.hawaii.edu/oc/freepubs/pdf/PD-102.pdf.
[34]   Anjorin S T, Makun H A, Adesina T, Kudu I. Effects of Fusarium verticilloides, its metabolites and neem leaf extract on germination and vigour indices of maize (Zea mays L.). African Journal of Biotechnology, 2008, 7(14): 2402-2406.
[35]   李洪连, 张新, 袁红霞, 李健强. 玉米杂交种穗粒腐病原鉴定. 植物保护学报, 1999, 26(4): 305-308.
Li H L, Zhang X, Yuan H X, Li J Q. Identification of pathogens causing ear and seed rot in corn hybrids. Acta Phytophylacica Sinica, 1999, 26(4): 305-308. (in Chinese)
[36]   曲晓丽, 徐秀德, 董怀玉, 王丽娟, 姜钰, 宋艳春, 盖淑军. 玉米子粒携带真菌种群多样性分析. 玉米科学, 2009, 17(6): 115-117.
Qu X L, Xu X D, Dong H Y, Wang L J, Jiang Y, Song Y C, Gai S J. Analysis of fungi species diversity on maize kernels. Journal of Maize Sciences, 2009, 17(6): 115-117. (in Chinese)
[37]   任旭, 朱振东, 李洪杰, 段灿星, 王晓鸣. 轮枝镰孢SSR标记开发及在玉米分离群体遗传多样性分析中的应用. 中国农业科学, 2012, 45(1): 52-66.
Ren X, Zhu Z D, Li H J, Duan C X, Wang X M. SSR marker development and analysis of genetic diversity of Fusarium verticillioides isolated from maize in China. Scientia Agricultura Sinica, 2012, 45(1): 52-66. (in Chinese)
[38]   卢维宏, 黄思良, 陶爱丽, 武爱波, 王春梅, 黎起秦. 玉米穗腐病样品中层出镰刀菌的分离与鉴定. 植物保护学报, 2011, 38(3): 233-239.
Lu W H, Huang S L, Tao A L, Wu A B, Wang C M, Li Q Q. Isolation and characterization of Fusarium proliferatum from maize ear rot samples. Acta Phytophylacica Sinica, 2011, 38(3): 233-239. (in Chinese)
[39]   李新凤, 王建明, 张作刚, 高俊明, 郝晓娟, 贺运春. 山西省玉米穗腐病病原镰孢菌的分离与鉴定. 山西农业大学学报: 自然科学版, 2012, 32(3): 218-223.
Li X F, Wang J M, Zhang Z G, Gao J M, Hao X J, He Y C. Isolation and identification of the pathogen Fusarium causing maize ear rot in Shanxi Province. Journal of Shanxi Agricultural University: Natural Science Edition, 2012, 32(3): 218-223. (in Chinese)
[40]   郭成, 魏宏玉, 郭满库, 何苏琴, 金社林, 陈红梅, 王晓鸣, 郭建 国. 甘肃玉米穗腐病样品中轮枝镰孢菌的分离鉴定及生物学特性. 植物病理学报, 2014, 44(1): 17-25.
Guo C, Wei H Y, Guo M K, He S Q, Jin S L, Chen H M, Wang X M, Guo J G. Isolation, identification and biological characteristics of Fusarium verticillioides from maize ear rot samples in Gansu Province. Acta Phytopathologica Sinica, 2014, 44(1): 17-25. (in Chinese)
[41]   张小飞, 邹成佳, 崔丽娜, 李晓, 杨晓蓉, 罗怀海. 西南地区玉米穗腐病病原分离鉴定及接种方法研究. 西南农业学报, 2012, 25(6): 2078-2082.
Zhang X F, Zou C J, Cui L N, Li X, Yang X R, Luo H H. Identification of pathogen causing maize ear rot and inoculation technique in Southwest China. Southwest China Journal of Agricultural Sciences, 2012, 25(6): 2078-2082. (in Chinese)
[42]   Kristensen R, Torp M, Kosiak B, Holst-Jensen A. Phylogeny and toxigenic potential is correlated in Fusarium species as revealed by partial translation elongation factor 1 alpha gene sequences. Mycological Research, 2005, 109(2): 173-186.
[43]   Desjardins A E, Proctor R H. Molecular biology of Fusarium mycotoxins. International Journal of Food Microbiology, 2007, 119(1/2): 47-50.
[44]   Alexander N J, Proctor R H, McCormick S P. Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Reviews, 2009, 28(2/3): 198-215.
[45]   Strange R N. Introduction to Plant Pathology. John Wiley & Sons Ltd, 2003.
[46]   Nasmith C G, Walkowiak S, Wang L, Leung W W Y, Gong Y, Johnston A, Harris L J, Guttman D S, Subramaniam R. Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum. PLoS Pathogens, 2011, 7: e1002266.
[47]   Warburton M L, Williams W P. Aflatoxin resistance in maize: what have we learned lately? Advances in Botany, 2014, 2014: Article ID 352831.
[48]   Reid L M, Spaner D, Mather D E, Bolton A T, Hamilton R I. Resistance of maize hybrids and inbreds following silk inoculation with three isolates of Fusarium graminearum. Plant Disease, 1993, 77(12): 1248-1251.
[49]   Clements M J, Kleinschmidt C E, Maragos C M, Pataky J K, White D G. Evaluation of inoculation techniques for Fusarium ear rot and fumonisin contamination of corn. Plant Disease, 2003, 87(2): 147-153.
[50]   谭登峰. 玉米穗粒腐病抗性遗传分析[D]. 雅安: 四川农业大学, 2005.
Tan D F. Study on the heredity of resistance to maize ear rot and prospect [D]. Yaan: Sichuan Agricultural University, 2005. (in Chinese)
[51]   王丽娟, 徐秀德, 刘志恒, 董怀玉, 姜钰, 张明会. 玉米抗镰刀菌穗腐病接种方法及抗病资源筛选研究. 植物遗传资源学报, 2007, 8(2): 145-148.
Wang L J, Xu X D, Liu Z H, Dong H Y, Jiang Y, Zhang M H. Inoculation technique and screening maize germplasm resistance to Fusarium ear rot. Journal of Plant Genetic Resources, 2007, 8(2): 145-148. (in Chinese)
[52]   谭登峰, 潘光堂, 杨克诚, 荣廷昭. 玉米穗粒腐病研究进展及分子育种策略. 种子, 2008, 27(4): 34-38.
Tan D F, Pan G T, Yang K C, Rong T Z. Advances on research of maize ear rot and strategies for molecular breeding. Seed, 2008, 27(4): 34-38. (in Chinese)
[53]   Kebebe A Z, Reid L M, Zhu X, Wu J, Woldemariam T, Voloaca C, Xiang K. Relationship between kernel drydown rate and resistance to gibberella ear rot in maize. Euphytica, 2015, 201: 79-88.
[54]   Widstrom N W, Wilson D M, McMillian W W. Differentiation of maize genotypes for aflatoxin concentration in developing kernels. Crop Science, 1986, 26(5): 935-937.
[55]   Scott G E, Zummo N. Sources of resistance in maize to kernel infection by Aspergillus flavus in the field. Crop Science, 1988, 28(3): 504-507.
[56]   Hamblin A M, White D G. Inheritance of resistance to Aspergillus ear rot and aflatoxin production of corn from Tex6. Phytopathology, 2000, 90(3): 292-296.
[57]   McMillian W W, Widstrom N W, Wilson D M. Registration of GT-MAS:gk maize germplasm. Crop Science, 1993, 33: 882.
[58]   Guo B Z, Li R G, Widstrom N W, Lynch R E, Cleveland T E. Genetic variation within maize population GT-MAS:gk and the relationship with resistance to Aspergiilus flavus and aflatoxin production. Theoretical and Applied Genetics, 2001, 103(4): 533-539.
[59]   Williams W P, Windham G L. Registration of maize germplasm line Mp715. Crop Science, 2001, 41: 1375.
[60]   Williams W P, Windham G L. Registration of maize germplasm line Mp717. Crop Science, 2006, 46: 1407-1408.
[61]   Williams W P, Windham G L. Registration of Mp718 and Mp719 germplasm lines of maize. Journal of Plant Registrations, 2012, 6(2): 200-202.
[62]   Mayfield K, Betr’an F J, Isakeit T, Odvody G, Murray S C, Rooney W L, Landivar J C. Registration of maize germplasm lines Tx736, Tx739, and Tx740 for reducing preharvest aflatoxin accumulation. Journal of Plant Registrations, 2012, 6(1): 88-94.
[63]   Rajasekaran K, Sickler C M, Brown R L, Cary J W, Bhatnagar D. Evaluation of resistance to aflatoxin contamination in kernels of maize genotypes using a GFP-expressing Aspergillus flavus strain. World Mycotoxin Journal, 2013, 6(2): 151-158. 
[64] Henry W B, Windham G L, Rowe D E, Blanco M H, Murray S C, Williams W P. Diallel analysis of diverse maize germplasm lines for resistance to aflatoxin accumulation. Crop Science, 2013, 53(2): 394-402.
[65]   Warburton M L, Williams W P, Windham G L, Murray S C, Xu W, Hawkins L K, Duran J F. Phenotypic and genetic characterization of a maize association mapping panel developed for the identification of new sources of resistance to Aspergillus flavus and aflatoxin accumulation. Crop Science, 2013, 53: 2374-2383.
[66]   Pascale M, Visconti A, Chelkowski J. Ear rot susceptibility and mycotoxin contamination of maize hybrids inoculated with Fusarium species under field conditions. European Journal of Plant Pathology, 2002, 108: 645-651.
[67]   Du Toit L J, Pataky J K. Reactions of processing sweet corn hybrids to Gibberella ear rot. Plant Disease, 1999, 83(2): 176-180.
[68]   Clements M J, White D G. Identifying sources of resistance to aflatoxin and fumonisin contamination in corn grain. Journal of Toxicology, 2004, 23(2/3): 381-396.
[69]   Czembor E, Ochodzki P. Resistance of flint and dent maize forms for colonization by Fusarium spp. and mycotoxins contamination. Maydica, 2009, 54: 263-267.
[70]   Balconi C, Berardo N, Elli S L, Lanzanova C, Torri A, Redaelli R. Evaluation of ear rot (Fusarium verticillioides) resistance and fumonisin accumulation in Italian maize inbred lines. Phytopathologia Mediterranea, 2014, 53(1): 14-26.
[71]   陈威, 吴建宇, 袁虹霞. 玉米穗粒腐病抗病资源鉴定. 玉米科学, 2002, 10(4): 59-60, 101.
Chen W, Wu J Y, Yuan H X. Identification of resistance on maize germplasm to maize ear rot. Journal of Maize Sciences, 2002, 10(4): 59- 60, 101. (in Chinese)
[72]   Hoenisch R W, Davis R M. Relationship between kernel pericarp thickness and susceptibility to Fusarium ear rot in field corn. Plant Disease, 1994, 78(5): 517-519.
[73]   Scott G E, King S B. Site of action of factors for resistance to Fusarium moniliforme in maize. Plant Disease, 1984, 68(9): 804-806.
[74]   Davis R M, Kegel F R, Sillsw M, Farrai J J. Fusarium ear rot of corn. California Agriculture, 1989, 43(6): 4-5.
[75]   Byrne P F, McMullen M D, Wiseman B R, Snook M E, Musket T A, Theuri J M, Widstrom N W, Coe E H. Maize silk maysin concentration and corn earworm antibiosis: QTLs and genetic mechanisms. Crop Science, 1998, 38(2): 461-471.
[76]   Sampietro D A, Vattuone M A, Presello D A, Fauguel C M, Catalan C A N. The pericarp and its surface wax layer in maize kernels as resistance factors to fumonisin accumulation by Fusarium verticillioides. Crop Protection, 2009, 28(2): 196-200.
[77]   黄长玲, 郑长庚. 高赖氨酸玉米对串珠镰刀菌穗腐病抗性遗传的初步研究. 作物学报, 1991, 17(2): 88-92.
Huang C L, Zheng C G. A preliminary study on the inheritance of the resistance of opaque-2 maize to ear rot caused by Fusarium moniliforme. Acta Agronomica Sinica, 1991, 17(2): 88-92. (in Chinese)
[78]   Warren R F, Henk A, Mowery P, Holub E, Innes R W. A mutation within the leucine rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. The Plant Cell, 1998, 10: 1439-1452.
[79]   Ji C, Norton R A, Wicklow D T, Dowd P F. Isoform patterns of chitmiase and β-1, 3-glucanase in maturing corn kernels (Zea mays L.) associated with Aspergillus flavus milk stage infection. Journal of Agricultural and Food Chemistry, 2000, 48(2): 507-511.
[80]   Moore K G, Price M S, Boston R S, Weissinger A K, Payne G A. A chitinase from Tex6 maize kernels inhibits growth of Aspergillus flavus. Phytopathology, 2004, 94(1): 82-87.
[81]   Bily A C, Reid L M, Savard M E, Reddy R, Blackwell B A, Campbell C M, Krantis A, Durst T, Philogéne B J R, Arnason J T, Regnault-Roger C. Analysis of Fusarium graminearum mycotoxins in different biological matrices by LC/MS. Mycopathologia, 2004, 157(1): 117-126.
[82]   Miller S S, Reid L M, Butler G, Winter S P, McGoldrick N J. Long chain alkanes in silk extracts of maize genotypes with varying resistance to Fusarium graminearum. Journal of Agricultural and Food Chemistry, 2003, 51(23): 6702-6708.
[83]   Cao A, Reid L M, Butrón A, Malvar R A, Souto X C, Santiago R. Role of hydroxycinnamic acids in the infection of maize silks by Fusarium graminearum Schwabe. Molecular Plant-Microbe Interactions, 2011, 24(9): 1020-1026.
[84]   Picot A, Atanasova-Pe?nichon V, Pons S, Marchegay G, Barreau C, Pinson-Gadais L, Roucolle J, Daveau F, Caron D, Richard-Forget F. Maize kernel antioxidants and their potential involvement in Fusarium ear rot resistance. Journal of Agricultural and Food Chemistry, 2013, 61: 3389-3395.
[85]   Garcia-Muniz N, Martinez-Izquierdo J A, Puigdomenech P. Induction of mRNA accumulation corresponding to a gene encoding a cell wall hydroxyproline-rich glycoprotein by fungal elicitors. Plant Molecular Biology, 1998, 38: 623-632.
[86]   Campos-Bermudez V A, Fauguel C M, Tronconi M A, Casati P, Presello D A, Andreo C S. Transcriptional and metabolic changes associated to the infection by Fusarium verticillioides in maize inbreds with contrasting ear rot resistance. PLoS ONE, 2013, 8(4): e61580.
[87]   Campbell K W, Hamblin A M, White D G. Inheritance of resistance to aflatoxin production in the cross between corn inbreds B73 and LB31. Phytopathology, 1997, 87(11): 1144-1147.
[88]   Chungu C, Mather D E, Reid L M, Hamilton R I. Inheritance of kernel resistance to Fusarium graminearum in maize. The Journal of Heredity, 1996, 87(5): 382-385.
[89]   Gendloff E H, Rossman E C, Casale W L, Isleib T G, Hart L P. Components of resistance to Fusarium ear rot in field corn. Phytopathology, 1986, 76(7): 684-688.
[90]   Paul C, Naidoo G, Forbes A, Mikkilineni V, White D, Rocheford T. Quantitative trait loci for low aflatoxin production in two related maize populations. Theoretical and Applied Genetics, 2003, 107(2): 263-270.
[91] Brooks T D, Williams W P, Windham G L, Willcox M C, Abbas H K. Quantitative trait loci contributing resistance to aflatoxin accumulation in the maize inbred Mp313E. Crop Science, 2005, 45(1): 171-174.
[92]   Warburton M L, Brooks T D, Krakowsky M D, Shan X, Windham G L, Williams W P. Identification and mapping of new sources of resistance to AFL atoxin accumulation in maize. Crop Science, 2009, 49(4): 1403-1408.
[93]   Warburton M L, Brooks T D, Windham G L, Williams W P. Identification of novel QTL contributing resistance to aflatoxin accumulation in maize. Molecular Breeding, 2011, 27(4): 491-499.
[94]   Mayfield K L, Murray S C, Rooney W L, Isakeit T, Odvody G A. Confirmation of QTL reducing aflatoxin in maize testcrosses. Crop Science, 2011, 51(6): 2489-2498.
[95]   Willcox M C, Davis G L, Warburton M L, Windham G L, Abbas H K, Betrán J, Holland J B, Williams W P. Confirming quantitative trait loci for aflatoxin resistance from Mp313E in different genetic backgrounds. Molecular Breeding, 2013, 32(1): 15-26.
[96]   Yin Z, Wang Y, Wu F, Gu X, Bian Y, Wang Y, Deng D. Quantitative trait locus mapping of resistance to Aspergillus flavus infection using a recombinant inbred line population in maize. Molecular Breeding, 2014, 33(1): 39-49.
[97]   Mideros S X, Warburton M L, Jamann T M, Windham G L, Williams W P, Nelson R J. Quantitative trait loci influencing mycotoxin contamination of maize: analysis by linkage mapping, characterization of near-isogenic lines and meta-analysis. Crop Science, 2014, 54(1): 127-142.
[98]   Perez-Brito D, Jeffers D, Gonzalez-de-Leon D, Khairallah M, Cortes-Cruz M. QTL mapping of Fusarium moniliforme ear rot resistance in highland maize, Mexico. Agrosciencia, 2001, 35(2): 181-196.
[99]   Ali M L, Taylor J H, Jie L, Sun G, William M, Kasha K J, Reid L M, Pauls K P. Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome, 2005, 48(3): 521-533.
[100] Robertson L A, Kleinschmidt C E, White D G, Payne G A, Maragos C M, Holland J B. Heritabilities and correlations of Fusarium ear rot resistance and fumonisin contamination resistance in two maize populations. Crop Science, 2006, 46: 353-361.
[101] Robertson-Hoyt L A, Jines M P, Balint-Kurti P J, Kleinschmidt C E, White D G, Payne G A, Maragos C M, Molnar T L, Holland J B. QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Science, 2006, 46: 1734-1743.
[102] Martin M, Miedaner T, Dhillon B S, Ufermann U, Kessel B, Ouzunova M, Schipprack W, Melchinger A E. Colocalization of QTL for Gibberella ear rot resistance and low mycotoxin contamination in early European maize. Crop Science, 2011, 51(5): 1935-1945.
[103] Martin M, Miedaner T, Schwegler D D, Kessel B, Ouzunova M, Dhillon B S, Schipprack W, Utz H F, Melchinger A E. Comparative quantitative trait loci mapping for Gibberella ear rot resistance and reduced deoxynivalenol contamination across connected maize populations. Crop Science, 2012, 52(1): 32-43.
[104] Ding J Q, Wang X M, Chander S, Yan J B, Li J S. QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Molecular Breeding, 2008, 22: 395-403.
[105] Zhang F, Wan X Q, Pan G T. QTL mapping of Fusarium moniliforme ear rot resistance in maize. 1. map construction with microsatellite and AFLP markers. Journal of Applied Genetics, 2006, 47(1): 9-15.
[106]孙小东. 玉米穗粒腐病穗轴及籽粒抗性遗传研究[D]. 郑州: 河南农业大学, 2009.
Sun X D. Inheritance of resistance to Furasium moniliforme kernel and cob rot in maize[D]. Zhengzhou: Henan Agricultural University, 2009. (in Chinese)
[107] Li Z M, Ding J Q, Wang R X, Chen J F, Sun X D, Chen W, Song W B, Dong H F, Dai X D, Xia Z L, Wu J Y. A new QTL for resistance to Fusarium ear rot in maize. Journal of Applied Genetics, 2011, 52(4): 403-406.
[108] Xiang K, Zhang Z M, Reid L M, Zhu X Y, Yuan G S, Pan G T. A meta-analysis of QTL associated with ear rot resistance in maize. Maydica, 2010, 55: 281-290.
[109] Reinprecht Y, Wu X G, Yan S, Labey L, Dasilva E, Martin J C, Pauls K P. A microarray-based approach for identifying genes for resistance to Fusarium graminearum in maize (Zea mays L.). Cereal Research Communications, 2008, 36(Suppl. B): 253-259.
[110] Zila C T, Samayoa L F, Santiago R, Butrón A, Holland J B. A genome-wide association study reveals genes associated with Fusarium ear rot resistance in a maize core diversity panel. Genes, Genomes, Genetics, 2013, 3(11): 2095-2104.
[111] Yuan G S, Xiang K, Zhang Z M, Shen Y O, Du J, Lin H J, Liu L, Pan G T. Analysis on the relationship between Fusarium verticillioides infection-induced genes and ear rot resistance in maize. Journal of Food, Agriculture & Environment, 2013, 11(2): 363-366.
[112] Lanubile A, Ferrarini A, Maschietto V, Delledonne M, Marocco A, Bellin D. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics, 2014, 15: 710.
[113] Presello D A, Reid L M, Butler G, Mather D E. Pedigree selection for Gibberella ear rot resistance in maize populations. Euphytica, 2005, 143: 1-8.
[114] Reid L M, McDiarmid G, Parker A J, Woldemariam T, Hamilton R I. CO388 and CO389 corn inbred lines. Canadian Journal of Plant Science, 2001, 81: 457-459.
[115] Reid L M, McDiarmid G, Parker A J, Woldemariam T, Hamilton R I. CO430, CO431 and CO432 corn inbred lines. Canadian Journal of Plant Science, 2001, 81: 283-284.
[116] Reid L M, McDiarmid G, Parker A J, Woldemariam T. CO441 corn inbred line. Canadian Journal of Plant Science, 2003, 83: 79-80.
[117]张婷, 孙晓东, 吕国忠. 中国东北地区玉米穗腐镰孢菌的种类及其分离频率. 菌物研究, 2011, 9(1): 9-14, 36.
Zhang T, Sun X D, Lü G Z. Fusarium species and its isolation frequency from rot ears of maize in northeast China. Journal of Fungal Research, 2011, 9(1): 9-14, 36. (in Chinese)
[118] Flint-Garcia S A, Thuillet A C, Yu J, Pressoir G, Romero S M, Mitchell S E, Doebley E S. Maize association population: a high-resolution platform for quantitative trait locus dissection. The Plant Journal, 2005, 44: 1054-1064.
[119] Kump K L, Bradbury P J, Wisser R J, Buckler E S, Belcher A R, Oropeza-Rosas M A, Zwonitzer J C, Kresovich S, McMullen M D, Ware D, Balint-Kurti P J, Holland J B. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nature Genetics, 2011, 43(2): 163-168.
[120] Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R, McMullen M D, Holland J B, Buckler E S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics, 2011, 43(2): 159-162.
[121]张焕欣, 翁建峰, 张晓聪, 刘昌林, 雍洪军, 郝转芳, 李新海. 玉米穗行数全基因组关联分析. 作物学报, 2014, 40(1): 1-6.
Zhang H X, Weng J F, Zhang X C, Liu C L, Yong H J, Hao Z F, Li X H. Genome-wide association analysis of kernel row number in maize. Acta Agronomica Sinica, 2014, 40(1): 1-6. (in Chinese)
[122]曾兴. 144份玉米自交系纹枯病抗性相关性状的关联分析[D]. 雅安: 四川农业大学, 2011.
Zeng X. Association analysis of resistance trait of banded leaf and sheath blight in 144 maize inbred lines[D]. Yaan: Sichuan Agricultural University, 2011. (in Chinese)
[123]王明. 玉米抗丝黑穗病的全基因组关联分析[D]. 武汉: 华中农业大学, 2012.
Wang M. Genome-wide association study (GWAS) of resistance to head smut in maize (Zea mays L.)[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese)
[124] Liu C L, Weng J F, Zhang D G, Zhang X C, Yang X Y, Shi L Y, Meng Q C, Yuan J H, Guo X P, Hao Z F, Xie C X, Li M S, Ci X K, Bai L, Li X H, Zhang S H. Genome-wide association study of resistance to rough dwarf disease in maize. European Journal of Plant Pathology, 2014, 139(1): 205-216.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[4] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[5] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[6] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[7] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[8] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[9] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[10] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[11] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[12] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[13] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[14] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[15] FENG AiQing,WANG CongYing,ZHANG MeiYing,CHEN Bing,FENG JinQi,CHEN KaiLing,WANG WenJuan,YANG JianYuan,SU Jing,ZENG LieXian,CHEN Shen,ZHU XiaoYuan. Pathotype Analysis of Xanthomonas oryzae pv. oryzae in Main Rice Producing Regions of China and Establishment of Differential Hosts of Near-Isogenic Lines [J]. Scientia Agricultura Sinica, 2022, 55(21): 4175-4195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!