Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (21): 4172-4182.doi: 10.3864/j.issn.0578-1752.2014.21.004

• EFFICIENT, SAFE AND LARGE-SCALE TRANSGENIC TECHNOLOGY: OPPORTUNITIES AND CHALLENGES • Previous Articles     Next Articles

Establishment and Application of Large-Scale Transformation Systems for Maize

LIU Yun-jun1, JIA Zhi-wei2, LIU Yan1, ZHANG Deng-feng1, LI Yu1   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Center for Transgenic Research in Plants, Beijing 100081
     2Dabeinong Biotechnology Center, Beijing 100193
  • Received:2014-04-01 Revised:2014-06-16 Online:2014-11-01 Published:2014-11-01

Abstract: Maize has the most widely planted scope and the largest output in the world, and makes important contributions to food security. However, pests, weeds, drought, salinity and other biotic and abiotic stress seriously affect maize production. The application of transgenic maize varieties with insect-resistance, herbicide-tolerance, disease-resistance and other traits could reduce the maize yield losses. Maize large scale transformation system has developed rapidly, and the transgenic insect-resistant and herbicide-tolerant maize varieties have also been commercially applied for 18 years, bringing huge economic, social and ecological benefits. Global biotech crop acreage increased from 1.7 million hectares in 1996 to 175 million hectares in 2013. The commercially used transgenic maize events were selected from a large number of independent transgenic events, and had several good characteristics, i.e. single copy of foreign genes, genetic stability, no vector backbone insertion, no effect on maize own traits. Foreign big companies and some public research institutions have established high efficient maize transformation system. In China, the study on maize transformation system started late, and currently the maize transformation system has been preliminarily established. However, it is necessary to further improve the efficiency and the scale of maize transformation system in China. Particle bombardment and Agrobacterium-mediated method are two main methods for maize transformation system. The article describes the principle, the development process and the application of these two methods. Agrobacterium-mediated transformation is the most mainstream of plant genetic transformation methods with the characteristics of low cost, low foreign gene copy number and stable gene expression, so Agrobacterium-mediated transformation method is more suitable for large scale maize transformation system. Over the last decade in China, some achievements have been made in maize transformation method by selecting good explants, optimizing Agrobacterium infection method. The established maize transformation system has also been used to develop a lot of valuable transgenic maize events with insect-resistance or herbicide-tolerance. The perspectives of the development of maize transformation were also discussed. The authors believe that the development trend of maize transformation system include: 1) screening explants from commercial maize inbred lines, 2) raising single-copy transformation event rates without enhancing vector backbone insertion, 3) multi-gene transformation technology, 4) gene targeting technology, 5) safety transformation technology. China should closely follow the development trend of maize transformation system, focus on the development of multi-gene transformation technology, gene targeting technology and safety transformation technology, to better serve the gene function research and the development of transgenic maize products. In China, if the transgenic maize events which were obtained by the large scale maize transformation system are commercially grown in the future, it will bring enormous economic, social and environmental benefits, and will promote the further development of maize transformation system. This review article might provide some useful information for the research on maize transformation system.

Key words: maize, large scale, transformation, system

[1]    James C. 2013年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2014, 34(1): 1-8.
James C. Global process of transgenic crops in 2013. China Biotechnology, 2014, 34(1): 1-8. (in Chinese)
[2]    万建民. 我国转基因植物研发形势及发展战略. 生命科学, 2011, 23(2): 157-167.
Wan J M. Research and development status and future strategy of transgenic plants in China. Chinese Bulletin Life Sciences, 2011, 23(2): 157-167. (in Chinese)
[3]   Shou H, Frame B R, Whitham S A, Wang K. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium- mediated transformation. Molecular Breeding, 2004, 13: 201-208.
[4]    Vain P. Thirty years of plant transformation technology development. Plant Biotechnology Journal, 2007, 5: 221-229.
[5]    Pitzschke A, Hirt H. New insights into an old story: Agrobacterium- induced tumour formation in plants by plant transformation. The EMBO Journal, 2010, 29(6): 1021-1032.
[6]    Brencic A, Winans S C. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiology Molecular Biology Reviews, 2005, 69(1): 155-194.
[7]    Gelvin S B. Plant proteins involved in Agrobacterium-mediated genetic transformation. Annual Review of Phytopathology, 2010, 48: 45-68.
[8]    Gould J, Devey M, Hasegawa O, Ulian E C, Peterson G, Smith R H. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiology, 1991, 95: 426-434.
[9]    Shen W H, Escudero J, Schlappi M, Ramos C, Hohn B, Koukolikova- Nicola Z. T-DNA transfer to maize cells: Histochemical investigation of beta-glucuronidase activity in maize tissues. Proceedings of the National Academy of Sciences of the USA, 1993, 90: 1488-1492.
[10]   Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology, 1996, 14: 745-750.
[11]   Zhao Z Y, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Molecular Breeding, 2002, 8: 323-333.
[12]   Frame B R, Shou H, Chikwamba R K, Zhang Z, Xiang C, Fonger T M, Pegg S E, Li B, Nettleton D S, Pei D, Wang K. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiology, 2002, 129: 13-22.
[13]   Frame B R, McMurray J M, Fonger T M, Main M L, Taylor K W, Torney F J, Paz M M, Wang K. Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Reports, 2006, 25: 1024-1034.
[14]   Frame B, Main M, Schick R, Wang K. Genetic transformation using maize immature zygotic embryos. Methods in Molecular Biology, 2011, 710: 327-341.
[15]   Vega J M, Yu W, Kennon A R, Chen X, Zhang Z J. Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Reports, 2008, 27: 297-305.
[16]   Sidorov V, Duncan D. Agrobacterium-mediated maize transformation: immature embryos versus callus. Methods in Molecular Biology, 2009, 526: 47-58.
[17]   Ishida Y, Hiei Y, Komari T. Agrobacterium-mediated transformation of maize. Nature Protocols, 2007, 2: 1614-1621.
[18]   Lee H, Zhang Z J. Agrobacterium-mediated transformation of maize (Zea mays) immature embryos. Methods in Molecular Biology, 2014, 1099: 273-280.
[19]   Lacroix B, Kozlovsky S V, Citovsky V. Recent patents on Agrobacterium-mediated gene and protein transfer for research and biotechnology. Recent Patents on DNA & Gene Sequences, 2008, 2: 69-81.
[20]   Barampuram S, Zhang Z J. Recent advances in plant transformation. Methods in Molecular Biology, 2011, 701: 1-35.
[21]   Endo M, Ishikawa Y, Osakabe K, Nakayama S, Kaya H, Araki T, Shibahara K, Abe K, Ichikawa H, Valentine L, Hohn B, Toki S. Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. The EMBO Journal, 2006, 25(23): 5579-5590.
[22]   Bhattacharjee S, Lee L Y, Oltmanns H, Cao H, Veena, Cuperus J, Gelvin S B. IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in Agrobacterium-mediated plant transformation. The Plant Cell, 2008, 20: 2661-2680.
[23]   Tenea G N, Spantzel J, Lee L Y, Zhu Y, Lin K, Johnson S J, Gelvin S B. Overexpression of several Arabidopsis histone genes increases Agrobacterium-mediated transformation and transgene expression in plants. The Plant Cell, 2009, 21: 3350-3367.
[24]   黄璐, 卫志明. 农杆菌介导的玉米遗传转化. 实验生物学报, 1999, 32(4): 381-389.
Huang L, Wei Z M. Agrobacterium-mediated maize transformation. Acta Biologiae Experimentalis Sinica, 1999, 32(4): 381-389. (in Chinese)
[25]   张荣, 王国英, 张晓红, 赵虎基. 根癌农杆菌介导的玉米遗传转化体系的建立. 农业生物技术学报, 2001, 9(1): 45-48.
Zhang R, Wang G Y, Zhang X H, Zhao H J. Agrobacterium tumefaciens mediated maize transformation. Journal of Agricultural Biotechnology, 2001, 9(1): 45-48. (in Chinese)
[26]   张艳贞, 王罡, 胡汉桥, 魏松红, 季静, 王军军, 李昌. 农杆菌介导将Bt杀虫蛋白基因导入优良玉米自交系的研究. 遗传, 2002, 24(1): 35-39.
Zhang Y Z, Wang G, Hu H Q, Wei S H, Ji J, Wang J J, Li C. Transfer of insecticidal protein gene from Bacillus thuringiensis into conventional maize inbred-line mediated by Agrobacterium tumefaciens. Hereditas, 2002, 24(1): 35-39. (in Chinese)
[27]   Yang A, He C, Zhang K. Improvement of Agrobacterium-mediated transformation of embryogenic calluses from maize elite inbred lines. In Vitro Cellular & Developmental Biology-Plant, 2006, 42: 215-219.
[28]   魏开发. 农杆菌介导的高效玉米遗传转化体系的建立. 遗传, 2009, 31(11): 1158-1170.
Wei K F. Establishment of high efficiency genetic transformation system of maize mediated by Agrobacterium tumefaciens. Hereditas, 2009, 31(11): 1158-1170. (in Chinese)
[29]   Lu Y, Li Y, Zhang J, Xiao Y, Yue Y, Duan L, Zhang M, Li Z. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.). PLoS ONE, 2013, 8: e52126.
[30]   Liu X, Zhai S, Zhao Y, Sun B, Liu C, Yang A, Zhang J. Overexpression of the phosphatidylinositol synthase gene (ZmPIS) conferring drought stress tolerance by altering membrane lipid composition and increasing ABA synthesis in maize. Plant Cell Environment, 2013, 36: 1037-1055.
[31]   Cao X, Lu Y, Di D, Zhang Z, Liu H, Tian L, Zhang A, Zhang Y, Shi L, Guo B, Xu J, Duan X, Wang X, Han C, Miao H, Yu J, Li D. Enhanced virus resistance in transgenic maize expressing a dsRNA-specific endoribonuclease gene from E. coli. PLoS One, 2013, 8: e60829.
[32]   Quan R, Shang M, Zhang H, Zhao Y, Zhang J. Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Science, 2004, 166: 141-149.
[33] Wang Z, Chen X, Wang J, Liu T, Liu Y, Zhao L, Wang G. Increasing maize seed weight by enhancing the cytoplasmic ADP-glucose pyrophosphorylase activity in transgenic maize plants. Plant Cell, Tissue and Organ Culture, 2007, 88: 83-92.
[34]   白云凤, 杨红春, 曲琳, 郑军, 张锦鹏, 王茅雁, 谢婉, 周小梅, 王国英. 抗甘蔗花叶病毒的无标记反向重复转基因玉米. 作物学报, 2007, 33(6): 973-978.
Bai Y F, Yang H C, Qu L, Zheng J, Zhang J P, Wang M Y, Xie W, Zhou X M, Wang G Y. Inverted-repeat transgenic maize plants resistant to sugarcane mosaic virus. Acta Agronomica Sinica, 2007, 33(6): 973-978. (in Chinese)
[35]   He J, Dong Z, Jia Z, Wang J, Wang G. Isolation, expression and functional analysis of a putative RNA-dependent RNA polymerase gene from maize (Zea mays L.). Molecular Biology Reports, 2010, 37: 865-874.
[36]   Zhang Y, Liu Y, Ren Y, Liu Y, Liang G, Song F, Bai S, Wang J, Wang G. Overexpression of a novel Cry1Ie gene confers resistance to Cry1Ac-resistant cotton bollworm in transgenic lines of maize. Plant Cell, Tissue and Organ Culture, 2013, 115: 151-158.
[37]   Li B, Wei A, Song C, Li N, Zhang J. Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnology Journal, 2008, 6: 146-159.
[38]   Pei L, Wang J, Li K, Li Y, Li B, Gao F, Yang A. Overexpression of Thellungiella halophila H+-pyrophosphatase gene improves low phosphate tolerance in maize. PLoS ONE, 2012, 7: e43501.
[39]   Li B, Liu H, Zhang Y, Kang T, Zhang L, Tong J, Xiao L, Zhang H. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnology Journal, 2013, 11: 1080-1091.
[40]   Li Z, Gao Q, Liu Y, He C, Zhang X, Zhang J. Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth. Planta, 2011, 233: 1129-1143.
[41]   Li N, Zhang S, Zhao Y, Li B, Zhang J. Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta, 2011, 233: 241-250.
[42]   Li X, Chen W, Zhao Y, Xiang Y, Jiang H, Zhu S, Cheng B. Downregulation of caffeoyl-CoA O-methyltransferase (CCoAOMT) by RNA interference leads to reduced lignin production in maize straw. Genetics Molecular Biology, 2013, 36: 540-546.
[43]   Wang J, Sun Y, Li Y. Maize (Zea mays) genetic transformation by co-cultivating germinating seeds with Agrobacterium tumefaciens. Biotechnology Applied Biochemistry, 2007, 46(1): 51-55.
[44]   Gordon-Kamm W J, Spencer T M, Mangano M L, Adams T R, Daines R J, Start W G, O'Brien J V, Chambers S A, Adams W R, Jr., Willetts N G, Rice T B, Mackey C J, Krueger R W, Kausch A P, Lemaux P G. Transformation of maize cells and regeneration of fertile transgenic plants. The Plant Cell, 1990, 2: 603-618.
[45]   Fromm M E, Morrish F, Armstrong C, Williams R, Thomas J, Klein T M. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology, 1990, 8: 833-839.
[46]   Walters D A, Vetsch C S, Potts D E, Lundquist R C. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Molecular Biology, 1992, 18: 189-200.
[47]   Koziel M G, Beland G L, Bowman C, Carozzi N B, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Nature Biotechnology, 1993, 11: 194-200.
[48]   Wang K, Frame B. Biolistic gun-mediated maize genetic transformation. Methods in Molecular Biology, 2009, 526: 29-45.
[49]   王国英, 杜天兵, 张宏, 谢友菊, 戴景瑞, 米景九, 李太源, 田颖川, 乔利亚, 莽克强. 用基因枪将Bt毒蛋白基因转入玉米及转基因植株再生. 中国科学: 化学, 1995, 25(1): 71-76.
Wang G Y, Du T B, Zhang H, Xie Y J, Dai J R, Mi J J, Li T Y, Tian Y C, Qiao L Y, Mang K Q. Transform Bt insecticidal protein gene into maize by particle bombardments. Scientia Sinica: Chimica, 1995, 25(1): 71-76. (in Chinese)
[50]   赵天永, 黄忠, 王国英. 影响玉米基因枪转化效率的几个因素. 农业生物技术学报, 1997, 5(1): 35-39.
Zhao T Y, Huang Z, Wang G Y. The factors influcing transformation efficiency by particle bombardments. Journal of Agricultural Biotechnology, 1997, 5(1): 35-39. (in Chinese)
[51]   周逢勇, 王国英. 玉米自交系 P9—10 遗传转化体系的建立. 科学通报, 1998, 43(23): 2517-2521.
Zhou F Y, Wang G Y. Establishment of transformation system on maize inbred line P9-10. Chinese Science Bulletin, 1998, 43(23): 2517-2521. (in Chinese)
[52]   杨会, 王国英, 戴景瑞. 玉米优良自交系综3、综31的转化研究. 农业生物技术学报, 2001, 9(4): 334-337.
Yang H, Wang G Y, Dai J R. Transformation of maize elite inbred lines. Journal of Agricultural Biotechnology, 2001, 9(4): 334-337. (in Chinese)
[53]   Yu J, Peng P, Zhang X, Zhao Q, Zhu D, Sun X, Liu J, Ao G. Seed-specific expression of the lysine-rich protein gene sb401 significantly increases both lysine and total protein content in maize seeds. Food Nutrition Bulletin, 2005, 26: 427-431.
[54]   Chen R, Xue G, Chen P, Yao B, Yang W, Ma Q, Fan Y, Zhao Z, Tarczynski M C, Shi J. Transgenic maize plants expressing a fungal phytase gene. Transgenic Research, 2008, 17: 633-643.
[55]   李博, 于静娟, 赵倩, 朱登云, 敖光明. 基因pf40在玉米中的遗传转化. 中国农业科学, 2009, 42: 3334-3338.
Li B, Yu J J, Zhao Q, Zhu D Y, Ao G M. Transformation of the gene pf40 in maize. Scientia Agricultura Sinica, 2009, 42: 3334-3338. (in Chinese)
[56]   余桂容, 杜文平, 宋军, 陆伟, 徐利远, 刘永胜. 基因枪介导抗除草剂基因2mG2-epsps 转化玉米的初步研究. 分子植物育种, 2010, 8: 885-890.
Yu G R, Du W P, Song J, Lu W, Xu L Y, Liu Y S. Studies on the transferring herbicide resistance 2mG2-epsps into maize (Zea mays L.) by microprojectile bombardment. Molecular Plant Breeding, 2010, 8: 885-890. (in Chinese)
[57]   郭嘉, 孙传波, 陶蕊, 李海华, 孟凡梅, 曲文利, 郝东云, 袁英. 基因枪共转化法获得玉米转基因植株的研究. 玉米科学, 2012, 20(1): 44-47.
Guo J, Sun C B, Tao R, Li H H, Meng F M, Qu W L, Hao D Y, Yuan Y. Study on the development of transgenic maize plants by particle-bombardment co-transformation. Journal of Maize Sciences, 2012, 20(1): 44-47. (in Chinese)
[58]   Wang M, Liu C, Li S, Zhu D, Zhao Q, Yu J. Improved nutritive quality and salt resistance in transgenic maize by simultaneously overexpression of a natural lysine-rich protein gene, SBgLR, and an ERF transcription factor gene, TSRF1. International Journal Molecular Sciences, 2013, 14: 9459-9474.
[59]   Zhang L, Luo Y, Zhu Y, Zhang W, Chen R, Xu M, Fan Y, Wang L. GmTMT2a from soybean elevates the alpha-tocopherol content in corn and Arabidopsis. Transgenic Research, 2013, 22: 1021-1028.
[60]   Zhang Y, Xu X, Zhou X, Chen R, Yang P, Meng Q, Meng K, Luo H, Yuan J, Yao B, Zhang W. Overexpression of an acidic endo-beta-1, 3-1,4-glucanase in transgenic maize seed for direct utilization in animal feed. PLoS ONE, 2013, 8: e81993.
[61]   Xu X, Zhang Y, Meng Q, Meng K, Zhang W, Zhou X, Luo H, Chen R, Yang P, Yao B. Overexpression of a fungal beta-mannanase from Bispora sp. MEY-1 in maize seeds and enzyme characterization. PLoS ONE, 2013, 8: e56146.
[62]   Liu Y, Zhang Y, Liu Y, Lu W, Wang G. Metabolic effects of glyphosate on transgenic maize expressing a G2-EPSPS gene from Pseudomonas fluorescens. Journal of Plant Biochemistry and Biotechnology, 2014, DOI 10.1007/s13562-014-0263-9
[63] Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proceedings of the National Academy of Sciences of the USA, 2008, 105: 18232-18237.
[64]   Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Conesa D P, Ros G, Sandmann G, Capell T. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proceedings of the National Academy of Sciences of the USA, 2009, 106: 7762-7767.
[65]   Shukla V K, Doyon Y, Miller J C, De Kelver R C, Moehle E A, Worden S E, Mitchell J C, Arnold N L, Gopalan S, Meng X. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 2009, 459: 437-441.
[66]   Townsend J A, Wright D A, Winfrey R J, Fu F, Maeder M L, Joung J K, Voytas D F. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature, 2009, 459: 442-445.
[67]   Christian M, Cermak T, Doyle E L, Schmidt C, Zhang F, Hummel A, Bogdanove A J, Voytas D F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010, 186: 757-761.
[68]   Mahfouz M M, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu J K. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double- strand breaks. Proceedings of the National Academy of Sciences of the USA, 2011, 108: 2623-2628.
[69]   Li T, Liu B, Spalding M H, Weeks D P, Yang B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology, 2012, 30(5): 390-392.
[70]   Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier  E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337: 816-821.
[71]   Cho S W, Kim S, Kim Y, Kweon J, Kim H S, Bae S, Kim J S. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Research, 2014, 24: 132-141.
[72]   Fu Y F, Sander J D, Reyon D, Cascio VM, Joung J. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 2014, 32: 279-284.
[73]   Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology, 2014, 32: 577-582.
[74]   Li J F, Norville J E, Aach J, McCormack M, Zhang D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013, 31: 688-691.
[75]   Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J J, Qiu J L. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013, 31: 686-688.
[76]   Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu L J. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 2013, 23: 1233-1236.
[77]   Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks D P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 2013, 41: e188.
[78]   Huang S, Gilbertson L A, Adams T H, Malloy K P, Reisenbigler E K, Birr D H, Snyder M W, Zhang Q, Luethy M H. Generation of marker-free transgenic maize by regular two-border Agrobacterium transformation vectors. Transgenic Research, 2004, 13: 451-461.
[79]   Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L. Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theoretical Applied Genetics, 2003, 107: 1157-1168.
[80]   Vega J M, Yu W, Han F, Kato A, Peters E M, Zhang Z J, Birchler J A. Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors. Plant Molecular Biology, 2008, 66: 587-598.
[81]   Li B, Li N, Duan X, Wei A, Yang A, Zhang J. Generation of marker- free transgenic maize with improved salt tolerance using the FLP/FRT recombination system. Journal of Biotechnology, 2010, 145: 206-213.
[82]   Djukanovic V, Lenderts B, Bidney D, Lyznik L A. A Cre::FLP fusion protein recombines FRT or loxP sites in transgenic maize plants. Plant Biotechnology Journal, 2008, 6: 770-781.
[83]   Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart C N, McAvoy R Jr., Jiang X, Wu Y, He A, Pei Y, Li Y. ‘GM-gene-deletor’: Fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnology Journal, 2007, 5: 263-274.
[84]   Hanson B, Engler D, Moy Y, Newman B, Ralston E, Gutterson N. A simple method to enrich an Agrobacterium-transformed population for plants containing only T-DNA sequences. The Plant Journal, 1999, 19: 727-734.
[85]   Oltmanns H, Frame B, Lee L Y, Johnson S, Li B, Wang K, Gelvin S B. Generation of backbone-free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome. Plant Physiology, 2010, 152: 1158-1166.
[86]   Lowe B A, Shiva Prakash N, Way M, Mann M T, Spencer T M, Boddupalli R S. Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Research, 2009, 18: 831-840.
[1] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[4] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[5] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[6] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[10] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[11] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[12] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[13] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[14] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[15] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!