Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2629-2642.doi: 10.3864/j.issn.0578-1752.2022.13.012

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Preparation, Physicochemical Characterization and Bioactivity Comparison of Different Livestock and Poultry Bone Peptides

LIU Hong1(),GUO YuJie1(),XU Xiong1,LI Xia1,ZHANG HongRu1,QI LiWei1,SUN XueMei2,ZHANG ChunHui1()   

  1. 1Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193
    2Xinjiang Taikun Group Co., Ltd., Xinjiang Uygur Autonomous Region, Changji 831100, Xinjiang
  • Received:2021-11-10 Accepted:2022-01-12 Online:2022-07-01 Published:2022-07-08
  • Contact: YuJie GUO,ChunHui ZHANG E-mail:hgdliuhong@163.com;guoyujie@caas.cn;dr_zch@163.com

Abstract:

【Objective】The preparation of bone peptides (livestock and poultry bone peptides, LBPs) for the development of bone-derived functional foods is one of the important ways for the high-value utilization of livestock and poultry bone by-products. In this experiment, the leg bone from four main livestock and poultry species were used as raw materials to prepare LBPs based on the same process, and their physicochemical properties and bioactivities were compared and analyzed, so as to provide the reference for the high-value utilization of livestock and poultry bone resources and the development of bone-derived functional foods.【Method】 Yak bone peptides (YBPs), bovine bone peptides (BBPs), porcine bone peptides (PBPs) and chicken bone peptides (CBPs) were prepared from yak, bovine, porcine and chicken leg bones, respectively. Physicochemical properties were characterized, including basic nutritional components, amino acid compositions, molecular weight and particle size distribution. Moreover, the bioactivities of the four LBPs, including osteoblast promoting proliferation, immune regulation, angiotensin converting enzyme inhibitors (ACEI) and antioxidation, were compared and analyzed. 【Result】 The relative contents of crude protein in YBPs, BBPs and PBPs were (89.70±0.77)%, (90.43±0.88)% and (89.36±1.32)%, respectively, which were significant higher than that of CBPs (79.18±1.49)%). The essential amino acids and sulfur-amino acids of CBPs were significant higher than those of YBPs, BBPs and PBPs. The four LBPs were mainly composed of small molecular peptides with MW<2 kD, accounting for about 90%. There was no significant difference in particle size distribution of LBPs powder, which was mainly concentrated in the range of 10-20 µm and 40-60 µm. The bioactivities of different LBPs were analyzed. It was found that YBPs had the most significant osteoblasts promoting proliferation effect, and the proliferation rate was 37.27% at 0.5 mg∙mL-1; BBPs had the strongest effect on macrophage proliferation, and the proliferation rate was 39.26% at 5 mg∙mL-1; PBPs had the strongest ACEI activity, and the inhibition rate of ACE activity was 82.37% at 15 mg∙mL-1; YBPs had the strongest comprehensive antioxidant capacity, compared with BBPs, PBPs and CBPs. 【Conclusion】The physicochemical properties of LBPs from four distinct species were different, but they all met the demand of raw material for the development of bone-derived functional foods. The bioactivities of LBPs from different species were different, which were suitable for the development of different bone-derived functional foods: YBPs had the strongest osteoblasts promoting proliferation effect and comprehensive antioxidant capacity, which was more suitable for the development of bone health improving or antioxidant bone-derived functional foods; BBPs had the strongest effect on promoting macrophage proliferation, which was more suitable for the development of immunomodulatory bone-derived functional foods; PBPs had the strongest ACEI activity and was more suitable for the development of bone-derived functional foods with blood pressure control effect; CBPs had the better powder properties and higher mineral content, which could be used as dietary nutritional supplements.

Key words: livestock and poultry bone, bone peptides, physicochemical properties, bioactivities, high value utilization, bone- derived functional foods

Fig. 1

Pilot line and the finished products of livestock and poultry bone peptides"

Table 1

Determination of ACE inhibitory activity"

试剂
Reagent
对照组
Control group (µL)
样品组
Sample group (µL)
ACE 10 10
FAPGG 50 50
HEPES 40 0
LBPs 0 40

Table 2

Basic nutritional components of livestock and poultry bone peptides"

样品 Sample 水分 Moisture (%) 矿物质 Minerals (%) 粗蛋白 Crude protein (%) 粗脂肪Crude fat (%)
YBPs 4.96±0.24b 4.18±0.18b 89.70±0.77a 0.17±0.01a
BBPs 4.46±0.61b 4.30±0.51b 90.43±0.88a 0.16±0.01a
PBPs 4.80±0.49b 4.68±0.45b 89.36±1.32a 0.13±0.02b
CBPs 5.77±0.52a 12.9±0.80a 79.18±1.49b 0.07±0.01c

Table 3

Amino acid compositions of different livestock and poultry bone peptides"

氨基酸
Amino acids
FAO/WHO推荐摄入量
FAO/WHO recommended intake
(mg/kg body weight/day)
含量 Content (g/100 g)
YBPs BBPs PBPs CBPs
天冬酰胺Asp - 5.08±0.27a 5.21±0.40a 5.07±0.27a 5.27±0.09a
谷氨酸Glu - 9.75±0.35ab 9.29±0.75b 9.39±0.41b 10.47±0.21a
苏氨酸Thr* 7 1.82±0.05b 1.69±0.15b 1.79±0.09b 2.20±0.04a
丝氨酸Ser - 2.80±0.12a 2.69±0.24a 2.70±0.06a 2.24±0.05b
甘氨酸Gly - 19.6±0.61b 22.64±1.13a 20.05±1.30b 14.26±0.20c
丙氨酸Ala - 8.26±0.24b 9.18±0.21a 8.13±0.39b 6.65±0.10c
脯氨酸Pro - 10.4±1.03a 11.07±0.64a 10.95±0.53a 8.03±0.16b
羟脯氨酸Hyp - 9.39±0.85a 9.91±1.58a 8.37±00.91b 7.46±0.33c
苯丙氨酸Phe* 14 1.85±0.08a 1.78±0.08a 1.93±0.12a 1.91±0.05a
酪氨酸Tyr 0.68±0.01a 0.54±0.02b 0.63±0.05a 0.57±0.02b
半胱氨酸Cys 13 0.02±0.01a 0.02±0.00a 0.05±0.01a 0.05±0.00a
蛋氨酸Met* 0.75±0.03b 0.74±0.02b 0.73±0.01b 1.04±0.07a
缬氨酸Val* 10 2.44±0.08a 2.49±0.07a 2.47±0.17a 2.04±0.04b
异亮氨酸Ile* 10 1.46±0.05b 1.43±0.10b 1.21±0.08c 1.83±0.07a
亮氨酸Leu* 14 3.34±0.11a 3.05±0.19b 3.00±0.18b 3.61±0.11a
赖氨酸Lys* 12 3.29±0.10a 3.08±0.21a 3.22±0.20a 3.39±0.06a
羟赖氨酸Hyl - 1.13±0.11a 1.09±0.06a 0.69±0.03b 0.56±0.02c
组氨酸His - 0.84±0.03a 0.69±0.01b 0.75±0.03b 0.87±0.04a
精氨酸Arg - 6.81±0.18b 7.32±0.22a 6.62±0.41b 5.44±0.13c
总计 Total
氨基酸总量 Total amino acids - 89.81 93.91 87.75 77.32
含硫氨基酸1) Sulphur-amino acids 0.77 0.76 0.78 1.09
芳香族氨基酸2) Aromatic amino acids 2.53 2.32 2.56 2.48
疏水性氨基酸3) Hydrophilic amino acids 28.59 29.74 28.42 24.54
亲水性氨基酸4) Hydrophobic amino acids 50.70 53.17 50.27 44.76
亚氨基酸5) Imino acid 19.88 20.98 19.32 15.49
必需氨基酸* Essential amino acids 17.40 16.65 16.82 18.54
氨基酸比值系数分 SRC 100 72.81 73.44 71.17 53.67

Fig. 2

Molecular weight distribution (MW) of livestock and poultry bone peptides A: HPLC diagram of LBPs; B: Proportion of LBPs with different MW"

Fig. 3

Particle size distribution of livestock and poultry bone peptides"

Fig. 4

Promoting proliferation rate of MC3T3-E1 cells by livestock and poultry bone peptides * indicate P<0.05 and **P<0.01 significantly different from control, respectively. The same as below"

Fig. 5

Promoting proliferation rate of RAW264.7 macrophages by livestock and poultry bone peptides"

Fig. 6

Angiotensin converting enzyme inhibitor (ACEI) activity of livestock and poultry bone peptides Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 7

Antioxidant capacity of livestock and poultry bone peptides Vc: Positive control. A: ABTS radical scavenging capacity of livestock and poultry bone peptides; B: DPPH radical scavenging capacity of livestock and poultry bone peptides; C: Ferric reduction antioxidant capacity (FRAP) of livestock and poultry bone peptides; D: Hydroxyl radical scavenging capacity of livestock and poultry bone peptides"

[1] LI F, JIA D Y, YAO K. Amino acid composition and functional properties of collagen polypeptide from Yak (Bos grunniens) bone. LWT - Food Science and Technology, 2009, 42(5): 945-949.
doi: 10.1016/j.lwt.2008.12.005
[2] 姚玉梅, 袁湘汝, 韩鲁佳, 杨增玲, 刘贤. 畜禽骨蛋白质材料化利用的研究现状与发展趋势分析. 材料导报, 2021, 35(17): 17136-17142. doi: 10.11896/cldb.20060129.
doi: 10.11896/cldb.20060129
YAO Y M, YUAN X R, HAN L J, YANG Z L, LIU X. Progress and prospect of materializing utilization in bone waste protein from animal by-products. Materials Review, 2021, 35(17): 17136-17142. doi: 10.11896/cldb.20060129. (in Chinese)
doi: 10.11896/cldb.20060129
[3] YE M L, ZHANG C H, ZHU L Y, JIA W, SHEN Q S. Yak (Bos grunniens) bones collagen-derived peptides stimulate osteoblastic proliferation and differentiation via the activation of Wnt/β-catenin signaling pathway. Journal of the Science of Food and Agriculture, 2020, 100(6): 2600-2609.
doi: 10.1002/jsfa.10286
[4] SHEN Q S, ZHANG C H, QIN X J, ZHANG H R, ZHANG Z Q, RICHEL A. Modulation of gut microbiota by chondroitin sulfate calcium complex during alleviation of osteoporosis in ovariectomized rats. Carbohydrate Polymers, 2021, 266: 118099. doi: 10.1016/j.carbpol.2021.118099.
doi: 10.1016/j.carbpol.2021.118099
[5] WANG J N, LIU J L, GUO Y C. Cell growth stimulation cell cycle alternation and anti-apoptosis effects of bovine bone collagen hydrolysates derived peptides on MC3T3-E1 cells ex vivo. Molecules, 2020, 25(10): 2305.
doi: 10.3390/molecules25102305
[6] YE M L, ZHANG C H, JIA W, SHEN Q S, QIN X J, ZHANG H R, ZHU L Y. Metabolomics strategy reveals the osteogenic mechanism of yak (Bos grunniens) bone collagen peptides on ovariectomy-induced osteoporosis in rats. Food & Function, 2020, 11(2): 1498-1512. doi: 10.1039/c9fo01944h.
doi: 10.1039/c9fo01944h
[7] ZHU L Y, XIE Y Y, WEN B T, YE M L, LIU Y S, KHANDAKER M S U I, CAI H M, ZHANG C H, WANG F Z, XIN F J. Porcine bone collagen peptides promote osteoblast proliferation and differentiation by activating the PI3K/Akt signaling pathway. Journal of Functional Foods, 2020, 64: 103697.
doi: 10.1016/j.jff.2019.103697
[8] 刘丽莉, 马美湖, 杨协力. 畜禽骨中胶原多肽的开发及研究进展. 食品科学, 2009, 30(S1): 225-228.
LIU L L, MA M H, YANG X L. Development and research progress of collagen peptides in animal bone. Food Science, 2009, 30(S1): 225-228. (in Chinese)
[9] FERRARO V, ANTON M, SANTE-LHOUTELLIER V. The “sisters” α-helices of collagen, elastin and keratin recovered from animal by-products: Functionality, bioactivity and trends of application. Trends in Food Science & Technology, 2016, 51: 65-75.
[10] 艾瑞咨询. 2015-2020年中国肉骨粉产业发展现状及市场监测报告. 北京: 艾瑞咨询集团, 2021.
iResearch. Development status and market monitoring report of meat and bone meal industry in China from 2015 to 2020. Beijing: iResearch Consulting Group, 2021. (in Chinese)
[11] QIN X J, SHEN Q S, GUO Y J, LI X, LIU J Q, YE M L, WANG H, JIA W, ZHANG C H. Physicochemical properties, digestibility and anti-osteoporosis effect of yak bone powder with different particle sizes. Food Research International, 2021, 145: 110401.
doi: 10.1016/j.foodres.2021.110401
[12] GAO S, HONG H, ZHANG C Y, WANG K, ZHANG B H, HAN Q A, LIU H G, LUO Y K. Immunomodulatory effects of collagen hydrolysates from yak (Bos grunniens) bone on cyclophosphamide- induced immunosuppression in BALB/c mice. Journal of Functional Foods, 2019, 60: 103420.
doi: 10.1016/j.jff.2019.103420
[13] 秦倩倩. 超声波预处理对草鱼皮胶原蛋白特性和酶解产物活性的影响[D]. 镇江: 江苏科技大学, 2019.
QIN Q Q. Effects of ultrasound pretreatment on properties of collagen from grass carp skin and activities of its hydrolysates[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019. (in Chinese)
[14] 蔡丽华, 马美湖. 牛骨酶解产生血管紧张素I转换酶抑制肽的研究. 食品科学, 2009, 30(z1): 13-19.
doi: 10.1111/j.1365-2621.1965.tb00254.x
CAI L H, MA M H. The study on peptide of angiotensin coverting enzyme inhibitory peptides (ACEIP) from hydrolysis ox bone. Food Science, 2009, 30(z1): 13-19. (in Chinese)
doi: 10.1111/j.1365-2621.1965.tb00254.x
[15] 刘小红, 李诚, 付刚, 苏赵. 猪股骨头胶原蛋白降血压肽的分离纯化. 食品科学, 2014, 35(6): 50-54. doi: 10.7506/spkx1002-6630-2014060010.
doi: 10.7506/spkx1002-6630-2014060010
LIU X H, LI C, FU G, SU Z. Separation and purification of anti-hypertensive peptides from pig femoral collagen. Food Science, 2014, 35(6): 50-54. doi: 10.7506/spkx1002-6630-2014060010. (in Chinese)
doi: 10.7506/spkx1002-6630-2014060010
[16] 张根生, 符群, 岳晓霞, 韩冰. 鸡骨胶原蛋白肽抗氧化性的研究. 食品科学, 2009, 30(13): 133-135. doi: 10.3321/j.issn:1002-6630.2009.13.031.
doi: 10.3321/j.issn:1002-6630.2009.13.031
ZHANG G S, FU Q, YUE X X, HAN B. Antioxidation of collagen peptides from chicken bone. Food Science, 2009, 30(13): 133-135. doi: 10.3321/j.issn:1002-6630.2009.13.031. (in Chinese)
doi: 10.3321/j.issn:1002-6630.2009.13.031
[17] KU S K, SEO D W, KIM S I, SIM K H. Antioxidant activities and nutritional properties of Jeonyak prepared with beef bone stock and gelatin. Food Science and Biotechnology, 2014, 23(1): 81-87. doi: 10.1007/s10068-014-0011-x.
doi: 10.1007/s10068-014-0011-x
[18] ABDUALRAHMAN M A, MA H L, ZHOU C S, YAGOUB A E, HU J L, Y X. Thermal and single frequency counter-current ultrasound pretreatments of sodium caseinate: Enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution and antioxidant peptides. Journal of the Science of Food and Agriculture, 2016, 96(15): 4861-4873.
doi: 10.1002/jsfa.7996
[19] 王耀松, 张唯唯, 马天怡, 蔡敏, 张怡帆, 胡荣蓉, 唐长波. 丙二醛氧化对核桃分离蛋白结构及乳化性的影响. 中国农业科学, 2020, 53(16): 3372-3384. doi: 10.3864/j.issn.0578-1752.2020.16.014.
doi: 10.3864/j.issn.0578-1752.2020.16.014
WANG Y S, ZHANG W W, MA T Y, CAI M, ZHANG Y F, HU R R, TANG C B. Influence of oxidative modification by malondialdehyde on structure and emulsifying properties of walnut protein. Scientia Agricultura Sinica, 2020, 53(16): 3372-3384. doi: 10.3864/j.issn.0578-1752.2020.16.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.16.014
[20] 李宇, 汪芳, 翁泽斌, 宋海昭, 沈新春. 酶法制备大豆蛋白成骨活性肽. 中国农业科学, 2021, 54(13): 2885-2894. doi: 10.3864/j.issn.0578-1752.2021.13.016.
doi: 10.3864/j.issn.0578-1752.2021.13.016
LI Y, WANG F, WENG Z B, SONG H Z, SHEN X C. Preparation of soybean protein-derived pro-osteogenic peptides via enzymatic hydrolysis. Scientia Agricultura Sinica, 2021, 54(13): 2885-2894. doi: 10.3864/j.issn.0578-1752.2021.13.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.13.016
[21] 崔小珍, 栾艳, 李婷婷, 杨裕, 关文超, 张凯, 王福传, 宋献艺. 松针多糖对鸡巨噬细胞HD11的天然免疫调节. 中国农业科学, 2020, 53(15): 3180-3186. doi: 10.3864/j.issn.0578-1752.2020.15.017.
doi: 10.3864/j.issn.0578-1752.2020.15.017
CUI X Z, LUAN Y, LI T T, YANG Y, GUAN W C, ZHANG K, WANG F C, SONG X Y. Innate immunomodulatory effect of pine needle polysaccharide on chicken macrophage HD11. Scientia Agricultura Sinica, 2020, 53(15): 3180-3186. doi: 10.3864/j.issn.0578-1752.2020.15.017. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.15.017
[22] 陈静. 小米主要营养成分快速检测模型建立及其降压功效研究[D]. 北京: 中国农业大学, 2017.
CHEN J. Study on rapid determination of main nutrition compositions and hypotensive effect of foxtail millet[D]. Beijing: China Agricultural University, 2017. (in Chinese)
[23] LIMA C A, CAMPOS J F, FILHO J L L, CONVERTI A, CUNHA M G C, PORTO A L F. Antimicrobial and radical scavenging properties of bovine collagen hydrolysates produced by Penicillium aurantiogriseum URM 4622 collagenase. Journal of Food Science and Technology, 2015, 52(7): 4459-4466. doi: 10.1007/s13197-014-1463-y.
doi: 10.1007/s13197-014-1463-y
[24] SIOW H L, GAN C Y. Extraction of antioxidative and antihypertensive bioactive peptides from Parkia speciosa seeds. Food Chemistry, 2013, 141(4): 3435-3442. doi: 10.1016/j.foodchem.2013.06.030.
doi: 10.1016/j.foodchem.2013.06.030
[25] GIRGIH A T, UDENIGWE C C, ALUKO R E. Reverse-phase HPLC separation of hemp seed (Cannabis sativa L.) protein hydrolysate produced peptide fractions with enhanced antioxidant capacity. Plant Foods for Human Nutrition, 2013, 68(8): 39-46.
doi: 10.1007/s11130-013-0340-6
[26] JEAMPARKDEE P, PUNTHONG S, SRIMONGKOL P, DANGTANOO P, SAISAVOEY T, KARNCHANATAT A. The apoptotic and free radical-scavenging abilities of the protein hydrolysate obtained from chicken feather meal. Poultry Science, 2020, 99(3): 1693-1704.
doi: 10.1016/j.psj.2019.10.050
[27] AKRAM A N, ZHANG C H. Effect of ultrasonication on the yield, functional and physicochemical characteristics of collagen-II from chicken sternal cartilage. Food Chemistry, 2020, 307: 125544.
doi: 10.1016/j.foodchem.2019.125544
[28] AKRAM A N, ZHANG C H. Extraction of collagen-II with pepsin and ultrasound treatment from chicken sternal cartilage; physicochemical and functional properties. Ultrasonics Sonochemistry, 2020, 64: 105053.
doi: 10.1016/j.ultsonch.2020.105053
[29] ALOYSIUS T A, CARVAJAL A K, SLIZYTE R, SKORVE J, BERGE R K, BJORADAL B. Chicken protein hydrolysates have anti- inflammatory effects on high-fat diet induced obesity in mice. Medicines, 2019, 6(1): 5.
doi: 10.3390/medicines6010005
[30] 蔡丽华. 牛骨酶解制备血管紧张素转换酶抑制肽的研究[D]. 武汉: 华中农业大学, 2010.
CAI L H. Preparation of angiotensin-converting enzyme inhibitory peptides by hydrolysis of cattle bone[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese)
[31] 王玉霞. 鸡骨肽制备及其ACE抑制活性研究[D]. 北京: 中国农业科学院, 2011.
WANG Y X. Study on the processing technology of chicken bone peptides and its inhibitory activity to ACE[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[32] 王晨. 牛骨胶原多肽的制备及其清除自由基活性研究[D]. 广州: 华南理工大学, 2010.
WANG C. Enzymatic preparation of ox bone collagen peptide and its free radicals scavenging activity[D]. Guangzhou: South China University of Technology, 2010. (in Chinese)
[33] 马思彤, 刘静波, 张婷, 王莹, 孙惠炎, 魏以恒, 王寒颖, 雷洪辉, 刘博群. 体外模拟胃肠消化及碱性蛋白酶处理后蛋清肽抗氧化活性差异及肽序列解析. 食品科学, 2020, 41(21): 113-120. doi: 10.7506/spkx1002-6630-20191024-255.
doi: 10.7506/spkx1002-6630-20191024-255
MA S T, LIU J B, ZHANG T, WANG Y, SUN H Y, WEI Y H, WANG H Y, LEI H H, LIU B Q. Differences in antioxidant activity and sequence analysis of egg white peptides derived from simulated gastrointestinal digestion and alkaline protease treatment. Food Science, 2020, 41(21): 113-120. doi: 10.7506/spkx1002-6630-20191024-255. (in Chinese)
doi: 10.7506/spkx1002-6630-20191024-255
[34] ZHANG H R, ZHAO L Y, SHEN Q S, QI L W, JIANG S, GUO Y J, ZHANG C H, RICHEL A. Preparation of cattle bone collagen peptides-calcium chelate and its structural characterization and stability. LWT-Food Science and Technology, 2021, 144(12): 111264.
doi: 10.1016/j.lwt.2021.111264
[35] 吴晖, 王晨, 李晓凤, 余以刚. 牛骨胶原蛋白肽体外清除自由基活性的研究. 食品工业科技, 2010, 31(4): 156-158, 161. doi: 10.13386/j.issn1002-0306.2010.04.095.
doi: 10.13386/j.issn1002-0306.2010.04.095
WU H, WANG C, LI X F, YU Y G. Study on the scavenging activity of free radicals of collagen peptide from ox bone by enzymatic hydrolysis. Science and Technology of Food Industry, 2010, 31(4): 156-158, 161. doi: 10.13386/j.issn1002-0306.2010.04.095. (in Chinese)
doi: 10.13386/j.issn1002-0306.2010.04.095
[36] SHEN W L, MATSUI T. Current knowledge of intestinal absorption of bioactive peptides. Food & Function, 2017, 8(12): 4306-4314. doi: 10.1039/c7fo01185g.
doi: 10.1039/c7fo01185g
[37] TU M L, CHENG S Z, LU W H, DU M. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC (Trends in Analytical Chemistry), 2018(105): 7-17. doi: 10.1016/j.trac.2018.04.005.
doi: 10.1016/j.trac.2018.04.005
[38] 叶孟亮. 牦牛骨胶原蛋白肽抗骨质疏松作用机制研究[D]. 北京: 中国农业科学院, 2019.
YE M L. Study on the underlying mechanism of anti-osteoporosis of yak (Bos grunniens) bone collagen peptides[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[39] 叶蕾, 阎洁, 张文, 邹舒舒, 叶盛旺, 杨最素, 余方苗, 丁国芳. 文蛤寡肽对RAW264.7细胞的免疫调节作用. 水产学报, 2019, 43(2): 410-418. doi: 10.11964/jfc.20180411224.
doi: 10.11964/jfc.20180411224
YE L, YAN J, ZHANG W, ZOU S S, YE S W, YANG Z S, YU F M, DING G F. Immunomodulatory effects of Meretrix meretrix oligopeptides on RAW264.7 cells. Journal of Fisheries of China, 2019, 43(2): 410-418. doi: 10.11964/jfc.20180411224. (in Chinese)
doi: 10.11964/jfc.20180411224
[40] 曾珍, 李诚, 付刚, 杨勇, 何利, 陈姝娟. 猪骨免疫活性肽的分离纯化. 食品与发酵工业, 2014. 40(11): 116-120.
ZENG Z, LI C, FU G, YANG Y, HE L, CHEN S J. Separation and purification of immunomodulating peptides from pig bones. Food and Fermentation Industries, 2014. 40(11): 116-120. (in Chinese)
[41] 瞿瑗, 李诚, 程乐涛, 夏春明, 晏芳芳. 牦牛骨免疫活性肽的酶解制备研究. 食品工业科技, 2016, 37(3): 271-274, 278. doi: 10.13386/j.issn1002-0306.2016.03.048.
doi: 10.13386/j.issn1002-0306.2016.03.048
QU Y, LI C, CHENG L T, XIA C M, YAN F F. Study on yak bone immune active peptide preparation by enzymatic hydrolysis. Science and Technology of Food Industry, 2016, 37(3): 271-274, 278. doi: 10.13386/j.issn1002-0306.2016.03.048. (in Chinese)
doi: 10.13386/j.issn1002-0306.2016.03.048
[42] ZHANG Y H, OLSEN K, GROSSI A, OTTE J. Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides. Food Chemistry, 2013, 141(3): 2343-2354. doi: 10.1016/j.foodchem.2013.05.058.
doi: 10.1016/j.foodchem.2013.05.058
[43] 于小栋. 牦牛骨胶原蛋白肽的制备及其功能特性研究[D]. 西宁: 青海师范大学, 2019.
YU X D. Preparation and functional properties of yak bone collagen peptide[D]. Xining: Qinghai Normal University, 2019. (in Chinese)
[44] ZHANG Y H, OLSEN K, GROSSI A. Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides. Food Chemistry, 2013, 141: 2343-2353.
doi: 10.1016/j.foodchem.2013.05.058
[45] LIU J B, CHEN Z F, HE J, ZHANG Y, ZHANG T, JIANG Y Q. Anti-oxidative and anti-apoptosis effects of egg white peptide, Trp-Asn-Trp-Ala-Asp, against H2O2-induced oxidative stress in human embryonic kidney 293 cells. Food & Function, 2014, 5(12): 3179-3188. doi: 10.1039/c4fo00665h.
doi: 10.1039/c4fo00665h
[46] 贾韶千, 李艳霞. 黄鳝鱼骨多肽制备及其抗氧化活性. 食品科学, 2016, 37(1): 133-138. doi: 10.7506/spkx1002-6630-201601024.
doi: 10.7506/spkx1002-6630-201601024
JIA S Q, LI Y X. Preparation and antioxidant activity of Monopterus albus bone peptides. Food Science, 2016, 37(1): 133-138. doi: 10.7506/spkx1002-6630-201601024. (in Chinese)
doi: 10.7506/spkx1002-6630-201601024
[1] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[2] WEI QiHang,FENG Yao,MA QianQian,LI YanLi,LIU YuanWang,LI ZhaoJun,REN YanFang. Application Effect of Fungi Promoting Secondary Fermentation in Composting [J]. Scientia Agricultura Sinica, 2021, 54(24): 5240-5250.
[3] WANG YuLin,LEI Lin,XIONG WenWen,YE FaYin,ZHAO GuoHua. Effects of Steaming-Retrogradation Pretreatment on Physicochemical Properties and in Vitro Starch Digestibility of the Roasted Highland Barley Flour [J]. Scientia Agricultura Sinica, 2021, 54(19): 4207-4217.
[4] GU MingHui,YANG ZeSha,MA Ping,GE XinYu,LIU YongFeng. Application of Ultrasound-Assisted Thawing in the Role of Maintaining Physicochemical Properties and Reducing Protein Loss in Mutton During Multiple Freeze-Thaw Cycles [J]. Scientia Agricultura Sinica, 2021, 54(18): 3970-3983.
[5] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[6] GOU XiaoJu, TIAN You, GUO YuRong, YANG Xi, HOU YanJie, PING JiaXin, LI Ting. Analysis and Evaluation on Quality of Not from Concentrate Apple Juices in Different Maturation Period [J]. Scientia Agricultura Sinica, 2018, 51(19): 3778-3790.
[7] LIU XiWei, ZHANG Min, ZHANG YuChun, YANG Min, SONG XiaoJun, CAI RuiGuo. Effects of Shading at Grain Filling Stages on Starch Components and Physicochemical Properties of the Waxy Wheat and Non-Waxy Wheat [J]. Scientia Agricultura Sinica, 2017, 50(9): 1582-1593.
[8] GAO Xi-xi, ZHANG Shu-wen, LU Jing, LIU Lu, PANG Xiao-yang, YUE Xi-qing, Lü Jia-ping. Chemical Compositions and Physicochemical Properties of Milk Fat and Fractions Obtained by Short-Path Distillation [J]. Scientia Agricultura Sinica, 2016, 49(11): 2183-2193.
[9] GENG Yi-wen, HA Yi-ming, JIN Jing, LI Qing-peng. Apple Pomace Dietary Fibre Modification by Hydrogen Peroxide [J]. Scientia Agricultura Sinica, 2015, 48(19): 3979-3988.
[10] SU Dong-Xiao, LIAO Sen-Tai, ZHANG Ming-Wei, HOU Fang-Li, TANG Xiao-Jun, WEI Zhen-Cheng, ZHANG Rui-Fen, CHI Jian-Wei, ZHANG Yan, DENG Yuan-Yuan. Effect of Spray Drying Processing on the Physicochemical Properties of Instant Longan Powder [J]. Scientia Agricultura Sinica, 2011, 44(18): 3830-3839.
[11] LI Hong-mei,CHENG Zi-qiang,LIU Jian-zhu,LIU Fa-xiao,GUO Hui-jun,CUI Zhi-zhong
. Effect of Co- infection with REV and ALV-J on T Lymphocytes Bioactivities and Histopathology in Broiler Chickens#br# [J]. Scientia Agricultura Sinica, 2009, 42(9): 3296-3304 .
[12] Yong-Qiang ZHANG Wei DING Zhi-mo ZHAO Jing WU Yu-Hu FAN. Temporal and Spatial Dynamic Studies on Acarcidal Bioactivities of Artemisia annua L. against Tetranychus cinnabarinus Bois. (Acari: Tetranychidae) [J]. Scientia Agricultura Sinica, 2008, 41(3): 720-726 .
[13] ,,,,. Bioactivities and Physiological Effects of Extracts of Peganum harmala Against Bursaphelenchus xylophilus [J]. Scientia Agricultura Sinica, 2005, 38(10): 2014-2022 .
[14] ,,. Formation and Physicochemical Properties of Pressure-Induced Gels [J]. Scientia Agricultura Sinica, 2005, 38(08): 1652-1657 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!