Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (3): 528-536.doi: 10.3864/j.issn.0578-1752.2014.03.012

• HORTICULTURE • Previous Articles     Next Articles

QTL Mapping and Analysis of the Important Agronomic Traits of Beijingjietou×Xishuangbanna Cucumber Recombinant Inbred Lines

 MA  Zheng, BAO  Kai-Liang, LI  Lei, QIAN  Chun-Tao, CHEN  Jin-Feng   

  1. College of Horticulture,Nanjing Agricultural University/State Laboratory for Crop Genetics and Germpalsm Enhancement, Nanjing 210095
  • Received:2013-07-17 Online:2014-02-01 Published:2013-11-27

Abstract: 【Objective】 A genetic map was constructed using Xishuangbanna cucumber (Cucumis sativus L.var. xishuangbannanesis Qi et Yuan) recombinant lines and QTLs associated with yield, chlorophyll content, fruit related traits, the lateral branch number and the first lateral branch node were identified. These results will be beneficial and helpful to cucumber plant selection and high yield breeding.【Method】Using JoinMap 4.0 software, a genetic linkage map based on 995 SSR primers data from 124 F9 recombinant inbred lines, derived from Beijingjietou cucumber and Xishuangbanna cucumber by using single seed descend method, was constructed. Using WinQTLcart2.5 software, QTLs associated with 12 cucumber traits related to chlorophyll content, fruit lengths, fruit diameters, length of fruit for seed harvest, diameter of fruit for seed harvest, stalk lengths of fruit for seed harvest, and lateral branch, the first lateral branch node were mapped.【Result】The linkage map consisted of 137 SSR (simple sequence repeat) markers, 7 linkage groups that spanned 591.2 cM with an average distance of 4.32 cM. A total of twenty-nine QTLs for the 12 cucumber traits were detected, and 6, 7, 9 and 7 QTLs for chlorophyll content characters, commercial fruit, mature fruit and lateral branch traits were detected, respectively. These QTLs were mapped on chromosomes 1, 2, 3, 4, 6 and 7, respectively. The QTLs explained 5.30%-19.24% of the phenotypic variation. The minimum contribution rate of Ldr4.2 is 5.30%, the maximum contribution rate of Lbn1.2 is 19.24%.【Conclusion】The results of QTL analysis on the 12 cucumber traits will provide a basis for gene fine mapping to unravel the genetic basis of yield related traits in cucumber. Moreover, the obtained genetic linkage map of this RIL population could be used for analysis of other important cucumber traits.

Key words: cucumber , genetic map , agronomic traits , QTL

[1]戚春章, 袁珍珍, 李玉湘. 黄瓜新类型—西双版纳黄瓜. 园艺学报, 1983,10(4): 259-264.

Qi C Z, Yuan Z Z, Li Y X. A new type of cucumber-Cucumis sativus L. var. xishuangbannanesis. Acta Horticulturae Sinica, 1983, 10(4): 259-264. (in Chinese)

[2]李效尊. 黄瓜重要性状的QTL定位与分析[D]. 上海: 上海交通大学, 2007.

Li X Z. QTL mapping and analysis of important traits in cucumber (Ccucumis sativus L.)[D]. Shanghai: Shanghai Jiao Tong University, 2007. (in Chinese)

[3]Yuan X J, Pan J S, Cai R, Guan Y, Liu L Z, Zhang W W, Li Z, He H L, Zhang C, Si L T, Zhu L H. Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica, 2008, 164: 473-491.

[4]程周超, 顾兴芳, 张圣平, 苗晗, 张若纬, 刘苗苗, 杨双娟. 黄瓜瓜长性状的QTL定位分析. 中国蔬菜, 2010(12): 20-25.

Cheng Z C, Gu X F, Zhang S P, Miao H, Zhang R W, Liu M M, Yang S J. QTL Analysis for fruit length of cucumber. China Vegetables, 2010(12): 20-25. (in Chinese)

[5]苗晗, 顾兴芳, 张圣平, 张忠华, 黄三文, 王烨, 程周超, 张若纬, 穆生奇, 李曼, 张振贤, 方智远. 黄瓜果实相关性状QTL定位分析. 中国农业科学, 2011, 44(24): 5031-5040.

Miao H, Gu X F, Zhang S P, Zhang Z H, Huang S W, Wang Y, Cheng Z C, Zhang R W, Mu S Q, Li M, Zhang Z X, Fang Z Y. Mapping QTLs for fruit-associated traits in Cucumis sativus L.. Scientia Agricultura Sinica, 2011, 44(24): 5031-5040. (in Chinese)

[6]袁晓君. 黄瓜永久群体遗传图谱的构建及花、果相关性状的QTL定位[D]. 上海: 上海交通大学, 2008.

Yuan X J. QTL mapping and analysis of fruit and flower related traits in cucumber(cucumis sativus L.)[D]. Shanghai: Shanghai Jiao Tong University, 2008. (in Chinese)

[7]Serquen F C, Bacher J, Staub J E. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativas L.) using random amplified polymorphic DNA markers. Molecular Breeding, 1997, 3(4): 257-268.

[8]Fazio G, Chung S M, Staub J E. Comparative analysis of response to phenotypic and marker-assisted selection for multiple ateral branching in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2003, 107(5): 875-883.

[9]Wenzel G, KennardW C, HaveyM J. Quantitative trait analysis of fruit quality in cucumber: QTL detection, confirmation, and comparison with mating-design variation. Theoretical and Applied Genetics, 1995, 91: 53-61.

[10]Dijkuizen A, Staub J E. QTL conditioning yield and fruit quality traits in cucumber (Cucumis sativus L.): Effects of environment and genetic background. Journal of New Seeds, 2002, 4: 1-30.

[11]孙洪涛, 秦智伟, 周秀艳, 武涛, 潘丹丹. 黄瓜果实横径的遗传分析及分子标记. 中国农学通报,2010, 26(20): 38-42.

Sun H T, Qin Z W, Zhou X Y, Wu T, Pan D D. Genetic analysis and molecular localization of the fruit diameter in cucumber. Chinese Agricultural Science Bulletin, 2010, 26(20): 38-42. (in Chinese)

[12]陈青君, 张海英, 王永健, 李婉钰, 张峰, 毛爱军, 程继鸿, 陈明 远. 温室黄瓜产量相关农艺性状 QTLs的定位. 中国农业科学, 2010, 43(1): 112-122.

Chen Q J, Zhang H Y, Wang Y J, Li W Y, Zhang F, Mao A J, Cheng J H, Chen M Y. Mapping and analyzing QTLs of yield-associated agronomic traits of greenhouse cucumbers. Scientia Agricultura Sinica, 2010, 43(1): 112-122. (in Chinese)

[13]赵咫云. 黄瓜果柄性状的QTL定位[D]. 哈尔滨: 东北农业大学, 2006.

Zhao Z Y. QTL mapping for tedicel genein in cucumber[D]. Harbin: Northeast Agricultural University, 2006. (in Chinese)

[14]赵鹏. 黄瓜瓜把长度的遗传分析及其QTL定位研究[D]. 哈尔滨: 东北农业大学, 2011.

Zhao P. Genetic analysis of carpopodium length in cucumber and identification of its quantative trait loci[D]. Harbin: Northeast Agricultural University, 2011. (in Chinese)

[15]王桂玲, 秦智伟, 周秀艳, 赵咫云. 黄瓜瓜把长度QTL定位的研 究. 园艺学报, 2008, 35(4): 543-546.

Wang G L, Qin Z W, Zhou X Y, Zhao Z Y. Mapping quantitative trait loci influencing cucumber length using simple sequence repeat markers. Acta Horticulturae Sinica, 2008, 35(4): 543-546. (in Chinese)

[16]蒋苏, 袁晓君, 潘俊松, 何欢乐, 蔡润. 利用重组自交系群体对黄瓜侧枝相关性状进行QTL定位分析. 中国科学: C辑, 2008, 38(10): 982-990.

Jiang S, Yuan X J, Pan J S, He H L, Cai R. QTL mapping and analysis for lateral branch associated trait of cucumber using an RIL population. Science in China: Series C, 2008, 38(10): 982-990. (in Chinese)

[17]薄凯亮, 沈佳, 钱春桃, 宋慧, 陈劲枫. ‘北京截头’×西双版纳黄瓜重组自交系群体重要农艺性状的遗传分析. 南京农业大学学报, 2011, 34(3): 20-24.

Bo K L, Shen J, Qian C T, Song H, Chen J F. Genetic analysis of the important agronomic traits on 'Beijingjietou' × Xishuangbanna cucumber recombinant inbred lines. Journal of Nanjing Agricultural University, 2011, 34(3): 20-24. (in Chinese)

[18]Ren Y, Zhang Z, Liu J, Staub J E, Han Y, Cheng Z, Li X, Lu J, Miao H, Kang H. An integrated genetic and cytogenetic map of the cucumber genome. PloS One, 2009, 4(6): 5795.

[19]Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 1949, 24(1): 1.

[20]李锡香, 朱德蔚, 杜永臣, 沈镝. 黄瓜种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005.

Li X X, Zhu D W, Du Y C, Shen D. Descriptors and Data Standard for Cucumber (Cucumis sativus L.). Beijing: China Agriculture Press, 2005. (in Chinese)

[21]Miao H, Zhang S P, Wang X W, Zhang Z H, Li M, Mu S Q, Cheng Z C, Zhang R W, Huang S W, Xie B Y, Fang Z Y, Zhang Z X, Weng Y Q. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica, 2011, 182: 167-176.

[22]Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309(5735): 741-745.

[23]Clark R M, Wagler T N, Quijada P, Doebley J. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nature Genetics, 2006, 38(5): 594-597.

[24]Mibus H, Tatlioglu T, Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2004, 109(8): 1669-1676.

[25]刘道宏. 植物叶片的衰老. 植物生理学通讯, 1983, 2: 14-19.

Liu D H. Plant leaf senescence. Plant Physiology Communications, 1983, 2: 14-19. (in Chinese)

[26]Takai T, Kondo M, Yano M, Yamamoto T. A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. Rice, 2010, 3(2/3): 172-180.

[27]崔世友, 喻德跃. 大豆不同生育时期叶绿素含量QTL的定位及其与产量的关联分析. 作物学报, 2007, 33(5): 744-750.

Cui S Y, Yu D Y. QTL mapping of chlorophyll conten at various growing atages and its relationship with yield in soybean (Glycine mas (L.) Merr.). Acta Agronomica Sinica, 2007, 33(5): 744-750. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[4] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[5] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[6] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[7] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[8] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[9] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[10] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[11] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[12] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[13] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[14] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[15] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!