Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (24): 5081-5088.doi: 10.3864/j.issn.0578-1752.2013.24.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Main, Environmentally Interacted and Epistatic QTL for Seed Shape Traits in Soybean

 LIANG  Hui-Zhen-1, YU  Yong-Liang-1, YANG  Hong-Qi-1, ZHANG  Hai-Yang-1, DONG  Wei-1, DU  Hua-1, CUI  Wei-Wen-1, LIU  Xue-Yi-2, FANG  Xuan-Jun-3   

  1. 1.Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002;
    2.Economical Crops Institute, Shanxi Academy of Agricultural Sciences, Fenyang 032200, Shanxi;
    3.Hainan Institute of Tropical Agriculture Resources, Sanya 572025, Hainan
  • Received:2013-07-24 Online:2013-12-16 Published:2013-09-30

Abstract: 【Objective】In this study, the mixed linear model method was used to identify the main-effect, environmentally interacted and epistatic quantitative trait loci (QTLs) for seed shape traits in soybean.【Method】A total of 447 recombinant inbred lines (RILs) derived from a cross of Jindou 23 (cultivar, female parent) and ZDD2315 (semi-wild, male parent) were scanned by 232 SSR markers and measured for the above traits in 2010 to 2012. The marker information was used to construct linkage groups. All the phenotypic values along with marker and linkage-group information were used to detect all kinds of QTLs for the above traits.【Result】 Seven QTLs for seed length, seed width, seed thickness, seed length-to-width ratio, seed length-to-thickness ratio and seed width-to-thickness ratio, were mapped and placed on linkage groups D2, C2, J_2 and O. Positive additive effects of QTLs for seed length, seed length-to-thickness ratio and seed width-to-thickness ratio were observed and their elite alleles were derived from Jindou 23. Three pairs of additive × additive epistasis and their interactions with environment for seed width, seed width-to-thickness ratio were detected.【Conclusion】The main-effect, epistatic and environmentally interacted QTLs have the biggest, middle and smallest influences on the above traits, respectively.

Key words: soybean , seed shape trait , QTL and environment interaction , epistasis , mixed linear model

[1]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theoretical and Applied Genetics, 2004, 109: 122-128.

[2]Boerma H R, Specht J E. Soybeans: Improvement, Production and Uses(3rd ed). Madison, Wisconsin, USA: SSSA Publishers, 2004: 303-396.

[3]Wilson D O. Storage of orthodox seeds//Basra A S ed. Seed Quality: Basic Mechanisms, Agricultural Implications. New York: Food Products Press, 1995: 173-208.

[4]来永才, 李炜, 王庆祥, 李霞辉, 齐宁, 林红. 黑龙江省野生大豆高异黄酮新种质创新利用Ⅰ.异黄酮含量及与籽粒相关性状的分析. 大豆科学, 2006, 25(4): 414-416.

Lai Y C, Li W, Wang Q X, Li X H, Qi N, Lin H. Innovation and utilization of new high isoflavone resource of wild soybean in Heilongjiang Province: I. Analysis of isoflavone content and relevant of characters. Soybean Science, 2006, 25(4): 414-416. (in Chinese)

[5]Rabiei B, Valizadeh M, Ghareyazie B, Moghaddam M, Ali A J. Identification of QTLs for rice grain size and shape of Iranian cultivars using SSR markers. Euphytica, 2004, 137: 325-332.

[6]Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Thierry B, Valot B, Davanture M, Tercé-Laforgue T, Quilleré I, Coque M, Gallais A, Gonzalez-Moro M, Bethencourt L, Habash D Z, Lea P J, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards K J, Hirel B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. The Plant Cell, 2006, 18: 3252-3274.

[7]Gegas V C, Nida A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan J H, Snape J W. A genetic framework for grain size and shape variation in wheat. The Plant Cell, 2010, 22: 1046-1056.

[8]宫李辉, 高振宇, 马伯军, 钱前. 水稻粒形遗传的研究进展. 植物学报, 2011, 46(6): 597-605.

Gong L H, Gao Z Y, Ma B J, Qian Q. Progress of genetic research on grain shape on rice. Chinese Bulletin of Botany, 2011, 46(6): 597-605. (in Chinese)

[9]Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of Science of the USA, 2010, 107: 19579-19584.

[10]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39: 623-630.

[11]Wan X Y, Weng J F, Zhai H Q, Wang J, Lei C, Liu X, Guo T, Jiang  L, Su N, Wan J. Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hot spot region on chromosome 5. Genetics, 2008, 179: 2239-2252.

[12]Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 2008, 40: 1023-1028.

[13]Cober E R, Voldeng H D, Fregeau-Reid J A. Heritability of seed shape and seed size in soybean. Crop Science, 1997, 37: 1767-1769.

[14]Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research, 2008, 18: 1199-1209.

[15]Salas P, Oyarzo-Llaipen J C, Wang D, Chase K, Mansur L. Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max L. Merr.). Theoretical and Applied Genetics, 2006, 113: 1459-1466.

[16]Hu Z B, Zhang H R, Kan G Z, Ma D Y, Zhang D, Shi G X, Hong D L, Zhang G Z, Yu D Y. Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr.). Genetica, 2013, 141: 247-254.

[17]Niu Y, Xu Y, Liu X F, Yang S X, Wei S P, Xie F T, Zhang Y M. Association mapping for seed size and shape traits in soybean cultivars. Molecular Breeding, 2013, 31:785-794.

[18]Xu Y, Li H N, Li G J, Wang X, Cheng L G, Zhang Y M. Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.). Theoretical and Applied Genetics, 2011, 122: 581-594.

[19]梁慧珍, 李卫东, 王辉, 方宣钧. 大豆粒形性状的遗传效应分析. 遗传学报, 2005, 32(11): 1199-1204.

Liang H Z, Li W D, Wang H, Fang X J. Genetic effects on seed traits in soybean. Acta Genetica Sinica, 2005, 32(11): 1199-1204. (in Chinese)

[20]梁慧珍, 王树峰, 余永亮, 王庭峰, 巩鹏涛, 方宣钧, 刘学义, 赵双进, 张孟臣, 李卫东. 6种大豆粒形性状的QTL定位. 河南农业科学, 2008, 45(9): 54-60.

Liang H J, Wang S F, Yu Y L, Wang T F, Gong P T, Fang X J, Liu X Y, Zhao S J, Zhang M C, Li W D. Mapping quantitative trait loci for six seed shape traits in soybean. Henan Agricultura Science, 2008, 45(9): 54-60. (in Chinese)

[21]梁慧珍, 余永亮, 杨红旗, 张海洋, 董薇, 李彩云, 巩鹏涛, 刘学义, 方宣钧. 不同环境下大豆荚粒性状的遗传与QTL分析. 中国农业科学, 2012, 45(13): 2568-2579.

Liang H Z, Yu Y L, Yang H Q, Zhang H Y, Dong W, Li C Y, Gong P T, Liu X Y, Fang X J. Genetic analysis and QTL mapping of pod-seed traits in soybean under different environments. Scientia Agricultura Sinica, 2012, 45(13): 2568-2579. (in Chinese)

[22]Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theoretical and Applied Genetics, 2005, 110: 1268-1274.

[23]Tang Q Y, Zhang C X. Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Science, doi: 2012, 10.1111/ j.1744-7917.2012.01519.x

[24]王珍. 大豆SSR遗传图谱构建及重要农艺性状QTL分析[D]. 南宁: 广西大学, 2004.

Wang Z. Construction of soybean SSR based map and QTL analysis important agronomic traits [D]. Nanning: Guangxi University, 2004. (in Chinese)

[25]梁慧珍. 大豆子粒性状的遗传及QTL分析[D]. 西安: 西北农林科技大学, 2006.

Liang H Z. Genetic analysis and QTL mapping of seed traits in soybean [Glycine max (L.) Merr] [D]. Xi'an: Northwest A&F University, 2006. (in Chinese)

[26]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14: 11-14.

[27]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.0, Department of Statistics, North Carolina State University, Raleigh, NC, 2001-2004 (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

[28]闫宁, 谢尚潜, 耿青春, 徐宇, 李广军, 刘兵, 汪霞, 李其刚, 章元明. 利用Bayes分层广义线性模型剖析大豆籽粒性状的遗传基础. 作物学报, 2013, 39(2): 258-268.

Yan N, Xie S Q, Geng Q C, Xu Y, Li G J, Liu B, Wang X, Li Q G, Zhang Y M. Genetic basics of seed traits in soybean with Bayes hierarchical generalized linear model method. Acta Agronomica Sinica, 2013, 39(2): 258-268. (in Chinese)

[29]牛远, 谢芳腾, 布素红, 谢尚潜, 韩世凤, 耿青, 刘兵, 章元明. 大豆粒形性状QTL的精细定位. 作物学报, 2013, 39(4): 609-616.

Niu Y, Xie F T, Bu S H, Xie S Q, Han S F, Geng Q, Liu B, Zhang Y M. Fine mapping of quantitative trait loci for seed shape traits in soybean. Acta Agronomica Sinica, 2013, 39(4): 609-616. (in Chinese)

[30]Hagiwara W E, Onish K, Takamure I, Sano Y. Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica, 2006, 150(1/2): 27-35.

[31]雷东阳, 谢放鸣, 徐建龙, 陈立云. 稻米粒形和垩白度的QTL定位和上位性分析. 中国水稻科学, 2008, 22(3): 255-260.

Lei D Y, Xie F M, Xu J L, Chen L Y. QTLs mapping and epis tasis analysis for grain shape and chalkiness degree of rice. Chinese Journal of Rice Science, 2008, 22(3): 255-260. (in Chinese)

[32]Zhang Z H, Yu S B, Yu T, Huang Z, Zhu Y G. Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.). Field Crops Research, 2005, 91(2/3): 161-170.

[33]Zhuang J Y, Lin H X, Lu J, Qian H R, Hittamani S, Huang N, Zheng K L. Analysis of QTL×environment interaction for yield components and plant height in rice. Theoretical and Applied Genetics, 1997, 95(5/6): 799-808.

[34]江良荣, 王伟, 黄建勋, 黄荣裕, 郑景生, 黄育民, 王侯聪. 水稻粒形性状的上位性和QE 互作效应分析. 分子植物育种, 2009, 7(4): 690-698.

Jiang L R, Wang W, Huang J X, Huang R Y, Zheng J S, Huang Y M, Wang H C. Analysis of epistatic and QE interaction effects of QTLs for grain shape in rice. Molecular Plant Breeding, 2009, 7(4): 690-698. (in Chinese)

[35]Veldboom L R, Lee M. Molecular-marker-facilitated studies of morphological traits in maize: Determination of QTLs for grain yield and yield components. Theoretical and Applied Genetics, 1994, 89: 451-458.
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[5] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[6] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[7] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[8] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[9] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[10] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[11] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[12] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[13] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
[14] ZENG ShiXiao,NIAN Hai,CHENG YanBo,MA QiBin,WANG Liang. Effects of Different Soybean Varieties on the Yield and Quality of Yuba [J]. Scientia Agricultura Sinica, 2021, 54(2): 449-458.
[15] WANG ShiYa,ZHENG DianFeng,XIANG HongTao,FENG NaiJie,LIU Ya,LIU MeiLing,JIN Dan,MOU BaoMin. Damage of AsA-GSH Cycle of Soybean Leaves Under Waterlogging Stress at Initial Flowing Stage and the Mitigation Effect of Uniconazole [J]. Scientia Agricultura Sinica, 2021, 54(2): 271-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!