Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (21): 4175-4195.doi: 10.3864/j.issn.0578-1752.2022.21.007

• PLANT PROTECTION • Previous Articles     Next Articles

Pathotype Analysis of Xanthomonas oryzae pv. oryzae in Main Rice Producing Regions of China and Establishment of Differential Hosts of Near-Isogenic Lines

FENG AiQing(),WANG CongYing,ZHANG MeiYing,CHEN Bing,FENG JinQi,CHEN KaiLing,WANG WenJuan,YANG JianYuan,SU Jing,ZENG LieXian,CHEN Shen,ZHU XiaoYuan()   

  1. Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640
  • Received:2022-05-10 Accepted:2022-06-03 Online:2022-11-01 Published:2022-11-09
  • Contact: XiaoYuan ZHU E-mail:fengaq@gdppri.com;zhuxy@gdppri.com

Abstract:

【Objective】The pathotypes of Xanthomonas oryzae pv. oryzae (Xoo) in diverse rice regions in China were analyzed, and the differential hosts of near-isogenic lines (NILs) were established to provide a scientific basis for accurate field monitoring of Xoo population, application of resistant varieties and breeding of resistant varieties against rice bacterial blight.【Method】To explore virulence diversity and distribution of pathotypes of Xoo, the pathotypes of 954 single colony strains collected from Guangdong, Guangxi, Hainan, Zhejiang, Hunan, Liaoning and Yunnan provinces (Autonomous Region) from 2018 to 2021 were identified by artificial leaf-cutting inoculation on 21 differential hosts including Chinese differential hosts, IR24 and 15 bacterial blight NILs. Based on the resistant and susceptible interactions among the tested Xoo strains, 15 NILs and IR24, the principal component analysis (PCA) was used to analyze the variable factors of which help abstraction of the candidate differentials. Based on the resistant and susceptible interactions between resistance genes and tested strains, the pyramiding effect of resistance genes was analyzed.【Result】The tested 954 Xoo strains were divided into 11 pathotypes including SRRRR (I), SSRRR (Ⅱ), SSSRR (Ⅲ), SSSSR (Ⅳ), SSRRS (Ⅴ), SRSRR (Ⅵ), SSSSS (Ⅸ), SSSRS (new pathotype 1), SRSRS (new pathotype 2), SRSSS (new pathotype 3) and SSRSS (new pathotype 4) based on Chinese differential hosts. The percentage of each pathotype mentioned above was 11.53%, 4.82%, 7.34%, 6.18%, 7.23%, 1.05%, 59.96%, 1.57%, 0.10%, 0.10% and 0.10%, respectively. Pathotype Ⅸ, with broad pathogenicity and more virulence, had become the predominant race in the South China rice region and the Yangtze River rice region (Hunan, Zhejiang), and the predominant pathotypes in Yunnan (Southwest China) and Liaoning (Northeast China) were pathotype Ⅳ and pathotype I, respectively. The resistance and susceptibility of 15 rice NILs to 954 Xoo strains were analyzed. The results showed that the 15 NILs could be divided into five types, highly susceptible lines with IRBB1, IRBB2, IRBB10, IRBB11, IRBB4, the moderately susceptible lines with IRBB3, IRBB203, IRBB14, moderately resistant lines with IRBB8, IRBB13, resistant lines with IRBB21, highly resistant lines with IRBB5, IRBB7, CBB23, GDBB23. Among the tested Xoo strains, 42 strains could infect xa5, 34 strains could infect Xa7, and 31 strains could infect Xa23. Factors were extracted from the interaction variable data matrix among 954 strains and 16 varieties (15 NILs and its recurrent parent IR24). With the total explained variable >85.0% as the boundary, eight principal components were extracted, and ten varieties (lines) mainly with NILs were constructed as differential hosts. Accord to their contribution to interaction variances, these differential hosts were IRBB10 (Xa10), IRBB4 (Xa4), GDBB23 (Xa23), IRBB5 (xa5), IRBB7 (Xa7), IRBB21 (Xa21), IR24 (Xa18), IRBB13 (xa13), IRBB3 (Xa3), Jingang30. With new differential hosts, 954 tested Xoo strains could be divided into 55 pathotypes, the newly developed differential hosts showed good discrimination ability for monitoring the virulence of Xoo in the tested rice regions. The results of gene pyramiding combined resistance analysis showed that the resistance frequency of different resistance genes pyramiding to Xoo was increased, and different resistance genes had diverse complementarity to the resistance of the test strains. 【Conclusion】The Xoo strains in the monitoring rice regions tended to be diversified, and the virulence differentiation was obvious. Pathotype Ⅸ of the virulent strain had become the prevailing races in some rice production regions, and the number of the strains compactible with broad-spectrum resistance genes xa5, Xa7 and Xa23 showed an increasing trend. Resistance gene polymerization can broaden the resistance spectrum of varieties to pathogen lines, which is an effective way to breed broad-spectrum resistant varieties. The establishment and application of NILs differential host could provide technical support for precise monitoring of the occurrence and early warning of epidemic of bacterial blight disease in the field.

Key words: Xanthomonas oryzae pv. oryzae (Xoo), pathotype, near-isogenic line (NIL), differential host, resistance

Table 1

Source of collecteded Xoo strains"

年份Year 生态区Ecological region 采集地Origin 菌株数Number of strains
2018 华南稻区South China rice region 广东Guangdong 89
广西Guangxi 16
海南Hainan 13
长江中下游稻区
Middle and lower reaches of the Yangtze River rice region
湖南Hunan 0
浙江Zhejiang 47
西南稻区Southwest China rice region 云南Yunnan 10
东北稻区Northeast China rice region 辽宁Liaoning 18
2019 华南稻区South China rice region 广东Guangdong 185
广西Guangxi 45
海南Hainan 0
长江中下游稻区
Middle and lower reaches of the Yangtze River rice region
湖南Hunan 10
浙江Zhejiang 43
西南稻区Southwest China rice region 云南Yunnan 0
东北稻区Northeast China rice region 辽宁Liaoning 5
2020 华南稻区South China rice region 广东Guangdong 140
广西Guangxi 7
海南Hainan 1
长江中下游稻区
Middle and lower reaches of the Yangtze River rice region
湖南Hunan 4
浙江Zhejiang 23
西南稻区Southwest China rice region 云南Yunnan 1
东北稻区Northeast China rice region 辽宁Liaoning 3
2021 华南稻区South China rice region 广东Guangdong 36
广西Guangxi 65
海南Hainan 0
长江中下游稻区
Middle and lower reaches of the Yangtze River rice region
湖南Hunan 0
浙江Zhejiang 193
西南稻区Southwest China rice region 云南Yunnan 0
东北稻区Northeast China rice region 辽宁Liaoning 0

Fig. 1

The symptoms of Jingang 30 inoculated with different strains of Xoo in different years"

Table 2

Phynotypes of Xoo strains on Chinese differential hosts"

致病型
Pathotype
鉴别寄主反应Phynotypes of differential host to the strains 各致病型的菌株数Number of strains of each pathotype 各致病型发生频率Percentage of each pathotype (%)
CBBD1 CBBD2 CBBD3 CBBD4 CBBD5
S R R R R 110 11.53
S S R R R 46 4.82
S S S R R 70 7.34
S S S S R 59 6.18
S S R R S 69 7.23
S R S R R 10 1.05
S S S S S 572 59.96
新型1 New pathotype 1 S S S R S 15 1.57
新型2 New pathotype 2 S R S R S 1 0.10
新型3 New pathotype 3 S R S S S 1 0.10
新型4 New pathotype 4 S S R S S 1 0.10
合计Total 954 100.00

Table 3

Variations of Xoo pathotypes in seven provinces (Autonomous Region) of China during 2018-2021"

年份Year 菌株数Number of strains 各致病型发生频率Percentage of each pathotype (%)
新型1 New pathotype 1 新型2 New pathotype 2 新型3 New pathotype 3 新型4 New pathotype 4
2018 193 15.03 3.11 7.25 7.77 7.77 0.52 57.51 0.52 0 0.52 0
2019 288 11.46 9.03 10.42 6.60 11.81 0 50.69 0 0 0 0
2020 179 17.32 6.70 7.26 6.70 6.15 0 53.07 2.23 0 0 0.56
2021 294 5.78 0.68 4.42 4.42 3.06 3.06 74.83 3.40 0.34 0 0

Fig. 2

Distribution of pathotypes of Xoo in different ecological regions of rice in China"

Table 4

Variations of Xoo pathotypes in South China during 1999-2021"

年份Year 菌株数Number of strains 各致病型发生频率Percentage of each pathotype (%)
新型1 New pathotype 1 新型2 New pathotype 2 新型3 New pathotype 3 新型4 New pathotype 4
1999 30 16.70 20.00 20.00 26.70 16.70 0 0 0 0 0 0
2000 43 18.60 20.90 16.30 23.30 20.90 0 0 0 0 0 0
2004 53 17.00 22.60 11.30 24.50 18.90 0 5.70 0 0 0 0
2014 150 14.00 15.30 7.30 19.30 27.40 0 16.67 0 0 0 0
2015 68 44.12 7.35 0.00 2.94 20.59 0 25.00 0 0 0 0
2016 50 16.00 10.00 6.00 22.00 26.00 0 20.00 0 0 0 0
2017 60 16.67 11.67 8.33 18.34 23.34 0 21.67 0 0 0 0
2018 118 9.32 4.24 5.08 5.08 12.71 0.85 61.02 0.85 0 0.85 0
2019 230 10.43 10.43 10.87 6.09 14.78 0 47.39 0 0 0 0
2020 148 15.54 6.76 8.11 7.43 6.76 0 52.70 2.03 0 0 0.68
2021 101 5.94 0.99 3.96 1.98 8.91 0.99 72.28 4.95 0 0 0

Table 5

Resistance frequency of 15 near-isogenic lines against 954 Xoo strains"

近等基因系
Near-isogenic line
基因
Gene
抗性频率
Resistance frequency (%)
IRBB1 Xa1 15.62
IRBB2 Xa2 15.20
IRBB3 Xa3 21.91
IRBB203 Xa3 25.26
IRBB4 Xa4 18.13
IRBB5 xa5 95.60
IRBB7 Xa7 96.44
IRBB8 Xa8 37.21
IRBB10 Xa10 14.47
IRBB11 Xa11 13.21
IRBB13 xa13 34.91
IRBB14 Xa14 22.54
IRBB21 Xa21 79.45
CBB23 Xa23 96.75
GDBB23 Xa23 96.86

Fig. 3

Cluster analysis of reactions of 15 near-isogenic lines against 954 Xoo strains"

Table 6

Resistance frequency of near-isogenic lines in different resistant types to 954 Xoo strains"

分类
Category
单基因系
Monogenic line
基因
Gene
平均抗性频率
Average resistance frequency (%)
第Ⅰ类Class I IRBB1、IRBB2、IRBB10、IRBB11、IRBB4 Xa1、Xa2、Xa10、Xa11、Xa4 15.32
第Ⅱ类Class Ⅱ IRBB3、IRBB203、IRBB14 Xa3、Xa14 23.24
第Ⅲ类Class Ⅲ IRBB8、IRBB13 Xa8、xa13 36.06
第Ⅳ类Class Ⅳ IRBB21 Xa21 79.45
第Ⅴ类Class Ⅴ IRBB5、IRBB7、CBB23、GDBB23 xa5、Xa7、Xa23 96.41

Table 7

Virulence of the strains compactible with Xa23 to other rice bacterial blight broad spectrum resistant genes"

来源Origin 菌号Number of bacteria IRBB5 IRBB7 IRBB21 CBB23
广东广州Guangzhou, Guangdong 2848 R R R S
2850 R R R S
2851 R R R S
2852 R R R S
2853 R R R S
2854 R R R S
广东四会Sihui, Guangdong 1387 S R R S
1392 R R R S
1394 R R R S
1389 R R R S
1390 R R R S
1391 R R R S
广东新兴Xinxing, Guangdong 2614 R R R S
广东珠海Zhuhai, Guangdong 2749 R R R S
广西靖西Jingxi, Guangxi 2821 S S R S
2824 S R R S
湖南浏阳Liuyang, Hunan 1823 R R S S
浙江常山Changshan, Zhejiang 595 R R R S
890 R R R S
891 R R R S
浙江忂州Quzhou, Zhejiang 579 R R S S
855 R R S S
856 R R S S
859 R R R S
1252 R R S S
1254 R R R S
1792 R R S S
浙江台州Taizhou, Zhejiang 2420 R R R S
2491 R R R S
浙江温岭Wenling, Zhejiang 2573 R R R S
浙江仙居 Xianju, Zhejiang 2581 S S R S

Table 8

Diversity of pathogenic strains identified with Chinese differential hosts"

中国鉴别寄主的致病型
Pathotypes identified by Chinese differential hosts
菌株数
Number of strains
近等基因系鉴定的致病型个数
Number of pathotypes identified by near-isogenic lines
110 35
46 37
70 44
59 33
69 21
10 6
572 51
新型 New pathotype 18 9

Table 9

Total variance of the interaction between 16 near-isogenic lines and 954 Xoo strains explained by factors"

成分因子Component 因子提取Extraction of factors 旋转后因子的提取Extraction of factors after rotation
特征值
Eigenvalues
变异量
Amount of variation (%)
累计变异量
Cumulative variance (%)
特征值
Eigenvalues
变异量
Amount of variation (%)
累计变异量
Cumulative variance (%)
1 6.572 41.076 41.076 5.078 31.739 31.739
2 2.034 12.713 53.789 1.996 12.477 44.217
3 1.725 10.779 64.569 1.653 10.328 54.545
4 0.948 5.927 70.495 1.489 9.306 63.851
5 0.769 4.806 75.301 1.017 6.358 70.209
6 0.648 4.049 79.350 0.961 6.003 76.212
7 0.572 3.578 82.929 0.936 5.849 82.061
8 0.462 2.886 85.815 0.601 3.753 85.815
9 0.425 2.655 88.470
10 0.396 2.477 90.947
11 0.365 2.281 93.228
12 0.346 2.163 95.391
13 0.289 1.807 97.198
14 0.255 1.596 98.794
15 0.176 1.101 99.896
16 1.67E-02 0.104 100

Table 10

Rotated component matrix of the interaction between 16 near-isogenic lines and 954 Xoo strains"

近等基因系<BOLD>N</BOLD>ear-isogenic line 成分因子Component
1 2 3 4 5 6 7 8
IRBB1 (Xa1) 0.851 5.67E-02 6.68E-02 -9.91E-02 6.70E-02 -6.84E-02 9.87E-02 -8.39E-02
IRBB2 (Xa2) 0.859 3.50E-02 8.06E-02 -8.52E-02 5.44E-02 -0.134 2.94E-02 -8.06E-02
IRBB3 (Xa3) 0.779 -7.25E-03 6.24E-02 -6.42E-02 6.87E-02 -0.124 1.42E-02 0.337
IRBB203 (Xa3) 0.703 5.54E-02 6.03E-02 8.40E-02 -0.191 -2.99E-02 -0.59 0.238
IRBB4 (Xa4) 0.798 -9.38E-02 4.57E-02 -3.55E-02 -0.19 -0.162 0.124 9.91E-02
IRBB5 (xa5) 5.83E-02 0.344 0.789 0.134 -0.115 0.174 0.155 7.14E-02
IRBB7 (Xa7) 4.85E-02 0.292 0.828 0.158 -7.21E-02 6.90E-02 -6.10E-03 -5.27E-02
IRBB8 (Xa8) 0.673 -3.92E-02 -0.247 0.185 -0.334 0.366 1.63E-02 -0.229
IRBB10 (Xa10) 0.864 1.45E-02 2.67E-02 -0.111 6.76E-02 -8.65E-02 0.177 -4.02E-02
IRBB11 (Xa11) 0.837 -5.39E-02 3.58E-02 -0.163 0.174 -0.104 0.161 2.07E-02
IRBB13 (xa13) 0.661 -8.83E-02 -0.353 0.115 -0.265 0.351 0.201 0.202
IRBB14 (Xa14) 0.763 1.03E-02 3.52E-02 5.75E-02 -0.134 -0.198 -0.194 -0.402
IRBB21 (Xa21) 0.303 -6.27E-02 -0.145 0.866 0.339 -0.116 5.00E-02 2.31E-02
CBB23 (Xa23) 1.95E-02 0.947 -0.302 -5.64E-03 1.16E-02 -3.72E-02 1.27E-02 8.76E-03
GDBB23 (Xa23) 1.54E-02 0.948 -0.299 -1.61E-02 8.89E-03 -3.56E-02 1.24E-02 7.44E-03
IR24 (Xa18) 0.596 4.11E-02 5.85E-02 -0.188 0.562 0.465 -0.188 -5.40E-02

Table 11

Reaction of new differential hosts to Xoo strains"

序号
Serial number
致病型
<BOLD>P</BOLD>athotype
寄主反应Host response 致病谱Pathogenicity spectrum
(%)
各致病型的菌株数
Number of strains of each pathotype
各致病型发生频率
Percentage of each pathotype (%)
GDBB23 IRBB7 IRBB5 IRBB21 IRBB13 IRBB3 IRBB4 IRBB10 IR24 CBBD1
R1 RRRRRRRRRS R R R R R R R R R S 9.09 36 3.77
R2 RRRRRRRRSS R R R R R R R R S S 18.18 59 6.18
R3 RRRRRRRSRS R R R R R R R S R S 18.18 4 0.42
R4 RRRRRRSRRS R R R R R R S R R S 18.18 9 0.94
R5 RRRRSRRRRS R R R R S R R R R S 18.18 1 0.10
R6 SRRRRRRRRS S R R R R R R R R S 18.18 1 0.10
R7 RRRRRRRSSS R R R R R R R S S S 27.27 15 1.57
R8 RRRRRRSRSS R R R R R R S R S S 27.27 10 1.05
R9 RRRRRRSSRS R R R R R R S S R S 27.27 3 0.31
R10 RRRRRSRRSS R R R R R S R R S S 27.27 6 0.63
R11 RRRRRSRSRS R R R R R S R S R S 27.27 1 0.10
R12 RRRRRSSRRS R R R R R S S R R S 27.27 2 0.21
R13 RRRRSRRRSS R R R R S R R R S S 27.27 2 0.21
R14 SRRRRRRRSS S R R R R R R R S S 27.27 2 0.21
R15 RRRRRRSSSS R R R R R R S S S S 36.36 10 1.05
R16 RRRRRSRSSS R R R R R S R S S S 36.36 22 2.31
R17 RRRRRSSRSS R R R R R S S R S S 36.36 3 0.31
R18 RRRRRSSSRS R R R R R S S S R S 36.36 2 0.21
R19 RRRRSRRSSS R R R R S R R S S S 36.36 5 0.52
R20 RRRRSRSRSS R R R R S R S R S S 36.36 3 0.31
R21 RRRRSRSSRS R R R R S R S S R S 36.36 2 0.21
R22 RRRRRSSSSS R R R R R S S S S S 45.45 90 9.43
R23 RRRRSRSSSS R R R R S R S S S S 45.45 31 3.25
R24 RRRRSSRSSS R R R R S S R S S S 45.45 5 0.52
R25 RRRRSSSRSS R R R R S S S R S S 45.45 2 0.21
R26 RRRRSSSSRS R R R R S S S S R S 45.45 1 0.10
R27 RRRSRRSSSS R R R S R R S S S S 45.45 3 0.31
R28 RRRSRSRSSS R R R S R S R S S S 45.45 2 0.21
R29 RSSRRSRRSS R S S R R S R R S S 45.45 1 0.10
R30 SRRRRSRSSS S R R R R S R S S S 45.45 1 0.10
R31 SRSRRRRSSS S R S R R R R S S S 45.45 1 0.10
R32 RRRRSSSSSS R R R R S S S S S S 54.55 370 38.78
R33 RRRSRSSSSS R R R S R S S S S S 54.55 18 1.89
R34 RRRSSRSSSS R R R S S R S S S S 54.55 8 0.84
R35 RRRSSSRSSS R R R S S S R S S S 54.55 3 0.31
序号
Serial number
致病型
<BOLD>P</BOLD>athotype
寄主反应Host response 致病谱Pathogenicity spectrum
(%)
各致病型的菌株数
Number of strains of each pathotype
各致病型发生频率
Percentage of each pathotype (%)
GDBB23 IRBB7 IRBB5 IRBB21 IRBB13 IRBB3 IRBB4 IRBB10 IR24 CBBD1
R36 RRSRRSSSSS R R S R R S S S S S 54.55 2 0.21
R37 RSRRRSSSSS R S R R R S S S S S 54.55 4 0.42
R38 RSSRRRSSSS R S S R R R S S S S 54.55 1 0.10
R39 RSSSRSRRSS R S S S R S R R S S 54.55 1 0.10
R40 SRRRRSSSSS S R R R R S S S S S 54.55 2 0.21
R41 SRRRSRSSSS S R R R S R S S S S 54.55 1 0.10
R42 SRRRSSRSSS S R R R S S R S S S 54.55 2 0.21
R43 SSSRRRRSSS S S S R R R R S S S 54.55 1 0.10
R44 RRRSSSSSSS R R R S S S S S S S 63.64 148 15.51
R45 RRSRSSSSSS R R S R S S S S S S 63.64 10 1.05
R46 RSRRSSSSSS R S R R S S S S S S 63.64 2 0.21
R47 RSRSRSSSSS R S R S R S S S S S 63.64 1 0.10
R48 RSSRRSSSSS R S S R R S S S S S 63.64 19 1.99
R49 SRRRSSSSSS S R R R S S S S S S 63.64 12 1.26
R50 SRRSSSRSSS S R R S S S R S S S 63.64 2 0.21
R51 SSSRRRSSSS S S S R R R S S S S 63.64 1 0.10
R52 RRSSSSSSSS R R S S S S S S S S 72.73 4 0.42
R53 RSRSSSSSSS R S R S S S S S S S 72.73 3 0.31
R54 SRRSSSSSSS S R R S S S S S S S 72.73 3 0.31
R55 SRSRSSSSSS S R S R S S S S S S 72.73 1 0.10

Table 12

Comparison of pathotypes of 954 Xoo strains between the new differential host system and other differential systems in China"

分类
Category
鉴别寄主数
<BOLD>N</BOLD>umber of
differential hosts
鉴别寄主名称
Name of differential hosts
鉴定出的致病型个数
Number of pathotypes identified
本研究新鉴别寄主
New differential hosts in present study
10 CBBD1、IR24、IRBB10、IRBB4、IRBB3、IRBB13、IRBB21、IRBB5、IRBB7、GDBB23 55
中国鉴别寄主Chinese differential hosts 5 CBBD1、CBBD2、CBBD3、CBBD4、CBBD5 11
杨万风等建立的鉴别寄主
Differential hosts developed by YANG WanFeng et al.[21]
6 IRBB5、IRBB13、IRBB3、IRBB14、IRBB2、IR24 33
陈功友等建立的鉴别寄主
Differential hosts developed by CHEN GongYou et al.[4]
8 IR24、IRBB3、IRBB4、IRBB5、IRBB7、IRBB13、IRBB21、CBB23 45
许志刚等建立的鉴别寄主
Differential hosts developed by XU ZhiGang et al.[20]
6 CBBD1、IRBB14、IRBB3、IRBB4、CBBD4、IRBB5 23
夏立琼等建立的鉴别寄主
Differential hosts developed by XIA LiQiong et al.[22]
7 IRBB3、IRBB4、IRBB5、IRBB13、IRBB21、CBB23、IR24 39

Fig. 4

Frequency distributions of pathogenicity spectrum of 954 Xoo strains to different differential systems"

Table 13

Pyramiding effects of bacterial blight resistance genes"

基因
Gene
抗性频率
<BOLD>R</BOLD>esistance frequency
(%)
聚合的基因
Polymerized gene
基因聚合后抗性频率
Resistance frequency after gene pyramiding (%)
提升的抗性频率
Elevated
resistance frequency (%)
聚合的基因
Polymerized gene
基因聚合后抗性频率
Resistance frequency after gene pyramiding (%)
提升的抗性频率
Elevated resistance frequency (%)
Xa11 13.21 Xa11+Xa21 79.56 0.11 xa5+Xa7 97.48 1.04
Xa10 14.47 Xa10+Xa21 79.56 0.11 xa5+Xa23 99.58 2.83
Xa2 15.20 Xa2+Xa21 79.56 0.11 Xa7+Xa23 99.79 3.04
Xa1 15.62 Xa1+Xa21 79.77 0.32 xa5+Xa21 99.48 3.88
Xa4 18.13 Xa4+Xa21 80.29 0.84 Xa4+Xa10+Xa21 80.29 0.84
Xa3 21.91 Xa14+Xa21 80.29 0.84 Xa10+xa13+Xa21 82.08 2.63
Xa14 22.54 Xa3+Xa21 81.24 1.79 Xa10+Xa8+Xa21 82.49 3.04
xa13 34.91 Xa8+Xa21 82.39 2.94 Xa4+xa13+Xa21 82.60 3.15
Xa8 37.21 xa13+Xa21 82.08 2.63 Xa14+xa13+Xa21 82.70 3.25
Xa21 79.45 Xa10+xa13 35.74 0.83 Xa3+xa13+Xa21 82.91 3.46
xa5 95.60 Xa11+xa13 35.74 0.83 Xa4+Xa8+Xa21 82.91 3.46
Xa7 96.44 Xa1+xa13 36.79 1.88 Xa3+Xa8+Xa21 83.23 3.78
Xa23 96.75 Xa2+xa13 36.90 1.99 Xa8+xa13+Xa21 83.33 3.88
Xa4+xa13 37.00 2.09 xa5+xa13+Xa21 99.58 3.98
Xa14+xa13 40.99 6.08 xa5+Xa4+Xa21 99.58 3.98
Xa3+xa13 42.77 7.86 Xa4+Xa10+xa13 37.53 2.62
Xa8+xa13 45.39 8.18 Xa4+Xa8+xa13 46.44 9.23
Xa10+Xa8 37.74 0.53 Xa14+Xa8+xa13 48.43 11.22
Xa2+Xa8 38.16 0.95 Xa3+Xa8+xa13 48.74 11.53
Xa11+Xa8 38.16 0.95 Xa4+xa5+Xa7 97.80 1.36
Xa1+Xa8 38.16 0.95 Xa4+xa5+xa13+Xa21 99.58 3.98
Xa4+Xa8 39.62 2.41 Xa10+Xa4+Xa8+xa13 46.44 9.23
Xa14+Xa8 41.51 4.30 Xa3+Xa4+Xa8+xa13 49.58 12.37
Xa3+Xa8 43.50 6.29 Xa3+Xa4+Xa8+xa13+Xa21 84.49 5.04
xa5+Xa4 96.02 0.42 Xa4+xa5+Xa7+xa13+Xa21 100.00 3.56
[1] 方中达. 水稻白叶枯病. 南京: 江苏人民出版社, 1963: 1-2.
FANG Z D. Rice Bacterial Blight. Nanjing: Jiangsu People’s Publishing Press, 1963: 1-2. (in Chinese)
[2] 章琦. 水稻白叶枯病抗性的遗传及改良. 北京: 科学出版社, 2007: 2-4.
ZHANG Q. Genetics and Improvement of Resistance to Bacterial Blight in Rice. Beijing: Science Press, 2007: 2-4. (in Chinese)
[3] LEACH J E, WHITE F F. Bacterial avirulence genes. Annual Review of Phytopathology, 1996, 34: 153-179.
[4] 陈功友, 徐正银, 杨阳阳, 邹丽芳, 朱勃. 我国水稻白叶枯病菌致病型划分和水稻抗病育种中应注意的问题. 上海交通大学学报(农业科学版), 2019, 37(1): 67-73.
CHEN G Y, XU Z Y, YANG Y Y, ZOU L F, ZHU B. Classification of pathotypes of Chinese Xanthomonas oryzae pv. oryzae and resistance breeding strategies for bacterial blight. Journal of Shanghai Jiaotong University (Agricultural Science), 2019, 37(1): 67-73. (in Chinese)
[5] 堀野修, 季伯衡. 水稻白叶枯病菌的小种分化与水平抗性鉴定法. 农业译文, 1991(2): 1-7.
HORINO O, JI B H. Race differentiation of Xanthomonas oryzae pv. oryzae and horizontal resistance identification. Agricultural Translation, 1991(2): 1-7. (in Chinese)
[6] NODA T, HORINO O, OHUCHI A. A survey of geographical distribution of pathogenic races of Xanthomonas campestris pv. oryzae from Japan. Proceedings of the Association for Plant Protection of Hokuriku, 1987, 35: 7-13. (in Japanese with English summary)
[7] NODA T, OHUCHI A. A new pathogenic race of Xanthomonas campestris pv. oryzae and inheritance of resistance of differential rice variety, Te-tep to it. Japanese Journal of Phytopathology, 1989, 55(2): 201-207.
[8] MEW T W. Current status and future prospects of research on bacterial blight of rice. Annual Review of Phytopathology, 1987, 25: 359-382.
[9] 伍尚忠, 徐羡明, 刘景梅, 苗东华, 维拉·克鲁茨. 华南及菲律宾稻白叶枯病病原菌株致病性比较研究. 植物病理学报, 1985, 15(2): 65-72.
WU S Z, XU X M, LIU J M, MEW T W, VERA CRUZ C M. Comparison of virulence of Xanthomonas campestris pv. oryzae in south China and in the Philippines. Acta Phytopathologica Sinica, 1985, 15(2): 65-72. (in Chinese)
[10] 方中达, 许志刚, 过崇俭, 殷尚智, 伍尚忠, 徐羡明, 章琦. 中国水稻白叶枯病菌致病型的研究. 植物病理学报, 1990, 20(2): 81-88.
FANG Z D, XU Z G, GUO C J, YIN S Z, WU S Z, XU X M, ZHANG Q. Studies on pathotypes of Xanthomonas campestris pv. oryzae in China. Acta Phytopathologica Sinica, 1990, 20(2): 81-88. (in Chinese)
[11] 王春连, 章琦, 周永力, 赵炳宇. 我国长江以南地区水稻白叶枯病原菌遗传多样性分析. 中国水稻科学, 2001, 15(2): 131-136.
WANG C L, ZHANG Q, ZHOU Y L, ZHAO B Y. Genetic diversity of pathogen Xanthomonas oryzae pv. oryzae from southern regions of Yangtze River in China. Chinese Journal of Rice Science, 2001, 15(2): 131-136. (in Chinese)
[12] 曾列先, 朱小源, 杨健源, 伍圣远, 陈珍, 陈深. 广东水稻白叶枯病菌新致病型的发现及致病性测定. 广东农业科学, 2005(2): 58-59.
ZENG L X, ZHU X Y, YANG J Y, WU S Y, CHEN Z, CHEN S. A new pathotype of Xanthomonas oryzae pv. oryzae was found and tested for pathogenicity in Guangdong. Guangdong Agricultural Sciences, 2005(2): 58-59. (in Chinese)
[13] 陈深, 汪聪颖, 苏菁, 冯爱卿, 朱小源, 曾列先. 华南水稻白叶枯病菌致病性分化检测与分析. 植物保护学报, 2017, 44(2): 217-222.
CHEN S, WANG C Y, SU J, FENG A Q, ZHU X Y, ZENG L X. Differential detection and analysis of pathotypes and differentiation against Xanthomonas oryzae pv. oryzae in southern China. Journal of Plant Protection, 2017, 44(2): 217-222. (in Chinese)
[14] OGAWA T, KHUSH G S. Major genes for resistance to bacterial blight in rice//Bacterial Blight of Rice. Internationa Rice Research Institute, 1989.
[15] OGAWA T, YAMAMOTO T, KHUSH G S, MEW T W. Breeding of near-isogenic lines of rice with single genes for resistance to bacterial blight pathogen (Xanthomonas campestris pv. oryzae). Japanese Journal of Breeding, 1991, 41(3): 523-529.
[16] 章琦, 杨文才, 施爱农, 王春莲, 阙更生, 赵炳宇, 邢全党. 3个粳稻抗白叶枯病近等基因系的构建. 作物学报, 1998, 24(6): 799-804.
ZHANG Q, YANG W C, SHI A N, WANG C L, QUE G S, ZHAO B Y, XING Q D. Breeding of three near-isogenic japonica rice lines with major genes for resistance to bacterial-blight. Acta Agronomica Sinica, 1998, 24(6): 799-804. (in Chinese)
[17] 章琦, 王春连, 赵开军, 杨文才, 乔枫, 周永力, 江祺祥, 刘古春. 携有抗白叶枯病新基因Xa23水稻近等基因系的构建及应用. 中国水稻科学, 2002, 16(3): 206-210.
ZHANG Q, WANG C L, ZHAO K J, YANG W C, QIAO F, ZHOU Y L, JIANG Q X, LIU G C. Development of near-isogenic line CBB23 with a new resistance gene to bacterial blight in rice and its application. Chinese Journal of Rice Science, 2002, 16(3): 206-210. (in Chinese)
[18] JIANG N, YAN J, LIANG Y, SHI Y, HE Z, WU Y, ZENG Q, LIU X, PENG J. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)—An updated review. Rice, 2020, 13(1): 3.
[19] NEELAM K, MAHAJAN R, GUPTA V, BHATIA D, GILL B K, KOMAL R, LORE J S, MANGAT G S, SINGH K. High-resolution genetic mapping of a novel bacterial glight resistance gene xa-45(t) identified from Oryza glaberrima and transferred to Oryza sativa. Theoretical and Applied Genetics, 2020, 133(3): 689-705.
[20] 许志刚, 孙启明, 刘凤权, 陈志谊, 胡白石, 郭亚辉, 刘永峰, 刘红霞. 水稻白叶枯病菌小种分化的监测. 中国水稻科学, 2004, 18(5): 469-472.
XU Z G, SUN Q M, LIU F Q, CHEN Z Y, HU B S, GUO Y H, LIU Y F, LIU H X. Race monitoring of rice bacterial blight (Xanthomonas oryzae pv. oryzae) in China. Chinese Journal of Rice Science, 2004, 18(5): 469-472. (in Chinese)
[21] 杨万风, 刘红霞, 胡白石, 许志刚, 刘凤权. 中国水稻白叶枯病菌毒性变异研究. 植物病理学报, 2006, 36(3): 244-248.
YANG W F, LIU H X, HU B S, XU Z G, LIU F Q. Virulence variation of Xanthomonas oryzae pv. oryzae on rice near-isogenic lines in China. Acta Phytopathologica Sinica, 2006, 36(3): 244-248. (in Chinese)
[22] 夏立琼, 李明容, 谢仕猛, 翟文学, 夏志辉. 海南水稻白叶枯病菌优势生理小种的分离及致病力分析. 分子植物育种, 2016, 14(5): 1336-1340.
XIA L Q, LI M R, XIE S M, ZHAI W X, XIA Z H. Isolation and pathogenicity analysis of the predominant race of Xanthomonas oryzae pv. oryzae in Hainan. Molecular Plant Breeding, 2016, 14(5): 1336-1340. (in Chinese)
[23] KOGEETHAVANI R, FATIN N A, SUZIANTI I V, ERWAN S S. Characterization of pathogenic variability of Xanthomonas oryzae pv. oryzae isolates causing bacterial leaf blight disease in Malaysian rice granaries. Australasian Plant Pathology, 2021, 50: 293-298.
[24] 余建英, 何旭宏. 数据统计分析与SPSS应用. 北京: 人民邮电出版社, 2003.
YU J Y, HE X H. Data Statistical Analysis and SPSS Application. Beijing: People’s Posts and Telecommunications Press, 2003. (in Chinese)
[25] 周俊飞, 章山, 孙婧, 张伟, 高利芬. 水稻抗白叶枯病近等基因系的抗性鉴定揭示基因聚合的多向性效应. 华北农学报, 2020, 35(6): 67-73.
ZHOU J F, ZHANG S, SUN J, ZHANG W, GAO L F. Resistance identification of near-isogenic lines to bacterial blight in rice reveals the multidirectional effect of gene pyramiding. Acta Agriculture Boreali-Sinica, 2020, 35(6): 67-73. (in Chinese)
[26] 成太辉, 陈深, 杨健源, 朱小源, 伍圣远, 洪启金, 曾列先. 水稻抗白叶枯病V型菌xa5基因利用现状及前景. 广东农业科学, 2020, 47(1): 92-97.
CHENG T H, CHEN S, YANG J Y, ZHU X Y, WU S Y, HONG Q J, ZENG L X. Dtilization situation and prospect of gene xa5against pathotype V of rice bacterial blight. Guangdong Agricultural Sciences, 2020, 47(1): 92-97. (in Chinese)
[27] 倪大虎, 易成新, 杨剑波, 汪秀峰, 张毅, 章琦, 王春连, 赵开军, 王文相, 李莉. 利用分子标记辅助选择聚合Pi9(t)和Xa23基因. 分子植物育种, 2007, 5(4): 491-496.
NI D H, YI C X, YANG J B, WANG X F, ZHANG Y, ZHANG Q, WANG C L, ZHAO K J, WANG W X, LI L. Pyramiding Pi9(t) and Xa23 genes by molecular marker-assisted selection. Molecular Plant Breeding, 2007, 5(4): 491-496. (in Chinese)
[28] ABDUL FIYAZ R, SHIVANI D, CHAITHANYA K, MOUNIKA K, CHIRANJEEVI M, LAHA G S, VIRAKTAMATH B C, SUBBA RAO L V, SUNDARAM R M. Genetic improvement of rice for bacterial blight resistance: Present status and future prospects. Rice Science, 2022, 29(2): 118-132.
[29] 陈小林, 颜群, 高利军, 韦善富, 李道远, 高汉亮. 广西水稻白叶枯病菌致病型的初步鉴定. 南方农业学报, 2015, 46(2): 236-240.
CHEN X L, YAN Q, GAO L J, WEI S F, LI D Y, GAO H L. Preliminary identification of pathotype of Xanthomonas oryzae pv. oryzae in Guangxi. Journal of Southern Agriculture, 2015, 46(2): 236-240. (in Chinese)
[30] 袁斌, 刘友梅, 黄薇, 张舒, 吕亮, 常向前, 杨小林. 湖北省水稻白叶枯病菌致病型分化检测与分析. 湖北农业科学, 2018, 57(24): 100-103.
YUAN B, LIU Y M, HUANG W, ZHANG S, LÜ L, CHANG X Q, YANG X L. Differential detection and analysis of pathotypes of Xanthomonas oryzae pv. oryzae in Hubei Province. Hubei Agricultural Sciences, 2018, 57(24): 100-103. (in Chinese)
[31] 阎园园, 陈华, 姜波. 基于群智能算法分类模型的番茄病害识别. 江苏农业科学, 2020, 48(1): 219-224.
YAN Y Y, CHEN H, JIANG B. Tomato disease recognition based on swarm intelligence classification model. Jiangsu Agricultural Science, 2020, 48(1): 219-224. (in Chinese)
[32] 徐笑锋, 肖英杰, 章学来, 徐亚伟. 基于PCA-相对熵模型的海上中转引航平台选址研究. 安全与环境学报, 2021, 21(6): 2438-2443.
XU X F, XIAO Y J, ZHANG X L, XU Y W. Research on site selection of maritime transit pilot platform based on PCA-relative entropy model. Journal of Safety and Environment, 2021, 21(6): 2438-2443. (in Chinese)
[33] 吕开云, 鞠厦轶, 龚循强, 鲁铁定. 基于PCA和IGG权函数的人脸图像鲁棒线性回归分类方法. 电子测量技术, 2021, 44(21): 152-157.
LÜ K Y, JU X Y, GONG X Q, LU T D. Face recognition using robust linear regression classification based on PCA and IGG weight function. Electronic Measurement Technology, 2021, 44(21): 152-157. (in Chinese)
[34] 郭金玉, 刘玉超, 李元. 加权局部近邻标准化PCA的工业过程故障检测. 沈阳化工大学学报, 2021, 35(3): 265-274.
GUO J Y, LIU Y C, LI Y. Fault detection of industrial process based on weighed local neighborhood standardization PCA. Journal of Shenyang University of Chemical Technology, 2021, 35(3): 265-274. (in Chinese)
[35] REICH D, PRICE A L, PATTERSON N. Principal component analysis of genetic data. Nature Genetics, 2008, 40(5): 491-492.
[36] HUANG X, WEI X, SANG T, ZHAO Q, FENG Q, ZHAO Y, LI C, ZHU C, LU T, ZHANG Z, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010, 42(11): 961-967.
[37] ZHAO K, TUNG C W, EIZENGA G C, WRIGHT M H, ALI M L, PRICE A H, NORTON G J, ISLAM M R, REYNOLDS A, MEZEY J, MCCLUNG A M, BUSTAMANTE C D, MCCOUCH S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, 2011, 2: 467.
[38] JONNALAGADDA S, SRINIVASAN R. Principal components analysis based methodology to identify differentially expressed genes in time-course microarray data. BMC Bioinformatics, 2008, 9: 267.
[39] 周丽娜, 于海业, 张蕾, 任顺, 隋媛媛, 于连军. 基于叶绿素荧光光谱分析的稻瘟病害预测模型. 光谱学与光谱分析, 2014, 34(4): 1003-1006.
ZHOU L N, YU H Y, ZHANG L, REN S, SUI Y Y, YU L J. Rice blast prediction model based on analysis of chlorophyll fluorescence spectrum. Spectroscopy and Spectral Analysis, 2014, 34(4): 1003-1006. (in Chinese)
[40] WANG C Y, CHEN S, FENG A Q, SU J, WANG W J, FENG J Q, CHEN B, ZHANG M Y, YANG J Y, ZENG L X, ZHU X Y. Xa7, a small orphan gene harboring promoter trap for AvrXa7, leads to the durable resistance to Xanthomonas oryzae pv. oryzae. Rice, 2021, 14(1): 48.
[41] CHEN X F, LIU P C, MEI L, HE X L, CHEN L, LIU H, SHEN S R, JI Z D, ZHENG X X, ZHANG Y C, GAO Z Y, ZENG D L, QIAN Q, MA B J. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. Plant Communications, 2021, 2(3): 100143.
[42] LUO D, HUGUET-TAPIA J C, RABORN R T, WHITE F F, YANG B. The Xa7 resistance gene guards the susceptibility gene SWEET14 of rice against exploitation by bacterial blight pathogen. Plant Communications, 2021, 2(3): 100164.
[43] JI C H, JI Z Y, LIU B, CHENG H, LIU H, LIU S Z, YANG B, CHEN G Y. Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors. Plant Communications, 2020, 1(4): 100087.
[44] ZHANG B M, ZHANG H T, LI F, OUYANG Y D, YUAN M, LI X H, XIAO J H, WANG S P. Multiple alleles encoding atypical NLRs with unique central tandem repeats in rice confer resistance to Xanthomonas oryzae pv. oryzae. Plant Communications, 2020, 1(4): 100088.
[45] PRADHAN S K, BARIK S R, SAHOO A, MOHAPATRA S, NAYAK D K, MAHENDER A, MEHER J, ANANDAN A, PANDIT E. Population structure, genetic diversity and molecular marker-trait association analysis for high temperature stress tolerance in rice. PLoS ONE, 2016, 11(8): e0160027.
[46] BALIYAN N, MALIK R, RANI R, MEHTA K, VASHISTH U, DHILLON S, BOORA K S. Integrating marker-assisted background analysis with foreground selection for pyramiding bacterial blight resistance genes into Basmati rice. Comptes Rendus Biologies, 2018, 341(1): 1-8.
[47] HSU Y C, CHIU C H, YAP R, TSENG Y C, WU Y P. Pyramiding bacterial blight resistance genes in Tainung82 for broad-spectrum resistance using marker-assisted selection. International Journal of Molecular Sciences, 2020, 21(4): 1281.
[48] WANG Y, PRUITT R N, NÜRNBERGER T, WANG Y C. Evasion of plant immunity by microbial pathogens. Nature Reviews Microbiology, 2022, 20(8): 449-464.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[5] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[6] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[7] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[8] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[9] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[10] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[11] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[12] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[13] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[14] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[15] WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!