Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (6): 1228-1239.doi: 10.3864/j.issn.0578-1752.2015.06.18

• RESEARCH NOTES • Previous Articles     Next Articles

Identification of Resistance to Main Virus Diseases and Genetic Diversity Study of Tobacco Foundation Parents

DAI Shuai-shuai, REN Min, JIANG Cai-hong, CHENG Ya-zeng, GENG Rui-mei, ZHANG Xing-wei, CHENG Li-rui, YANG Ai-guo   

  1. Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong
  • Received:2014-09-21 Online:2015-03-16 Published:2015-03-16

Abstract: 【Objective】 This study aims to assess the viral disease resistances of the tobacco foundation parents, and to analyze their genetic diversity and phylogenetic relationship. 【Method】 A total of 73 flue-cured tobacco foundation parents were evaluated for resistances to three kinds of virus diseases by artificial inoculation in the green house. Furthermore, the genetic diversity of 29 resistant foundation parents and additional 4 foundation parents were analyzed using 103 pairs of polymorphism SSR markers distributed on the whole tobacco genome. 【Result】 Different cultivars displayed a wide range of variation for resistances to CMV, TMV and PVY. As for CMV, a total of 23 cultivars exhibited high resistances to CMV, although the cultivars exhibited immunity to CMV were not identified. As for TMV, six cultivars exhibited immunity to TMV. As for PVY, five cultivars exhibited immunity to PVY. In sum, two cultivars, Longyan1 and FC8, exhibited immunity to TMV and PVY, respectively. In addition, seven cultivars including CV87, T.T.11, Kang88, CV91, Tailifu1060, Gexin5 and T.I.245, exhibited resistances to three kinds of virus diseases. The genotypes of 29 resistant foundation parents and additional 4 foundation parents were identified with 103 SSR markers. The total numbers of alleles amplified at the 103 SSR loci were 322 and the mean number of alleles detected for each locus was 3.106, ranging from 2 to 6 alleles. The genetic diversity spanned from 0.059 to 0.716, with an average of 0.387. The PIC value ranged from 0.057 to 0.661, with an average of 0.343. According to UPGMA cluster analysis, the 33 tested cultivars were divided into seven clusters with a cut-off of threshold value as 0.672 and the cultivars belonged to the first group were further subdivided into four clusters with a cut-off of threshold value as 0.714. Principle coordinate analysis (PCoA) showed that the 33 tested cultivars were divided into six clusters, which are in agreement with the results of clustering analysis. The results of molecular clustering largely agreed with the pedigree relationship.【Conclusion】 A total of 29 flue-cured tobacco foundation parents exhibited the resistance to tobacco main virus diseases. The genetic relationships among the groups of genotyped cultivars are in agreement with pedigree relationship. The resistant foundation parents from China showed a relatively higher genetic basis.

Key words: tobacco, CMV, TMV, PVY, resistance to disease, genetic diversity, cluster analysis

[1]    朱贤朝. 中国烟草病害. 北京: 中国农业出版社, 2002: 76-79.
Zhu X C. Tobacco Diseases in China. Beijing: China Agriculture Press, 2002: 76-79. (in Chinese)
[2]    Quenouille J, Paulhiac E, Moury B, Palloix A. Quantitative trait loci from the host genetic background modulate the durability of a resistance gene: A rational basis for sustainable resistance breeding in plants. Heredity, 2014, 112(6): 579-587.
[3]    Lewis R S, Rose C. Agronomic performance of tobacco mosaic virus-resistant tobacco lines and hybrids possessing the resistance gene N introgressed on different chromosomes. Crop Science, 2010, 50(4): 1339-1347.
[4]    Whitham S, Dinesh-Kumar S P, Choi D, Hehl R, Corr C, Baker B. The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell, 1994, 78(6): 1101-1115.
[5]    许石剑, 肖炳光, 李永平. 烟草抗TMV育种研究进展. 中国农学通报, 2009, 25(16): 91-94.
Xu S J, Xiao B G, Li Y P. Progress on TMV resistant breeding of tobacco. Chinese Agricultural Science Bulletin, 2009, 25(16): 91-94. (in Chinese)
[6]    Nomura K, Uekusa H, Kita N. Suppression of transgene RNA silencing in transgenic Arabidopsis thaliana by a mild strain of cucumbermosaicvirus.Journal of General Plant Pathology, 2014, 80(5): 443-448.
[7]    Gupton C L, Burk L G. Location of the factor for resistance to potato virus Y in tobacco. Journal of Heredity, 1973, 64(5): 289-290.
[8]    Moury B, Janzac B, Ruellan Y, Simon V, Ben Khalifa M, Fakhfakh  H, Fabre F, Palloix A. Interaction patterns between potato virus Y and eIF4E-mediated recessive resistance in the solanaceae. Journal of Virology, 2014, 8: 9799-9807. 
[9]    孟坤, 时焦, 孙丽萍, 常爱霞, 张峻铨. 不同烟草品种对白粉病的抗性. 烟草科技, 2013, 12: 78-80.
Meng K, Shi J, Sun L P, Chang A X, Zhang J Q. Evaluation on resistance of tobacco cultivars to powdery mildew. Tobacco Science and Technology, 2013, 12: 78-80. (in Chinese)
[10]   Manubens A, Lobos S, Jadue Y, Toro M, Messina R, Lladser M, Seelenfreund D. DNA isolation and AFLP fingerprinting of nectarine and peach varieties (Prunus persica). Plant Molecular Biology Reporter, 1999, 17(3): 255-267.
[11]   Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, Hoeven R V, Ganal M, Doni P. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theoretical and Applied Genetics, 2011, 123(2): 219-230.
[12]   Liu K, Muse S V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129.
[13]   Rohlf F J. NTSYS-pc version 2.2 Numerical taxonomy and multivariate analysis system. Exeter Software, Setauket, New York. 2000.
[14]   Sneath P H A, Sokal R R. Numerical taxonomy. Freeman, San Francisco, Canada. 1973.
[15]   Moon H S, Nicholson J S, Lewis R S. Use of transferable Nicotiana tabacum L. microsatellite markers for investigating genetic diversity in the genus Nicotiana. Genome, 2008, 51(8): 547-559.
[16]   Yin L, Zhang Y L, Hao Y, Lu J. Genetic diversity and population structure of Plasmopara viticola in China. European Journal of Plant Pathology, 2014, 140: 365-376.
[17]   赖勇, 王鹏喜, 范贵强, 司二静, 王晋, 杨轲, 孟亚雄, 李葆春, 马小乐, 尚勋武, 王化俊. 大麦SSR标记遗传多样性及其与农艺性状关联分析. 中国农业科学, 2013, 46(2): 233-242.
Lai Y, Wang P X, Fan G Q, Si E J, Wang J, Yang K, Meng Y X, Li B C, Ma X L, Shang X W, Wang H J. Genetic diversity and association analysis using SSR markers in barley. Scientia Agricultura Sinica, 2013, 46(2): 233-242. (in Chinese)
[18]   张立娜, 曹桂兰, 韩龙植. 利用SSR标记揭示中国粳稻地方品种遗传多样性. 中国农业科学, 2012, 45(3): 405-413.
Zhang L N, Cao G L, Han L Z. Analysis of genetic diversity of japonica rice landrace in China with microsatellite marker. Scientia Agricultura Sinica, 2012, 45(3): 405-413. (in Chinese)
[19]   Moon H S, Nifong J M, Nicholson J S, Heineman A, Lion K, Van der Hoeven R, Hayes A J, Lewis R S. Microsatellite-based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Science, 2009, 49: 2149-2159.
[20]   Fricano A N, Bakaher M, Del Corvo P, Piffanelli P, Donini A, Stella N V, Ivanov Pozzi C. Molecular diversity, population structure, and linkage disequilibrium in a worldwide collection of tobacco (Nicotiana tabacum L.) germplasm. BMC Genetics, 2012, 13: 18.
[21]   Moon H S, Nicholson J S, Heineman A, Lion K, Van der Hoeven, Hayes A J, Lewis R S. Changes in genetic diversity of U.S. flue-cured tobacco germplasm over seven decades of cultivar development. Crop Science, 2009, 49: 498-508.
[22]   Arslan B, Okumus A. Genetic and geographic polymorphism of cultivated tobaccos (Nicotiana tabacum) in Turkey. Russian Journal of Genetics, 2006, 42(6): 667-671.
[23]   Lewis R S, Nicholson J S. Aspects of the evolution of Nicotiana tabacum L. and the status of the United States Nicotiana germplasm collection. Genetics Resource and Crop Evolution, 2007, 54: 727-740.
[24]   张玉, 蒋彩虹, 冯莉, 张伟, 殷英, 常爱霞, 杨爱国, 冯全福, 罗成刚. 3个烤烟品系对TMV抗性的遗传规律分析. 植物遗传资源学报, 2013, 14(5): 971-974.
Zhang Y, Jiang C H, Feng L, Zhang W, Yin Y, Chang A X, Yang A G, Feng Q F, Luo C G. Inheritance for resistance to TMV in three tobacco lines. Journal of Plant Genetic Resources, 2013, 14(5): 971-974. (in Chinese)
[25]   Holmes F O. Concomitant inheritance of resistance to several viral diseases in tobacco. Virology, 1961, 13: 409-413.
[26]   文轲, 张志明, 任民, 蒋彩虹, 申莉莉, 程立锐, 耿锐梅, 陈小翠, 冯莉, 杨爱国. 烤烟CMV抗性基因QTL定位. 中国烟草科学, 2013, 34(3): 55-59.
Wen K, Zhang Z M, Ren M, Jiang C H, Shen L L, Cheng L R, Geng R M, Chen X C, Feng L, Yang A G. QTL analysis of the resistance gene to CMV in flue-cured tobacco. Chinese Tobacco Science, 2013, 34(3): 55-59. (in Chinese)
[1] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[2] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[3] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[4] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[5] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[6] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[7] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[8] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[9] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[10] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[11] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[12] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[13] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[14] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[15] YuXin LIANG,JianXiang WU,XiaoYu LI,ChunYu ZHANG,JiChao HOU,XuePing ZHOU,YongZhi WANG. Mapping of Epitopes and Establishment of Rapid DAS-ELISA for Potato Virus Y Coat Protein [J]. Scientia Agricultura Sinica, 2021, 54(6): 1154-1162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!