Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (22): 4646-4656.doi: 10.3864/j.issn.0578-1752.2013.22.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of Soybean Maturity SSSLs and QTL Mapping Based on Meta-Analysis

 CHE  Jing-Yu-12, LIU  Chun-Yan-3, JIANG  Hong-Wei-13, HAN  Xue-3, MAO  Yan-Zhi-12, XIN  Da-Wei-1, CHEN  Qing-Shan-1, HU  Guo-Hua-3   

  1. 1.Agriculture College, Northeast Agriculture University, Harbin 150030;
    2.Keshan Branch of Heilongjiang Academy of Agriculture Science, Keshan 161606, Heilongjiang
    3.Crop Research and Breeding Center of Land-Reclamation, Harbin 150090
  • Received:2013-05-26 Online:2013-11-15 Published:2013-09-12

Abstract: 【Objective】Soybean maturity is a quantitative trait controlled by multiple genes, which is a key trait affecting soybean yield and adaptability. The heredity of soybean maturity with single segment substitution lines (SSSLs) was studied and the main effect QTLs of soybean maturity were identified. 【Method】 Fifteen sets of backcross introgression lines were constructed by using Hongfeng 11 as recurrent parent and 15 soybean varieties as the donor parent, respectively. Based on the results of meta-analysis of soybean maturity (R8), the SSR markers from real QTL interval were used to identify SSSLs. Using the method of figure genotype calculated the length of substitution fragment, using the statistical software SPSS analyzed the main effect QTLs of soybean maturity. 【Result】Sixteen substitution fragments were detected on linkage group C2 and L. Among them, 7 substitution fragments were detected on linkage group C2, substitution fragment length was 9.8cM in total. Nine substitution fragments were detected on linkage group L, and the substitution fragment length was 37.212 cM in total. Previous researches show that Sat_010 and Satt156 are the specific markers for E4/e4 on linkage group L, and 5 QTLs(Sat_238, Satt460, Sct_010, Satt166, and Sat_113 ) were identified on the maturity in one-way. Single fragment Satt460 could shorten the growth period of soybean, and single fragments Sat_238, Sct_010 and Sat_113 could delay soybean growth stages. Sat_238 Satt460, Sct_010, Satt166, and Sat_113 were identified to be the important SSR markers on soybean maturity. 【Conclusion】Five markers from meta-analysis were identified as the important markers on soybean maturity. The single fragment Satt460 could shorten the soybean growth period, single segments Sat_238, Sct_010, and Sat_113 could delay soybean growth period.

Key words: soybean , maturity , meta-analysis , single segment substitution lines (SSSLs) , SSR

[1]Paterson A H, Deverna J W, Lanini B, Tanksley S D. Fine map-ping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics, 1990, 124: 735-742.

[2]Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M. Fine map-ping of quantitative trait loci Hd1, Hd2, and Hd3, controlling heading date of rice, as single mendelian factors. Theoretical and Applied Genetics, 1998, 97: 37-44.

[3]Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y,  Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene, CONSTANS. The Plant Cell, 2000, 12: 2473-2483.

[4]Young N D, Tksley S D. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theoretical and Applied Genetics,1989, 77(l): 95-101.

[5]Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127: 181-197.

[6]刘冠明, 李文涛, 曾瑞珍, 张泽民, 张桂权. 水稻单片段代换系代换片段的QTL鉴定. 遗传学报,  2004, 31(12): 1395-1400.

Liu G M, Li W T, Zeng R Z, Zhang Z M, Zhang G Q. Identification of QTLs on substituted segments in single segment substitution lines of rice,  Acta Genetica Sinica,  2004, 31(12): 1395-1400. (in Chinese)

[7]李生强, 崔国昆, 关成冉, 王俊, 梁国华. 基于水稻单片段代换系的粒形QTL定位. 中国水稻科学, 2011, 25(2): 163-168.

Li S Q, Cui G K, Guan C R, Wang J, Liang G H. QTL detection for rice grain shape using chromosome single segment substitution lines. Chinese Journal of Rice Science, 2011, 25(2): 163-168. (in Chinese)

[8]刘冠明, 李文涛, 曾瑞珍, 张桂权. 水稻亚种间单片段代换系的建立. 中国水稻科学, 2003, 17(3): 201-204.

Liu G M, Li W T, Zeng R Z, Zhang G Q. Development of single segment substitution lines (SSSLs) of subspecies in rice. Chinese Journal of Rice Science, 2003, 17(3): 201-204. (in Chinese)

[9]Wissuwa M, Wegner J, Ae N, Yano M. Substitution mapping of Pup1: A major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theoretical and Applied Genetics , 2002, 105: 890-897.

[10]Woodworth C M. Inheritance of growth habit, pod color, and flower color in soybeans. American Society of Agronomy, 1923, 15: 481-495.

[11]Keim P, Diemb W, Olson T C, Shoemaker R C. RFLP mapping in soybean: Association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735-742.

[12]McBlain B, Bernard R L. A new gene affecting the time of flowering and maturity in soybean. Journal of Heredity, 1987, 78: 160-162.

[13]Bernard R L. Two genes for time of flowering and maturity in soybeans. Crop Science, 1971, 11: 242-244.

[14]BuzzellR I. Inheritance of a soybean flowering response to fluorescent-daylength conditions. Canadian Journal  of  Genetics and  Cytology, 1971, 13: 703-707.

[15]Buzzell R I, Voldeng H D. Inheritance of insensitivity to long daylength. Soybean Genetics Newsletter, 1980, 7: 26-29.

[16]Bonato E R, Vello N A. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genetics and  Molecular  Biology, 1999, 22: 229-232.

[17]Cober E R, Voldeng H D. A new soybean maturity and photoperiod- sensitivity locus linked to E1 and T. Crop Science, 2001, 41: 698-701.

[18]Ray J D, Hinson K, Manjono J E B, Malo M F. Genetic control of a long-juvenile trait in soybean. Crop Science, 1995, 35: 1001-1006.

[19]Xu M L, Xu Z H, Liu B H,Kong F J, Tsubokura Y, Watanabe S, Xia Z H, Harada K, KanazawaA, Yamada T, Abe J. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biology, 2013, 13(1): 91-105.

[20]Liu B H, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome a gene. Genetics, 2008, 180: 995-1007.

[21]Harada K, Watanabe S, Xia Z J, Tsubokura Y, Yamanaka N, Anai T. Positional cloning of the responsible genes for maturity loci E1, E2 and E3 in soybean. Soybean-Genetics and Novel Techniques for Yield Enhancement, 2011: 52-76.

[22]Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 2009, 182(4): 1252-1262.

[23]王英, 韩天富. 大豆生育期性状的遗传及QTL定位研究. 安徽农业科学, 2008, 36(4): 1391-1393.

Wang Y, Han T F. Study on the heredity and QTL mapping of growth period traits in soybean. Journal of Anhui Agronomica Sinica, 2008, 36(4): 1391-1393. (in Chinese)

[24]赵永锋, 陈景堂, 祝丽英, 贾晓艳, 黄亚群, 刘志增. 玉米染色体单片段导入系的构建与应用研究现状. 玉米科学, 2006, 14(3): 17-19.

Zhao Y F, Chen J T, Zhu L Y, Jia X Y, Huang Y Q, Liu Z Z. Status of research on application and establishment of SSILs in maize. Journal of Maize Sciences, 2006, 14(3): 17-19. (in Chinese)

[25]吴琼, 齐照明, 刘春燕, 胡国华, 陈庆山. 基于元分析的大豆生育期QTL的整合. 作物学报, 2009, 35(8): 1418-1424.

Wu Q, Qi Z M, Liu C Y, Hu G H, Chen Q S. An integrated QTL map of growth stage in soybean [Glycine max(L.)Merr.]: Constructed through meta-analysis. Acta Agronomica Sinica, 2009, 35(8): 1418-1424. (in Chinese)

[26]Fehr W R, Caviness C E. Stages of soybean development. Agriculture and Home Economics Experimenistation, Iowa State University. Ames, IA 1977, Special report 80: 1-11.

[27]Soller M, Brody T, Genizi A. On the power of experimental design for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theoretical and Applied Genetics, 1976, 47: 35-39.

[28]刘伟远. Meta-分析的研究进展. 新疆医科大学学报, 2003, 26(5): 512-514.

Liu W Y. Meta-analysis research progress. Journal of Xinjiang Medical University, 2003, 26(5): 512-514. (in Chinese)

[29]魏金鹏, 鄂文弟, 刘章雄, 关荣霞, 常汝镇, 邱丽娟. 大豆[Glycine max (L.)]成熟期近等基因系导入片段分析. 作物学报, 2010, 36(2): 233-241.

Wei J P, E W D, Liu Z X, Guan R X, Chang R Z, Qiu L J. Analysis of introgressed segments in near-isogenic lines carrying soybean maturity genes. Acta Agronomica Sinica, 2010, 36(2): 233-241. (in Chinese)

[30]Molnar S J, Rai S, Charette M, Cober E R. Simple sequence repeat (SSR) markers linked to E1, E3, E4, and E7 maturity genes in soybean. Genome, 2003, 46: 1024-1036.

[31]宁慧霞, 李英慧, 刘章雄, 常汝镇, 关荣霞, 罗淑萍, 邱丽娟. 大豆品种成熟期基因型推测的研究. 作物学报, 2008, 34(3): 382-388.

Ning H X, Li Y H, Liu Z X, Chang R Z, Guan R X, Luo S P, Qiu L J. Deducing maturity genotype of the chinese soybean varieties. Acta Agronomica Sinica, 2008, 34(3): 382-388. (in Chinese)

[32]张丽霞, 刘丕庆, 刘学义. 染色体单片段代换系的构建及应用于QTL精细定位. 分子植物育种, 2004, 2(3): 743-746.

Zhang L X, Liu P Q, Liu X Y. Construction of chromosome single segment subsititution lines and QTL fine mapping. Molecular Plant Breeding,  2004, 2(3): 743-746. (in Chinese)

[33]李文涛, 曾瑞珍, 张泽民, 张桂权. F1花粉不育性近等基因系导入片段的分析. 中国水稻科学, 2003, 17(2): 95-99.

Li W T, Zeng R Z, Zhang Z M, Zhang G Q. Analysis of introgressed segments in near-isogenic lines for F1 pollen sterility in rice. Chinese Journal of Rice Science, 2003, 17(2): 95-99. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[3] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[4] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[5] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[8] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[9] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[10] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[11] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[12] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[13] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[14] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[15] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!