Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (19): 4173-4178.doi: 10.3864/j.issn.0578-1752.2013.19.023

• RESEARCH NOTES • Previous Articles    

Research on the Inhibitory Mechanism of Imazethapyr to Nodule Nitrogenase Activity in Soybean

 LI  Hui, DING  Wei, JIANG  Jun-Feng, WANG  Huai-Biao   

  1. Department of Plant Protection, Agronomy College, Northeast Agricultural University, Harbin 150030
  • Received:2013-03-25 Online:2013-10-01 Published:2013-07-18

Abstract: 【Objective】The objective of this study is to discover the key inhibitory mechanism of imazethapyr to nodule nitrogenase activity in soybean for providing methods to resolve the toxity on nodule nitrogen fixation after imazethapyr being over used.【Method】A field experiment was conducted to determine the relationship between inhibited nodule nitrogenase activity and leghemoglobin content, ammonia content in nodule rhizobium and in nodule cytoplasm after imazethapyr pre-emergence used.【Result】Nodule nitrogenase activity was inhibited more pronounced during 21 days after treatment (DAT). One the 7 and 14 DAT, the inhibited ratio of leghemoglobin content peaked 30.52% and 35.41%, respectively at 112.5 and 25.0 g a.i./hm2 imazethapyr and then recovered to the levels of non-treated plants on the 21 and 28 DAT, respectively. The inhibited ratio of ammonia content in nodule rhizobium peaked 35.33% and 48.96%, respectively, on the 14 DAT and recovered to the levels of non-treated plants on the 28 DAT. Ammonia content in nodule cytoplasm increased more pronounced and recovered to the normal levels respectively on the 21 and 28 DAT.【Conclusion】It is an important reason that leghemoglobin content significantly decreased after imazethapyr pre-emergence applied leads to nodule nitrogenase activity inhibited, and ammonia accumulation in nodule cytoplasm also causes feedback inhibition to nodule nitrogenase.

Key words: imazethapyr , soybean , nodule nitrogenase activity , leghemoglobin , ammonia content

[1]陈华癸, 樊庆笙. 微生物学. 北京: 中国农业出版社, 1986.

Chen H G, Fan Q S. Microbiology Science. Beijing: China Agriculture Press, 1986. (in Chinese)

[2]Vest G, Weber D F, Sloger C. Nodulation and nitrogen fixation//Caldwell B E, 1973: 353-390.

[3]Haper J E. Soil and symbiotic nitrogen requirements for optimum soybean production. Crop Sciences, 1974, 14(2): 255-260.

[4]Scarponi L, Alla M M N, Martinetti L. Consequences on nitrogen metabolism in soybean (Glycine max L.) as a result of imazethapyr action on acetohydroxy acid synthase. Journal of Agricultural and Food Chemistry, 1995, 43(3): 809-814.

[5]吴文君. 农药学原理. 北京: 中国农业出版社, 2000.

Wu W J. Pesticide Science. Beijing: China Agriculture Press, 2000. (in Chinese)

[6]苏少泉. 除草剂作用靶标与新品种创制. 北京: 化学工业出版社, 2001.

Shu S Q. Herbicides Action Target and Development of New Chemicals. Beijing: Chemical Industry Press, 2001. (in Chinese)

[7]Senseman S A. Herbicide Handbook. USA 10th Street Lawrence, KS 66044-8897: Weed Science Society of America 810 E, 2007: 89-90.

[8]Moorman T B. A review of pesticides effects on microorganisms and microbial processes related to soil fertility. Journal of Production Agriculture, 1989, 2(1): 14-23.

[9]丁伟. 除草剂对大豆生产的安全性评价. 北京: 中国农业出版社, 2010.   

Ding W. Safety Assessment of Herbicides on Soybean Production. Beijing: China Agriculture Press, 2010. (in Chinese)

[10]Gupta V, Roget D, Davoren B. Nitrogen fixation by grain legumes in the low rainfall Mallee soils-potential effects of herbicide application. Grainzone Research, Grain Research and Development Corporation. 2002, http://www.grdc.com.Au/growers/res_upd/south/s02/ru_s_ adelaide_2002_p10.htm.

[11]Sprout S L, Nelson L M, Germida J J. Influence of metribuzin on the Rhizobium leguminosarum-lentil (Lens culinaris) symbiosis. Canadian Journal of Microbiology, 1992, 38(4): 343-349.

[12]Min H, Ye Y F, Chen Z Y, Wu W X, Du Y F. Effects of butachlor on microbial populations and enzyme activities in paddy soil. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 2001, 36(5): 581-595.

[13]Min H, Ye Y F, Chen Z Y, Wu W X, Du Y F. Effects of butachlor on microbial enzyme activities in paddy soil. Journal of Environmental Sciences, 2002, 14(3): 413-417.

[14]Zabalza A, Orcaray L, Gaston S, Royuela M. Carbohydrate accumulation in leaves of plants treated with the herbicide chlorsulfuron or imazethapyr is due to a decrease in sink strength. Journal of Agricultural and Food Chemistry, 2004, 52(25): 7601-7606.

[15]Khan M S, Zaidi A, Aamil M. Influence of herbicides on Chickpea-Mesorrhizobium symbiosis. Agronomie, 2004, 24(3): 123-127.

[16]de María N, Becerril J M, García-Plazaola J I, Hernández A, de Felipe M R, Fernández-Pascual M. New insights on glyphosate mode of action in nodular metabolism: Role of shikimate accumulation. Journal of Agricultural and Food Chemistry, 2006, 54(7): 2621-2628.

[17]丁伟, 杨隆华, 程茁, 戴航宇. 氟磺胺草醚对大豆根瘤固氮酶活性及光合速率的影响. 作物杂志, 2010(4): 81-84.

Ding W, Yang L H, Cheng Z, Dai H Y. Effects of fomesafen on nodule nitrogenase activity and net photosynthesis rate in soybean. Crops, 2010(4): 81-84. (in Chinese)

[18]程茁, 杨隆华, 丁伟, 曹丽娟. 氟磺胺草醚对大豆根瘤固氮和蔗糖代谢的影响. 作物杂志, 2011(6): 24-27.

Cheng Z, Yang L H, Ding W, Cao L J. Effects of fomesafen on nodule nitrogen fixation and relationship with sucrose metabolism in soybean. Crops, 2011(6): 24-27. (in Chinese)

[19]Vienneau D M, Sullivan C A, House S K, Stratton G W. Effects of the herbicide hexazinone on nutrient cycling in a low-pH blueberry soil. Environmental Toxicology, 2004, 19(2): 115-122.

[20]Zawoznik M S, Tomaro M L. Effect of chlorimuron-ethyl on Bradyrhizobium japonicum and its symbiosis with soybean. Pest Management Science, 2005, 61(10): 1003-1008.

[21]Zablotowicz R M, Reddy K N. Impact of glyphosate on the Bradyrhizobium japonicum symbiosis with glyphosate-resistant transgenic soybean. Journal of Environmental Quality, 2004, 33(3): 825-831.

[22]Ding W, Reddy K N, Zablotowicz R M, Bellaloui N, Bruns H A. Physiological responses of glyphosate-resistant and glyphosate- sensitive soybean to aminomethylphosphonic acid, a metabolite of glyphosate. Chemosphere, 2011, 83(4): 593-598.

[23]丁伟, 曹丽娟, 程茁. 咪唑乙烟酸对大豆根瘤固氮酶和硝酸还原酶活性的影响. 中国农业科学, 2010, 43(20): 4192-4197.

Ding W, Cao L J, Cheng Z. Effect of imazethapyr on nodule nitrogenase and nitrate reductase activity in soybean. Scientia Agricultura Sinica, 2010, 43(20): 4192-4197. (in Chinese)

[24]Zabalza A, Gaston S, Ribas-Carbó M, Orcaray L, Igal M, Royuela M. Nitrogen assimilation studies using 15N in soybean plants treated with imazethapyr, an inhibitor of branched-chain amino acid biosynthesis. Journal of Agricultural and Food Chemistry, 2006, 54(23): 8818-8823.

[25]宋鸿遇. 植物生理学实验技术手册. 上海: 科学技术出版社, 1985: 311-312.

Song H Y. Experiment Technology of Plant Physiology. Shanghai: Science and Technology Publish Corporation, 1985: 311-312. (in Chinese)

[26]应贤强. 茚三酮比色法测定水中微量氨含量. 化肥工业, 2011, 38(3): 27-30.

Ying X Q. Determination of trace ammonia content in water by ninhydrin colorimetry. Chemical Fertilizer Industry, 2011, 38(3): 27-30. (in Chinese)

[27]Bergersen F J, Turner G L. Leghaemoglobin and the supply of O2 to nitrogen-fixing root nodule bacteroids: presence of two oxidase systems and ATP production at low free O2 concentration. Journal of General Microbiology, 1975, 91(2): 345-354.

[28]Ding W, Reddy K N, Krutz L J, Thomson S J, Huang Y B, Zablotowicz R M. Biological response of soybean and cotton to aerial glyphosate drift. Journal of Crop Improvement, 2011, 25(3): 291-302.

[29]王利平, 王金信, 孙艾蕊, 鲁梅, 刘淑华. 4种除草剂对紫花苜蓿-根瘤共生固氮的影响. 农业环境科学学报, 2006, 25(增刊): 114-117.

Wang L P, Wang J X, Sun A L, Lu M, Liu S H. Influence of four herbicides on Rhizobium-alfalfa symbiotic nitrogen-fixation. Journal of Agro-Environment Science, 2006, 25(Suppl.): 114-117. (in Chinese)

[30]Mallik M A B, Tesfai K. Pesticide effect on soybean-rhizobia symbiosis. Plant and Soil, 1985, 85(1): 33-41.

[31]Reddy K N, Zablotowicz R M, Bellaloui N, Ding W. Glufosinate effects on nitrogen nutrition, growth, yield, and seed composition in glufosinate-resistant and glufosinate-sensitive soybean. International Journal of Agronomy, 2011: doi:10.1155/2011/109280.
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[5] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[6] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[7] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[8] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[9] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[10] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[11] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[12] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[13] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
[14] ZENG ShiXiao,NIAN Hai,CHENG YanBo,MA QiBin,WANG Liang. Effects of Different Soybean Varieties on the Yield and Quality of Yuba [J]. Scientia Agricultura Sinica, 2021, 54(2): 449-458.
[15] WANG ShiYa,ZHENG DianFeng,XIANG HongTao,FENG NaiJie,LIU Ya,LIU MeiLing,JIN Dan,MOU BaoMin. Damage of AsA-GSH Cycle of Soybean Leaves Under Waterlogging Stress at Initial Flowing Stage and the Mitigation Effect of Uniconazole [J]. Scientia Agricultura Sinica, 2021, 54(2): 271-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!