Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (4): 819-829.doi: 10.3864/j.issn.0578-1752.2013.04.016

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Progresses in Research of Genome-Wide Association Studies in Livestock and Poultry

 WANG  Ji-Ying, WANG  Hai-Xia, CHI  Rui-Bin, GUO  Jian-Feng, WU  Ying   

  1. 1.Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Ji’nan 250100
    2.Zhaoyuan Animal Husbandry and Veterinarian Station, Zhaoyuan 265400, Shandong
  • Received:2012-08-22 Online:2013-02-15 Published:2012-10-29

Abstract: Genome-wide association study (GWAS) is a new research method for complex traits developed in recent years. In the last several years, many GWAS were performed focusing on economically important traits, genetic defect diseases, resistant or susceptible ability to complex diseases, breed characteristics of the main livestock and poultries. These studies not only enlarged molecular markers used in the marker-assisted selection, but provided important information for elaborate the genetic mechanism of these traits. In this study, the populations, main statistical methods and results of the GWAS in main livestock and poultry were reviewed. Furthermore, some prospect of GWAS in the future was made. This review will provide reference for further research on genetic background of the important traits of livestock and poultry by GWAS.

Key words: genome-wide association studies (GWAS) , livestock and poultry , genetic variation , single nucleotide polymorphism (SNP)

[1]Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science, 1996, 273(5281): 1516-1517.

[2]Hirschhorn J N, Daly M J. Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics, 2005, 6(2): 95-108.

[3]Klein R J, Zeiss C, Chew E Y, Tsai J Y, Sackler R S, Haynes C, Henning A K, SanGiovanni J P, Mane S M, Mayne S T, Bracken M B, Ferris F L, Ott J, Barnstable C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. Science, 2005, 308(5720): 385-389.

[4]McCarthy M I, Hirschhorn J N. Genome-wide association studies: potential next steps on a genetic journey. Human molecular Genetics, 2008, 17(R2): R156-R165.

[5]Matukumalli L K, Lawley C T, Schnabel R D, Taylor J F, Allan M F, Heaton M P, O’Connell J, Moore S S, Smith T, Sonstegard T S, van Tassell C P. Development and characterization of a high density SNP genotyping assay for cattle. PLoS One, 2009, 4(4): e5350.

[6]Ramos A M, Crooijmans R P, Affara N A, Amaral A J, Archibald A L, Beever J E, Bendixen C, Churcher C, Clark R, Dehais P, Hansen M S, Hedegaard J, Hu Z L, Kerstens H H, Law A S, Megens H J, Milan D, Nonneman D J, Rohrer G A, Rothschild M F, Smith T P, Schnabel R D, van Tassell C P, Taylor J F, Wiedmann R T, Schook L B, Groenen M A. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One, 2009, 4(8): e6524.

[7]Groenen M A M, Megens H J, Zare Y, Warren W C, Hillier L D W, Crooijmans R P M A, Vereijken A, Okimoto R, Muir W M, Cheng H H. The development and characterization of a 60K SNP chip for chicken. BMC Genomics, 2011, 12(1): 274-282.

[8]McCue M E, Bannasch D L, Petersen J L, Gurr J, Bailey E, Binns M M, Distl O, Guérin G, Hasegawa T, Hill E W, Leeb T, Lindgren G, Penedo M C, Røed K H, Ryder O A, Swinburne J E, Tozaki T, Valberg S J, Vaudin M, Lindblad-Toh K, Wade C M, Mickelson J R. A High density SNP array for the domestic horse and extant perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies. PLoS Genetics, 2012, 8(1): e1002451.

[9]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A R, Bender D, Maller J, Sklar P, de Bakker P I W, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 2007, 81(3): 559-575.

[10]Aulchenko Y S, Ripke S, Isaacs A, van Duijn C M. GenABEL: an R library for genome-wide association analysis. Bioinformatics, 2007, 23(10): 1294-1296.

[11]Amin N, van Duijn C M, Aulchenko Y S. A genomic background based method for association analysis in related individuals. PLoS One, 2007, 2(12): e1274.

[12]Thornton T, McPeek M S. ROADTRIPS: case-control association testing with partially or completely unknown population and pedigree structure. The American Journal of Human Genetics, 2010, 86(2): 172-184.

[13]严卫丽. 复杂疾病全基因组关联研究进展—遗传统计分析. 遗传, 2008, 30(5): 543-549.

Yan W L. Genome-wide association study on complex diseases: genetic statistical issues. Hereditas, 2008, 30(5): 543-549. (in Chinese)

[14]Jiang L, Liu J F, Sun D X, Ma P P, Ding X D, Yu Y, Zhang Q. Genome wide association studies for milk production traits in Chinese Holstein population. PLoS One, 2010, 5(10): e13661.

[15]Zhang Z, Buckler E S, Casstevens T M, Bradbury P J. Software engineering the mixed model for genome-wide association studies on large samples. Briefings in Bioinformatics, 2009, 10(6): 664-675.

[16]Lam A C, Schouten M, Aulchenko Y, Haley C S, de Koning D J. Rapid and robust association mapping of expression quantitative trait loci. BMC Proceedings, 2007, 1(Suppl.1): S144-S148.

[17]Zhao H H, Fernando R L, Dekkers J C M. Power and precision of alternate methods for linkage disequilibrium mapping of quantitative trait loci. Genetics, 2007, 175(4): 1975-1986.

[18]Grapes L, Dekkers J C M, Rothschild M F, Fernando R L. Comparing linkage disequilibrium-based methods for fine mapping quantitative trait loci. Genetics, 2004, 166(3): 1561-1570.

[19]Newton-Cheh C, Hirschhorn J N. Genetic association studies of complex traits: design and analysis issues. Mutation Research/ Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 573(1/2): 54-69.

[20]Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association studies. Nature Reviews Genetics, 2010, 11(12): 843-854.

[21]Daetwyler H D, Schenkel F S, Sargolzaei M, Robinson J A B. A genome scan to detect quantitative trait loci for economically important traits in Holstein cattle using two methods and a dense single nucleotide polymorphism map. Journal of Dairy Science, 2008, 91(8): 3225-3236.

[22]Mai M D, Sahana G, Christiansen F B, Guldbrandtsen B. A genome-wide association study for milk production traits in Danish Jersey cattle using a 50K single nucleotide polymorphism chip. Journal of Animal Science, 2010, 88(11): 3522-3528.

[23]Schopen G C B, Visker M H P W, Koks P D, Mullaart E, van Arendonk J A M, Bovenhuis H. Whole-genome association study for milk protein composition in dairy cattle. Journal of Dairy Science, 2011, 94(6): 3148-3158.

[24]Bouwman A C, Bovenhuis H, Visker M H P W, van Arendonk J A M. Genome-wide association of milk fatty acids in Dutch Dairy cattle. BMC Genetics, 2011, 12(1): 43-54.

[25]Meredith B K, Kearney F J, Finlay E K, Bradley D G, Fahey A G, Berry D P, Lynn D J. Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland. BMC Genetics, 2012, 13(1): 21-32.

[26]Olsen H G, Hayes B J, Kent M P, Nome T, Svendsen M, Lien S. A genome wide association study for QTL affecting direct and maternal effects of stillbirth and dystocia in cattle. Animal Genetics, 2010, 41(3): 273-280.

[27]Olsen H G, Hayes B J, Kent M P, Nome T, Svendsen M, Larsgard A G, Lien S. Genome-wide association mapping in Norwegian Red cattle identifies quantitative trait loci for fertility and milk production on BTA12. Animal Genetics, 2011, 42(5): 466-474.

[28]Sahana G, Guldbrandtsen B, Bendixen C, Lund M S. Genome-wide association mapping for female fertility traits in Danish and Swedish Holstein cattle. Animal Genetics, 2010, 41(6): 579-588.

[29]Sahana G, Guldbrandtsen B, Lund M S. Genome-wide association study for calving traits in Danish and Swedish Holstein cattle. Journal of Dairy Science, 2011, 94(1): 479-486.

[30]Huang W, Kirkpatrick B W, Rosa G J M, Khatib H. A genome-wide association study using selective DNA pooling identifies candidate markers for fertility in Holstein cattle. Animal Genetics, 2010, 41(6): 570-578.

[31]Settles M, Zanella R, McKay S D, Schnabel R D, Taylor J F, Whitlock R, Schukken Y, van Kessel J S, Smith J M, Neibergs H. A whole genome association analysis identifies loci associated with Mycobacterium avium subsp. paratuberculosis infection status in US holstein cattle. Animal Genetics, 2009, 40(5): 655-662.

[32]Pant S D, Schenkel F S, Verschoor C P, You Q, Kelton D F, Moore S S, Karrow N A. A principal component regression based genome wide analysis approach reveals the presence of a novel QTL on BTA7 for MAP resistance in holstein cattle. Genomics, 2010, 95(3): 176-182.

[33]Kirkpatrick B W, Shi X, Shook G E, Collins M T. Whole-genome association analysis of susceptibility to paratuberculosis in Holstein cattle. Animal Genetics, 2011, 42(2): 149-160.

[34]Zanella R, Settles M L, McKay S D, Schnabel R, Taylor J, Whitlock R H, Schukken Y, van Kessel J S, Smith J M, Neibergs H L. Identification of loci associated with tolerance to Johne’s disease in Holstein cattle. Animal Genetics, 2011, 42(1): 28-38.

[35]Finlay E K, Berry D P, Wickham B, Gormley E P, Bradley D G. A genome eide association scan of bovine tuberculosis susceptibility in Holstein-Friesian Dairy cattle. PLoS One, 2012, 7(2): e30545.

[36]Sodeland M, Kent M P, Olsen H G, Opsal M A, Svendsen M, Sehested E, Hayes B J, Lien S. Quantitative trait loci for clinical mastitis on chromosomes 2, 6, 14 and 20 in Norwegian Red cattle. Animal Genetics, 2011, 42(5): 457-465.

[37]Bolormaa S, Neto L R P, Zhang Y D, Bunch R J, Harrison B E, Goddard M F, Barendse W. A genome-wide association study of meat and carcass traits in Australian cattle. Journal of Animal Science, 2011, 89(8): 2297-2309.

[38]Duijvesteijn N, Knol E F, Merks J W M, Crooijmans R P M A, Groenen M A M, Bovenhuis H, Harlizius B. A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6. BMC Genetics, 2010, 11(1): 42-52.

[39]Fan B, Onteru S K, Du Z Q, Garrick D J, Stalder K J, Rothschild M F, Sorensen T I A. Genome-wide association study identifies loci for body composition and structural soundness traits in pigs. PLoS One, 2010, 6(2): e14726.

[40]Luo W Z, Cheng D X, Chen S K, Wang L G, Li Y, Ma X J, Song X, Liu X, Li W, Liang J, Yan H, Zhao K B, Wang C D, Wang L, Zhang L X, Zhang L C. Genome-wide association analysis of meat quality traits in a porcine large White × Minzhu intercross population. International Journal of Biological Sciences, 2012, 8(4): 580-595.

[41]Ren J, Mao H, Zhang Z, Xiao S, Ding N, Huang L. A 6-bp deletion in the TYRP1 gene causes the brown colouration phenotype in Chinese indigenous pigs. Heredity, 2011, 106: 862-868.

[42]Cho I C, Zhong T, Seo B Y, Jung E J, Yoo C K, Kim J H, Lee J B, Lim H T, Kim B W, Lee J H, Ko M S, Jeon J T. Whole-genome association study for the roan coat color in an intercrossed pig population between Landrace and Korean native pig. Genes and Genomics, 2011, 33(1): 17-23.

[43]Onteru S K, Fan B, Nikkila M T, Garrick D J, Stalder K J, Rothschild M F. Whole-genome association analyses for lifetime reproductive traits in the pig. Journal of Animal Science, 2011, 89(4): 988-995.

[44]Onteru S K, Fan B, Du Z Q, Garrick D J, Stalder K J, Rothschild M F. A whole-genome association study for pig reproductive traits. Animal Genetics, 2012, 43(1): 18-26.

[45]卢昕. 猪部分免疫性状的QTL定位及全基因组关联分析[D]. 北 京: 中国农业大学, 2010.

Lu X. Quantitative trait Loci (QTL) mapping and genome-wide association study for some immune traits in swine[D]. Beijing: China Agricultural University, 2010. (in Chinese)

[46]罗艳茹. 猪血常规和溶菌酶性状的全基因组关联分析[D]. 北京: 中国农业大学, 2010.

Luo Y R. Genome-wide association study for haematological parameters and lysozyme concentration in swine[D]. Beijing: China Agricultural University, 2010. (in Chinese)

[47]Wang J Y, Luo Y R, Fu W X, Lu X, Zhou J P, Ding X D, Liu J F, Zhang Q. Genome-wide association studies for hematological traits in swine. Animal Genetics, 2012. doi: 10.1111/j.1365-2052.2012. 02366.x.

[48]王继英. 猪免疫性状的全基因组关联分析及拷贝数变异的检测[D]. 北京: 中国农业大学, 2012.

Wang J Y. Genome-wide association studies for immune traits and detection of copy number variations in swine[D]. Beijing: China Agricultural University, 2010. (in Chinese)

[49]Fu W X, Liu Y, Lu X, Niu X Y, Ding X D, Liu J F, Zhang Q. A genome-wide association study identifies two novel promising candidate genes affecting escherichia coli F4ab/F4ac susceptibility in swine. PLoS One, 2012, 7(3): e32127.

[50]Luo W Z, Chen S K, Cheng D X, Wang L G, Li Y, Ma X J, Song X, Liu X, Li W, Liang J, Yan H, Zhao K B, Wang C D, Wang L X, Zhang L C. Genome-wide association study of porcine hematological parameters in a large White×Minzhu F2 resource population. International Journal of Biological Sciences, 2012, 8(6): 870-881.

[51]Abasht B, Lamont S J. Genome-wide association analysis reveals cryptic alleles as an important factor in heterosis for fatness in chicken F2 population. Animal Genetics, 2007, 38(5): 491-498.

[52]Liu W B, Li D F, Liu J F, Chen S R, Qu L J, Zheng J X, Xu G Y, Yang N. A genome-wide SNP scan reveals novel loci for egg production and quality traits in White Leghorn and Brown-Egg dwarf layers. PLoS One, 2011, 6(12): e28600.

[53]Shen X, Zeng H, Xie L, He J, Li J, Xie X J, Luo C L, Xu H P, Zhou M, Nie Q H, Zhang X Q. The GTPase activating Rap/RanGAP domain-like 1 gene is associated with chicken reproductive traits. PLoS One, 2012, 7(4): e33851.

[54]Gu X R, Feng C G, Ma L, Song C, Wang Y Q, Da Y, Li H F, Chen K W, Ye S H, Ge C R, Li X X, Li N. Genome-wide association study of body weight in chicken F2 resource population. PLoS One, 2011, 6(7): e21872.

[55]Xie L, Luo C L, Zhang C G, Zhang R, Tang J, Nie Q H, Ma L, Hu X X, Li N, Da Y, Zhang X Q. Genome-wide association study identified a narrow chromosome 1 region associated with chicken growth traits. PLoS One, 2012, 7(2): e30910.

[56]Zhao X, Dittmer K E, Blair H T, Thompson K G, Rothschild M F, Garrick D J. A novel nonsense mutation in the DMP1 gene identified by a genome-wide association study is responsible for inherited rickets in Corriedale sheep. PLoS One, 2011, 6(7): e21739.

[57]Kemper K E, Emery D L, Bishop S C, Oddy H, Hayes B J, Dominik S, Henshall J M, Goddard M E. The distribution of SNP marker effects for faecal worm egg count in sheep, and the feasibility of using these markers to predict genetic merit for resistance to worm infections. Genetics Research, 2011, 93(3): 203-219.

[58]Johnston S E, McEwan J C, Pickering N K, Kijas J W, Beraldi D, Pilkington J G, Pemberton J M, Slate J. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Molecular Ecology, 2011, 20(12): 2555-2566.

[59]Brooks S A, Gabreski N, Miller D, Brisbin A, Brown H E, Streeter C, Mezey J, Cook D, Antczak D F. Whole genome SNP association in the horse: identification of a deletion in myosin va responsible for lavender foal syndrome. PLoS Genetics, 2010, 6(4): e1000909.

[60]Orr N, Back W, Gu J, Leegwater P, Govindarajan P, Conroy J, Ducro B, van Arendonk J A M, MacHugh D E, Ennis S, Hill E W, Brama P A J. Genome-wide SNP association-based localization of a dwarfism gene in Friesian dwarf horses. Animal Genetics, 2010, 41(Suppl. 2): 2-7.

[61]Schurink A, Ducro B J, Bastiaansen J W M, Frankena K, van Arendonk J A M. Genome-wide association study of insect bite hypersensitivity in Dutch Shetland pony mares. Animal Genetics, 2012. doi: 10.1111/j.1365-2052.2012.02368.x.

[62]Hill E W, McGivney B A, Gu J, Whiston R, MacHugh D E. A genome-wide SNP-association study confirms a sequence variant (g. 66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genomics, 2010, 11(1): 552-561.

[63]Cardon L R, Palmer L J. Population stratification and spurious allelic association. The Lancet, 2003, 361(9357): 598-604.

[64]Devlin B, Roeder K, Wasserman L. Genomic control, a new approach to genetic-based association studies. Theoretical Population Biology, 2001, 60(3): 155-166.

[65]Zhu X F, Zhang S L, Zhao H Y, Cooper R S. Association mapping, using a mixture model for complex traits. Genetic Epidemiology, 2002, 23(2): 181-196.

[66]Zhu X F, Li S C, Cooper R S, Elston R C. A unified association analysis approach for family and unrelated samples correcting for stratification. The American Journal of Human Genetics, 2008, 82(2): 352-365.

[67]Pearson T A, Manolio T A. How to interpret a genome-wide association study. The Journal of the American Medical Association, 2008, 299(11): 1335-1344.

[68]Chanock S J, Manolio T, Boehnke M, Boerwinkle E, Hunter D J, Thomas G, Hirschhorn J N, Abecasis G, Altshuler D, Bailey-Wilson J E. Replicating genotype-phenotype associations. Nature, 2007, 447(7145): 655-660.

[69]Glass G V. Primary, secondary, and meta-analysis of research. Educational Researcher, 1976, 5(10): 3-8.

[70]The International SNP Map Working Group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001, 409(6822): 928-933.

[71]McCarroll S A. Extending genome-wide association studies to copy-number variation. Human Molecular Genetics, 2008, 17(R2): R135-R142.

[72]Iafrate A J, Feuk L, Rivera M N, Listewnik M L, Donahoe P K, Qi Y, Scherer S W, Lee C. Detection of large-scale variation in the human genome. Nature Genetics, 2004, 36(9): 949-951.

[73]Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Månér S, Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam T C, Trask B, Patterson N, Zetterberg A, Wigler M. Large-scale copy number polymorphism in the human genome. Science, 2004, 305(5683): 525-528.

[74]Seroussi E, Glick G, Shirak A, Yakobson E, Weller J I, Ezra E, Zeron Y. Analysis of copy loss and gain variations in Holstein cattle autosomes using BeadChip SNPs. BMC Genomics, 2010, 11(1): 673-682.

[75]Liu G E, Brown T, Hebert D A, Cardone M F, Hou Y, Choudhary R K, Shaffer J, Amazu C, Connor E E, Ventura M, Gasbarre L C. Initial analysis of copy number variations in cattle selected for resistance or susceptibility to intestinal nematodes. Mammalian Genome, 2011, 22: 111-121.
[1] GONG ShiFei, XIAO NengWu, DING WuHan, JU XueHai, WU PingHua, YU YongSong, LI Hu. Environmental Risks Assessment of Livestock and Poultry Non- Point Source Pollution in Shiyan City Based on Arable Land Carrying Capacity [J]. Scientia Agricultura Sinica, 2023, 56(5): 920-934.
[2] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[3] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[4] LIU Hong,GUO YuJie,XU Xiong,LI Xia,ZHANG HongRu,QI LiWei,SUN XueMei,ZHANG ChunHui. Preparation, Physicochemical Characterization and Bioactivity Comparison of Different Livestock and Poultry Bone Peptides [J]. Scientia Agricultura Sinica, 2022, 55(13): 2629-2642.
[5] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[6] ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286.
[7] LI QiFeng,LI JiaWei,MA WeiHong,GAO RongHua,YU LiGen,DING LuYu,YU QinYang. Research Progress of Intelligent Sensing Technology for Diagnosis of Livestock and Poultry Diseases [J]. Scientia Agricultura Sinica, 2021, 54(11): 2445-2463.
[8] Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829.
[9] WEI QiHang,REN YanFang,HE JunYu,LI ZhaoJun. Research Progress of Microbial Deodorization in Livestock and Poultry Wastes Composting [J]. Scientia Agricultura Sinica, 2020, 53(15): 3134-3145.
[10] QIN YanHong,WANG YongJiang,WANG Shuang,QIAO Qi,TIAN YuTing,ZHANG DeSheng,ZHANG ZhenChen. Complete Nucleotide Sequence Analysis and Genetic Characterization of the Sweet potato feathery mottle virus O and RC Strains Isolated from China [J]. Scientia Agricultura Sinica, 2020, 53(11): 2207-2218.
[11] WANG KaiYing,WU JieGang,ZHAO Xiaoyang. Review of Measurement Technologies for Air Pollutants at Livestock and Poultry Farms [J]. Scientia Agricultura Sinica, 2019, 52(8): 1458-1474.
[12] WU BingChao, TONG Lei, DU ZhaoChang, HU JiaLing, ZHANG Huan, CHEN Yi, LIU Wei, ZHANG XinQuan, HUANG LinKai. Mutagenic Effects of 60Co-γ-rays on Two Species of Pennisetum Genus Forages [J]. Scientia Agricultura Sinica, 2019, 52(3): 414-427.
[13] CHEN ZhiYong, ZHANG LiYang, MA XueLian, WANG LiangZhi, XING GuanZhong, YANG Liu, LIU DongYuan, LIAO XiuDong, LI SuFen, HUANG YanLing, LÜ Lin, LUO XuGang. A Survey on Distribution of Calcium Contents in Feedstuffs for Livestock and Poultry in China [J]. Scientia Agricultura Sinica, 2019, 52(11): 1973-1981.
[14] CHENG DengMiao, LI ZhaoJun, ZHANG XueLian, FENG Yao, ZHANG ShuQing. Removal of Veterinary Antibiotics in Livestock and Poultry Manure: A Review [J]. Scientia Agricultura Sinica, 2018, 51(17): 3335-3352.
[15] CAO XueTao, PEI ShengWei, ZHANG Jin, LI FaDi, LI Gang, LI WanHong, YUE XiangPeng. Screening of Y Chromosome Specific Primers and Y-SNPs in Sheep [J]. Scientia Agricultura Sinica, 2018, 51(15): 2990-2999.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!