Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (10): 2103-2109.doi: 10.3864/j.issn.0578-1752.2013.10.016

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Expression and Localization of Claudin-11 in Adult Alpaca Ovary

 GENG  Jian-Jun, GUO  Qing-Yun, PANG  Ya-Miao, BAI  Jun-Ming, HE  Jun-Ping   

  1. College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2013-01-07 Online:2013-05-15 Published:2013-04-07

Abstract: 【Objective】To explore the mechanism of Claudin-11 in promoting the follicular development and regulating the ovulation, an experiment was carried out to investigate the expression and localization of Claudin-11 in adult alpaca ovary. 【Method】 Using the adult female alpaca as the object of study, the expression of Claudin-11 in the ovary was analyzed by RT-PCR and real-time PCR. Immunohistochemistry and western blotting were used to explore the localization of Claudin-11 in alpaca ovary.【Result】The expression of Claudin-11 in ovarian primary follicle was weaker than in the secondary follicle. Polyclonal antibody happened specific immune response with the crude extract from the ovarian. The expression of Claudin-11 in ovarian primary follicle and secondary follicle was weaker than that in flat or cube follicle cell cytoplasm. Claudin-11 was mainly located in the granulosa cell of the secondary follicle endothecium.【Conclusion】The results showed that Claudin-11 expressed in adult alpaca ovary, and there was a specific cellular localization.

Key words: ovary , follicular development , Claudin-11 , expression , localization

[1]Bravo P W, Tsutsui T, Lasley B L. Dose response to equine chorionic gonadotropin and subsequent ovulation in llamas. Small Ruminant Research, 1995, 18(2): 157-163.

[2]王海东, 薛霖莉, 董常生. 羊驼副性腺结构的组织化学研究. 中国兽医科学, 2007, 37(11): 987-989.

Wang H D, Xue L L, Dong C S. Anatomy and histology of auxiliary sex glands in alpacas. Veterinary Science in China, 2007, 37(11): 987-989. (in Chinese)

[3]Giuliano S, Carretero M, Gambarotta M, Neild D, Trasorras V, Pinto M, Miragaya M. Improvement of llama(Lama glama) seminal characteristics using collagenase. Animal Reproduction Science, 2010, 118(1): 98-102.

[4]Hayashi M, McGee E A, Min G, Klein C, Rose U M, van Duin M, Hsueh A J. Recombinant growth differentiation factor-9(GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology, 1999, 140(3): 1236-1244.

[5]Jaatinen R, Laitinen M P, Vuojolainen K, Aaltonen J, Louhio H, Heikinheimo K, Lehtonen E, Ritvos O. Locallization of growth differentiation factor(GDF9) mRNA and protein in rat ovaries and cDNA cloning of rat GDF-9 and its noval homolog GDF-9B. Molecular and Cellular Endocrinology, 1999, 156(1/2): 189-193.

[6]Aaltoneb J, Laitinen M P, Vuojolainen K, Jaatinen R, Horelli-Kuitunen N, Seppä L, Louhio H, Tuuri T, Sjöberg J, Bützow R, Hovata O, Dale L, Ritvos O. Human growth differentiation factor 9(GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. The Journal of Endocrinology and metabolism, 1999, 84(8): 2744-2750.

[7]McGrath S A, Esquela A F, Lee S J. Oocyte-spcific expression of growth/differentiation factor-9. Molecular Endocrinology, 1995, 9(1): 131-136. 

[8]Dong J, Albertini D F, Nishinori K, Kumar T R, Lu N, Matzuk M M. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature, 1996, 383(6600): 531-535.

[9]Bronstein J M, Popper P, Micevych P E, Farber D B. Isolation and characterization of a novel oligodendrocyte-specific protein. Neurology, 1996, 47(3): 772-778.

[10]Bagnat M, Cheung I D, Mostov K E, Stainier D Y. Genetic control of single lumen formation in the zebrafish gut. Nature Cell Biology, 2007, 9(8): 954-960.

[11]Hou J, Renigunta A, Yang J, Waldegger S. Claudin-4 forms paracellular chloride channel in kidney and requires claudin-8 for tight junction localization. Proceedings of the National Academy of Sciences of the USA, 2010, 107(42): 18010-18015. 

[12]Nicholls P K, Harrison C A, Gilchrist R B, Farnworth P G, Stanton P G. Growth differentiation factor 9 is a germ cell regulator of Sertoli cell function. Endocrinology, 2009, 150(5): 2481-2490.

[13]Walshe T E, Saint-Geniez M, Maharaj A S R, Sekiyama E, Maldonado A E, D’Amore P A. TGF-beta is required for vascular barrier function endothelial and homeostasis of the adult microvasculature. PLoS One, 2009, 4(4): e5149. 

[14]Zhang J, Piontek J, Wolburg H, Piehl C, Liss M, Otten C, Christ A, Willnow T E, Blasig I E, Abdelilah-Seyfried S. Establishment of a neuroepithelial barrier by Claudin5a is essential for zebrafish brain ventricular lumen expansion. Proceedings of the National Academy of Sciences of the USA, 2010, 107(4): 1425-1430.

[15]Zhu Y, Maric J, Nilsson M, Brännström M, Janson P O, Sundfeldt K. Formation and barrier function of tight junctions in human ovarian surface epithelium. Biology and Reproduction, 2004, 71(1): 53-59.

[16]Clelland E S, Kelly S P. Exogenous GDF9 but not Activin A, BMP15 or TGFb alters tight junction protein transcript abundance in zebrafish ovarian follicles. General and Comparative Endocrinology, 2011, 171(2): 211-217. 

[17]Clelland E S, Kelly S P. Tight junction proteins in zebrafish ovarian follicles: stage specific mRNA abundance response to 17 beta-estradiol human chorionic gonadotropin and maturation inducing hormone. General and Comparative Endocrinology, 2010, 168(3): 388-400. 

[18]Groten T, Fraser H M, Duncan M C, Konrad R, Kreienberg R, Wulff C. Cell junctional proteins in the human corpus luteum: changes during the normal cycle and after HCG treatment. Human Reproduction, 2006, 21(12): 3096-3102.

[19]耿建军, 孙乐天, 穆晓丽, 张杰, 姜俊兵, 张映, 李宏全, 董常生. 内皮素受体在不同毛色绵羊皮肤中的表达和定位分析. 中国农业科学, 2010, 43(24): 5147-5154.

Geng J J, Sun L T, Mu X L, Zhang J, Jiang J B, Zhang Y, Li H Q, Dong C S. Immunolocalization and expression analysis of endothelin receptor in sheep skin of different hair color. Scientia Agricultura Scinica, 2010, 43(24): 5147-5154. (in Chinese)

[20]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.

[21]J 萨姆布鲁克, E F弗里奇, T 曼尼阿蒂斯. 金冬雁, 黎孟枫译. 分子克隆实验指南. 2版. 北京: 科学出版社, 1996.

Sambrook J, Fritsch E F, Maniatis T. Translated by Jin D Y, Li M F. Molecular Cloning: A Laboratory Manual. 2nd ed. Beijing: Science Press, 1996. (in Chinese)

[22]邵立健, 朱清先. 一种跨膜蛋白—闭锁蛋白的研究现状•国外医学•生理、病理科学与临床分册, 2004, 24(3): 163-266.

Shao L J, Zhu Q X. Section of pathophysiology and clinical medicine. Foreign Medical Sciences•Section of Pathophysiology and Clinical Medicine, 2004, 24(3): 163-266. (in Chinese)

[23]雷军, 夏国祥. 紧密连接蛋白Claudin的研究进展. 泸州医学院学报, 2009, 32(6): 655-657.

Lei J, Xia G X. Research advances in tight junction protein-claudins. Journal of Luzhou Medical College, 2009, 32(6): 655-657. (in Chinese)

[24]Elkouby-Naor L, Abassi Z, Lagziel A, Gow A, Ben-Yosef T. Double gene deletion reveals the lack of cooperation between claudin-11 and claudin-14 tight junction proteins. Cell and Tissue Research, 2008, 333(3): 427-438.

[25]Nicholson M D O, Lindsay L A, Murphy C R. Ovarian hormones control the changing expression of claudins and occludin in rat uterine epithelial cells during early pregnancy. Acta Histochemica, 2010, 112(1): 42-52.

[26]Bjersing L, Cajander S. Ovulation and the role the ovation surface epithelium. Experientia, 1975, 31(5): 605-608. 

[27]Hanrahan J P, Gregan S M, Mulsant P, Mullen M, Davis G H, Powell R, Galloway S M. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep(Ovis aries). Biology of Reproduction, 2004, 70(4): 900-909.

[28]McNatty K P, Moore L G , Hudson N L, Quirke L D, Lawrence S B, Reader K, Hanrahan J P, Smith P, Groome N P, Laitinen M, Ritvos O, Juengel J L. The oocyte and its role in regulating ovulation rate: a new paradigm in reproductive biology. Reproduction, 2004, 128(4): 379-386.
[1] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[4] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[5] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[6] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[7] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[8] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[9] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[10] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[11] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[12] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[13] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[14] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
[15] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!