Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (14): 2902-2909.doi: 10.3864/j.issn.0578-1752.2013.14.006

• PLANT PROTECTION • Previous Articles     Next Articles

Advances in Research of Genetic Diversity and Pathogenome of Ralstonia solanacearum Species Complex

 XU  Jin, FENG  Jie   

  1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2013-05-02 Online:2013-07-15 Published:2013-05-24

Abstract: Bacterial wilt, caused by Ralstonia solanacearum, is one of the most devastating plant diseases worldwide. As a species complex, R. solanacearum strains are highly variable and adaptable as attested by worldwide distribution and a wide and expanding host range. A new phylotype classification scheme was proposed by Fegan and Prior to distinguish the genetic diversity within the R. solanacearum species complex. High genome complexity and plasticity of R. solanacearum is reflected by its great adaptation potential to different hosts and environments. This review includes recent advances in research of genetic diversity and pathogenome of R. solanacearm species complex.

Key words: Ralstonia solanacearum , genetic diversity , phylotype classification scheme , pathogenome

[1]Wicker E, Grassart L, Coranson-Beaudu R, Mian D, Guilbaud C, Fegan M, Prior P. Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential. Applied and Environmental Microbiology, 2007, 71(21): 6790-6801.

[2]Xu J, Pan Z C, Prior P. Xu J S, Zhang Z, Zhang H, Zhang L Q, He L Y, Feng J. Genetic diversity of Ralstonia solanacearum strains from China. European Journal of Plant Pathology, 2009, 125(4): 641-653.

[3]潘哲超, 徐进, 顾钢, 吴畏, 许景升, 陈顺辉, 冯洁. 福建及贵州等地烟草青枯菌系统发育分析. 植物保护, 2012, 38(1): 18-23.

Pan Z C, Xu J, Gu G, Wu W, Wu W, Xu J S, Chen S H, Feng J. Phylogeny of tobacco Ralstonia solanacearum strains from Fujian and Guizhou Provinces. Plant Protection, 2012, 38(1): 18-23. (in Chinese)

[4]Buddenhagen I, Sequeira L, Kelman A. Designation of races in Pseudomonas solanacearum. Phytopathology, 1962, 52(2): 726.

[5]Hayward A C. Characteristics of Pseudomonas solanacearum. Journal of Applied Microbiology, 1964, 27(2): 265-277.

[6]Hayward A C. Systematics and phylogeny of Pseudomonas solanacearum and related bacteria//Hayward A C, Hartman G L. Bacterial Wilt: The Disease and Its Causative Agent, Pseudomonas solanacearum. United Kingdom: CAB International, 1994: 123-135.

[7]He L Y, Sequeira L, Kelman A. Characteristics of strains of Pseudomonas solanacearum from China. Plant Disease, 1983, 67(12): 1357-1361.

[8]Gillings M R, Fahy P. Genomic fingerprinting: towards a unified view of the Pseudomonas solanacearum species complex//Hayward A C, Hartman G L. Bacterial Wilt: The Disease and Its Causative Agent, Pseudomonas solanacearum. Wallingford: CAB International, 1994: 95-112.

[9]Cook D, Barlow E, Sequeira L. Genetic diversity of Pseudomonas solanacearum: detection of restriction fragment polymorphisms with DNA probes that specify virulence and hypersensitive response. Molecular Plant-Microbe Interactions, 1989, 2(3): 113-121.

[10]Cook D, Sequeira L. Strain differentiation of Pseudomonas solanacearum by molecular genetic methods//Hayward A C, Hartman G L. Bacterial Wilt: The disease and Its Causative Agent, Pseudomonas solanacearum. United Kingdom: CAB International, 1994: 77-93.

[11]Fegan M, Taghavi M, Sly L I, Hayward A C. Phylogeny, diversity and molecular diagnostics of Ralstonia solanacearum//Prior P, Allen C, Elphinstone J. Bacterial Wilt Disease: Molecular and Ecological Aspects. Paris, France: INRA Editions, 1998: 19-33.

[12]Poussier S, Vandewalle P, Luisetti J. Genetic diversity of African and worldwide strains of Ralstonia solanacearum as determined by PCR-restriction fragment length polymorphism analysis of the hrp gene region. Applied and Environmental Microbiology, 1999, 65(5): 2184-2194.

[13]Prior P, Fegan M. Recent development in the phylogeny and classification of Ralstonia solanacearum. Acta Horticulturae, 2005, 695(2): 127-136.

[14]Prior P, Fegan M. Diversity and molecular detection of Ralstonia solanacearum race 2 strains by multiplex PCR//Allen C, Prior P, Hayward A C. Bacterial Wilt Disease and The Ralstonia solanacearum Species Complex. St. Paul, USA: APS Press, 2005: 405-414.

[15]Hayward A C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology, 1991, 29: 67-87.

[16]Xu J, Zheng H J, Liu L, Pan Z C, Prior P, Tang B, Xu J S, Zhang H, Tian Q, Zhang L Q, Feng J. Complete genome sequence of the plant pathogen Ralstonia solanacearum strain Po82. Journal of Bacteriology, 2011, 193(16): 4261-4262.

[17]Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus J C, Cattolico L, Chandler M, Choisne N, Claudel-Renard C, Cunnac S, Demange N, Gaspin C, Lavie M, Moisan A, Robert C, Saurin W, Schiex T, Siguier P, Thébault P, Whalen M, Wincker P, Levy M, Weissenbach J, Boucher C A. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature, 2002, 415: 497-502.

[18]Remenant B, Coupat-Goutaland B, Guidot A, Cellier G, Wicker E, Allen C, Fegan M, Pruvost O, Elbaz M, Calteau A, Salvignol G, Mornico D, Mangenot S, Barbe V, Médigue C, Prior P. Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence. BMC Genomics, 2010, 11: 379.

[19]Remenant B, de Cambiaire J C, Cellier G, Jacobs J M, Mangenot S, Barbe V, Lajus A, Vallent D, Medigue C, Fegan M, Allen C, Prior P. Ralstonia syzygii, the blood disease bacterium and some Asian R. solanacearum strains form a single genomic species despite divergent lifestyles. PLoS ONE, 2011, 6: e24356.

[20]Guidot A, Elbaz M,  Carrère S,  Siri M I,  Pianzzola M J,  Prior P, Boucher C. Specific genes from the potato brown rot strains of Ralstonia solanacearum and their potential use for strain detection. Phytopathology, 2009, 99(9): 1105-1112.

[21]Li Z, Wu S, Bai X, Liu Y, Lu J, Liu Y, Xiao B, Lu X, Fan L. Genome sequence of the tobacco bacterial wilt pathogen Ralstonia solanacearum. Journal of Bacteriology, 2011, 193(21): 6088-6089.

[22]Gabriel D W, Allen C, Schell M, Denny T P, Greenberg J T, Duan Y P, Flores-Cruz Z, Huang Q, Clifford J M, Presting G, González E T, Reddy J, Elphinstone J, Swanson J, Yao J, Mulholland V, Liu L, Farmerie W, Patnaikuni M, Balogh B, Norman D, Alvarez A, Castillo J A, Jones J, Saddler G, Walunas T, Zhukov A, Mikhailova N. Identification of open reading frames unique to a select agent: Ralstonia solanacearum race 3 biovar 2. Molecular Plant-Microbe Interactions, 2006, 19(1): 69-79.

[23]Guidot A, Prior P, Schoenfeld J, Carrere S, Genin S, Boucher C. Genomic structure and phylogeny of the plant pathogen Ralstonia solanacearum inferred from gene distribution analysis. Journal of Bacteriology, 2007, 189(2): 377-387.

[24]Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. The microbial pan-genome. Current Opinion in Genetics & Development, 2005, 15(6): 589-594.

[25]Bertolla F, Frostegard A, Brito B, Nesme X, Simonet P. During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material. Molecular Plant-Microbe Interactions, 1999, 12(5): 467-472.

[26]Guidot A, Coupat B, Fall S, Prior P, Bertolla F. Horizontal gene transfer between Ralstonia solanacearum strains detected by comparative genomic hybridization on microarrays. The ISME Journal, 2009, 3: 549-562.

[27]Nakamura Y, Itoh T, Matsuda H, Gojobori T. Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nature Genetics, 2004, 36: 760-766.

[28]Coupat-Goutaland B, Bernillon D, Guidot A, Prior P, Nesme X, Bertolla1 F. Ralstonia solanacearum virulence increased following large interstrain gene transfers by natural transformation. Molecular Plant-Microbe Interactions, 2011, 24(4): 497-505.

[29]Deslandes L, Olivier J, Peeters N, Feng D X, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(13): 8024-8029.

[30]Lavie M, Shillington E, Eguiluz C, Grimsley N, Boucher C. PopP1, a new member of the YopJ/AvrRxv family of type III effector proteins, acts as a host-specificity factor and modulates aggressiveness of Ralstonia solanacearum. Molecular Plant-Microbe Interactions, 2002, 15(10): 1058-1068.

[31]潘哲超. 植物青枯菌遗传多样性及致病力分化研究[D]. 北京: 中国农业科学院, 2010.

Pan Z C. Genetic diversity and pathogenicity variation of Ralstonia solanacearum[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese)

[32]Schell M A. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annual Review of Phytopathology, 2000, 38: 263-292.

[33]Hikichi Y, Yoshimochi T, Tsujimoto S, Shinohara R, Nakaho K, Kanda A, Kiba A, Ohnishi K. Global regulation of pathogenicity mechanism of Ralstonia solanacearum. Plant Biotechnology, 2007, 24(1): 149-154.

[34]Mole B M, Baltrus D A, Dangl J L, Grant S R. Global virulence regulation networks in phytopathogenic bacteria. TRENDS in Microbiology, 2007, 15(8): 363-371.

[35]Genin S, Denny T P. Pathogenomics of the Ralstonia solanacearum species complex. Annual Review of Phytopathology, 2012, 50: 67-89.

[36]Brumbley S M, Carney B F, Denny T P. Phenotype conversion in Pseudomonas solanacearum due to spontaneous inactivation of PhcA, a putative LysR transcriptional regulator. Journal of Bacteriology, 1993, 175(17): 5477-5487.

[37]Cunnac S, Occhialini A, Barberis P, Boucher C, Genin S. Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system. Molecular Microbiology, 2004, 53(1): 115-128.

[38]Cunnac S, Boucher C, Genin S. Characterization of the cis-acting regulatory element controlling HrpB-mediated activation of the type III secretion system and effector genes in Ralstonia solanacearum. Journal of Bacteriology, 2004, 186(8): 2309-2318.

[39]Occhialini A, Cunnac S, Reymond N, Genin S, Boucher C. Genome-wide analysis of gene expression in Ralstonia solanacearum reveals that the hrpB gene acts as a regulatory switch controlling multiple virulence pathways. Molecular Plant-Microbe Interactions, 2005, 18(9): 938-949.

[40]Carney B F, Denny T P. A cloned avirulence gene from Pseudomonas solanacearum determines incompatibility on Nicotiana tabacum at the host species level. Journal of Bacteriology, 1990, 172(9): 4836-4843.

[41]Jeong E L, Timmis J N. Novel insertion sequence elements associated with genetic heterogeneity and phenotype conversion in Ralstonia solanacearum. Jounal of Bacteriology, 2000, 182(16): 4673-4676.

[42]Lavie M, Seunes B, Prior P, Boucher C. Distribution and sequence analysis of a family of type III-dependent effectors correlate with the phylogeny of Ralstonia solanacearum strains. Molecular Plant-Microbe Interactions, 2004, 17(8): 931-940.

[43]Poueymiro M, Cunnac S, Barberis P, Deslandes L, Peeters N, Cazale-Noel A C, Boucher C, Genin S. Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host range specificity on tobacco. Molecular Plant-Microbe Interactions, 2009, 22(5): 538-550.

[44]Robertson A E, Wechter W P, Denny T P, Fortnum B A, Kluepfel D A. Relationship between avirulence gene (avrA) diversity in Ralstonia solanacearum and bacterial wilt incidence. Molecular Plant-Microbe Interactions, 2004, 17(12): 1376-1384.

[45]Angot A, Peeters N, Lechner E, Vailleau F, Baud C, Gentzbittel L, Sartorel E, Genschik P, Boucher C, Genin S. Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(39): 14620-14625.

[46]Angot A, Vergunst A, Genin S, Peeters N. Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems. PLoS Pathogens, 2007, 3: e3.

[47]Solé M, Popa C, Mith O, Sohn K H, Jones J D G, Deslandes L, Valls M. The awr gene family encodes a novel class of Ralstonia solanacearum type III effectors displaying virulence and avirulence activities. Molecular Plant-Microbe Interactions, 2012, 25(7): 941-953.

[48]Remigi P, Anisimova M, Guidot A, Genin S, Peeters N. Functional diversification of the GALA type III effector family contributes to Ralstonia solanacearum adaptation on different plant hosts. New Phytologist, 2011, 192(4): 976-987.

[49]Konstantinidis K T, Tiedje J M. Genomic insights that advance the species definition for prokaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(7): 2567-2572. 

[50]Wicker E, Lefeuvre P, Cambiaire J C, Lemaire C, Poussier S, Prior P. Contrasting recombination patterns and demographic histories of the plant pathogen Ralstonia solanacearum inferred from MLSA. The ISME Journal, 2012, 6: 961-974.

[51]Jacobs J M, Babujee L, Meng F, Milling A, Allen C. The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. mBio, 3(4): e00114-12.
[1] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[7] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[8] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[9] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[10] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[11] CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582.
[12] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[13] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[14] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,ZHANG CaiXia,LI LianWen,PIAO JiCheng. Genetic Diversity and Phylogenetics of Malus baccata (L.) Borkh Revealed by Chloroplast DNA Variation [J]. Scientia Agricultura Sinica, 2020, 53(3): 600-611.
[15] WANG BaoBao,GUO Cheng,SUN SuLi,XIA YuSheng,ZHU ZhenDong,DUAN CanXing. The Genetic Diversity, Pathogenicity, and Toxigenic Chemotypes of Fusarium graminearum Species Complex Causing Maize Ear Rot [J]. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!