Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (15): 3134-3145.doi: 10.3864/j.issn.0578-1752.2020.15.013

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Research Progress of Microbial Deodorization in Livestock and Poultry Wastes Composting

WEI QiHang1,2(),REN YanFang1(),HE JunYu1,LI ZhaoJun2()   

  1. 1School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, Jiangsu
    2Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/ Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2019-09-20 Accepted:2020-05-11 Online:2020-08-01 Published:2020-08-06
  • Contact: YanFang REN,ZhaoJun LI E-mail:15996166142@163.com;yanfangren@126.com;lizhaojun@caas.cn

Abstract:

With the intensive and industrialized development of livestock and poultry breeding industry in the world, a large number of breeding wastes are generated, which seriously affect the ecological environment and threaten the health of human and livestock. Now, the resource utilization of livestock and poultry breeding waste has been widely concerned. Aerobic composting technology is the most favorable treatment method at present. However, the odor produced by composting makes the popularization of aerobic composting technology face huge problems. In the process of composting, the odor gases not only threaten human health, but also bring a series of environmental problems. Therefore, it is very important to remove odor gases adequately and effectively in composting process. The paper summarized the emission characteristics of odor gases and the transformation characteristics of source materials, and analyzed the influencing factors of odor gases during composting in detail. Moreover, the biological treatment technology and the mechanism of microbial control of odor gases were discussed from two aspects: in-situ removal technology and ectopic removal technology. The following conclusions were drawn: odor gases (NH3, H2S and volatile organic compounds) were mainly generated in the heating period and high temperature period of the composting process; the optimum temperature was 55-60℃, with the moisture of 50%-60%, pH of 7.5 to 8.5, C/N for 25-30, oxygen concentration of 10%-18%, and organic matter content of 50%-80%; at the same time, it could choose the right means of compost, optimal frequency of turning heaps and adding exogenous microorganisms to make odor gases minimize; a deodorizing microbial strain usually only had high removal efficiency of one odor gas component, and it was difficult to remove a variety of odor gases at the same time; compound deodorizing microbial agents could remove a variety of odor gas components at the same time, but the removal efficiency was relatively low. It was suggested that the transformation of organic matter, the change of microbial community and the rule of odor gases production should be further studied, so as to reduce the production of odor gases as much as possible during the heating period and high temperature period of compost. Research should focus on development of composite deodorizing microbial agents, and explore the effect and mechanism of microbial deodorization.

Key words: livestock and poultry wastes, aerobic composting, odor, influence factors, microbial technology

Fig. 1

The transformation processes of nitrogenous organic matter"

Table 1

The allowance concentrations and characteristic odor of each VOCs component in compost"

挥发性有机化合物
Volatile organic compound
分子式
Molecular formula
允许浓度
The allowance concentration (mg·m-3)
气味特征
Characteristic odor
二甲苯 Xylene C8H10 100 刺激性气味Pungent odor
丙酮 Acetone CH3COCH3 750 辛辣气味 Acrid odor
甲基乙基酮 Methyl ethyl ketone C4H8O 100 辛辣气味 Acrid odor
环己酮 Cyclohexanone C6H10O 25 刺鼻臭味 Pungent stench
乙醛 Acetaldehyde CH3CHO 10 刺激性气味 Pungent odor
丙烯腈 Acrylonitrile C3H3N 40 刺激性气味 Pungent odor

Table 2

The optimum parameter of influence factors in compost"

影响因素 Influence factor 最佳参数 Optimum parameter 参考文献 Reference
温度 Temperature (℃) 55-60 [27, 35, 48]
水分 Moisture (%) 50-60 [33, 36, 47, 56]
pH 7.5-8.5 [33-34, 47, 55]
C/N Carbon-nitrogen ratio 25-30 [41, 54-56]
氧气浓度 Oxygen concentration (%) 10-18 [33-35, 44]
有机质含量 Organic content (%) 50-80 [36, 47-48]

Table 3

The comparison of biofilter, bio-trickling filter and bioscrubber"

生物过滤
Biofilter
生物滴滤
Bio-trickling filter
生物洗涤
Bioscrubber
特点
Feature
生物相和液相固定
Stationary biofacies and liquid
一个反应器
One reactor
生物相固定、流动液相
Stationary biofacies and fluid liquid
一个反应器
One reactor
生物相悬浮、液相流动
Suspended biofacies and fluid liquid
两个反应器
Two reactors
优点
Advantage
设备简单
Simple device
气液比表面积大
Large surface area of gas-liquid ratio
运行费用低
Low operation cost
工艺成熟
Technical maturity
操作安全
Operational safety
无二次污染
No secondary pollution
效率高达90%
The removal rate reach 90%
不需要另加营养物
No need add nutrient
设备简单
Simple device
污染负荷大
Large pollution load
缓冲能力强
Better buffer ability
无二次污染
No secondary pollution
处理效率高
High treatment efficiency
不需要更换填料
No need replace material regularly
设备紧凑
Compact device
低压力损失
Low-pressure loss
反应条件易控制
Easy to control reaction condition
除氨效率可达99.5%
The removal rate of NH3 reach 99.5%
H2S的去除率达85%
The removal rate of H2S reach 85%
缺点
Disadvantage
反应条件难控制
Difficult to control reaction condition
适应能力较差
Poor adaptability
占地面积大
Large occupied area
需要定期更换材料
Need replace material regularly
传质表面积小
Small surface area of mass transfer
需处理剩余污泥
Need treat residual sludge
运行费用高
High operation cost
气液比表面积小
Small surface area of gas-liquid ratio
设备启动复杂
Be complex to start equipment
传质表面积小
Small surface area of mass transfer
需处理剩余污泥
Need treat residual sludge
投资费用高
High investment cost
需要大量氧气
Need vast oxygen
需要另加营养物
Need add nutrient
适用范围
Application scope
污染物浓度0.5-1 g·m-3
Pollutant concentration: 0.5-1 g·m-3
处理气量大、浓度低的含氨气体
Applicable to treat massive and low
concentration ammonia-containing gas
污染物浓度<0.5 g·m-3
Pollutant concentration<0.5 g·m-3
对负荷较高及污染物降解后生成酸性物质的含氨气体有较好处理效果
Applicable to treat high load ammonia-containing gas which generate acidoid after degradation of pollutant
污染物浓度1-5 g·m-3
Pollutant concentration: 1-5 g·m-3
用于处理气量小、浓度大的含氨气体
Applicable to treat less and high concentration ammonia-containing gas

Table 4

Screening, identification and optimum condition of deodorizing strains"

菌株来源
Source of strain
菌株
Strain
鉴定
Identification
除臭率Deodorization (%) 复合菌剂
Compound microbial agent
优化条件
Optimum condition
参考文献
Reference
NH3 H2S
猪粪Pig feces XA12
XB2
XB9
乳酸片球菌Pediococcus acidilactici
解淀粉芽孢杆菌Bacillus amylolique faciens
罗伦隐球酵母Cryptococcus laurentii
61.17
63.5
56.64
/
/
/
XA12+XB2+XB9
NH3去除率85.6%
The removal rate of NH3 reach 85.6%
温度32℃ pH7.0
Temperature 32℃ pH7.0
接种量10% 时间54 h
Inoculum 10% Time 54 h
[79]
垃圾渗滤液
Leachate water
CC3
CC7
CC13
CC16
乳酸片球菌Pediococcus acidilactici
巨大芽孢杆菌Bacillus megaterium
嗜酸乳杆菌Lactobacillus acidophilus
粪产碱杆菌Alcaligenes faecalis
62.25
51.78
67.68
56.25
50.23
48.75
60.95
52.23
CC7:CC13:CC16 = 2:3:1
NH3去除率83.56%
The removal rate of NH3 reach 83.56%
H2S去除率70.25%
The removal rate of H2S reach 70.25%
温度30℃ pH6.5
Temperature 30℃ pH6.5
接种量5% 时间60 h
Inoculum 5% Time 60 h
[80]
垃圾场土样
Soil sample of wasteyard
X8
X12
R5
R8
J8
巴氏醋杆菌Acetobacter pasteurianus
玉米乳杆菌Lactobacillus zeae
副干酪乳杆菌Lactobacillus paracasei
发酵乳杆菌Lactobacillus fermentum
酿酒酵母Saccharomyces cerevisiae
86.54
70.32
79.78
88.47
78.46
71.34
62.49
73.98
75.45
62.68
X8+X12+R5+R8+J8
NH3去除率92.68%
The removal rate of NH3 reach 92.68%
H2S去除率84.72%
The removal rate of H2S reach 84.72%
温度38℃ pH3.5
Temperature 38℃ pH3.5
稀释倍数80 时间24 h
Dilution ratio 80 Time 24 h
[81]
猪粪Pig feces
活性污泥Activated sludge
垃圾Rubbish
秸秆Straw
BX3
AX4
AF2
BZ1/DZ1/
DZ3/EZ3
细菌Bacteria
细菌Bacteria
放线菌Actinomycetes
真菌Fungi
80.07
/
/
>50
76.92
>80
>75
/
AF2+DZ1+BX3+DZ3+BZ1+EZ3+AX4
NH3去除率82.14%
The removal rate of NH3 reach 82.14%
H2S去除率80.84%
The removal rate of H2S reach 80.84%
堆肥接种量5%
Inoculum of compost 5%
[82]
猪粪Pig feces
土壤Soil sample
Z2 弯曲芽孢杆菌Bacillus flexus 71 62.3 接种量1%-5%
Inoculum 1%-5%
[83]
鸡粪Chicken feces CCJZO22 红平红球菌Rhodococcus erythropolis 66.73 54.51 温度30℃ pH7.0
Temperature 30℃ pH7.0
接种量12%
Inoculum 12%
[84]
粪污Feces JFF-2
JFF-3
地衣芽孢杆菌Bacillus licheniformis
粪产碱杆菌Alcaligenes faecalis
/
/
84.02
86.12
[85]
猪粪Pig feces
土壤Soil sample
YX-3 暹罗芽孢杆菌Bacillus siamensi 56.9 8.6 温度30-40℃
Temperature 30-40℃
接种量8%
Inoculum 8%
[59]
活性污泥Activated sludge Y1 不动杆菌Acinetobacter 99(NH4+-N) / 温度30-35℃
Temperature 30-35℃
pH7.0 时间24 h
pH7.0 Time 24 h
转速150 r/min
Shake speed at 150 r/min
[86]
制药厂原水
Raw water of pharmaceutical factory
JR1 不动杆菌Acinetobacter 98.5(NH4+-N) / 温度30℃
Temperature 30℃
pH4.5 时间24 h
pH4.5 Time 24 h
C/N 16
Carbon-nitrogen ratio at 16
[87]
[1] 中国物资再生协会. 《关于推进农业废弃物资源化利用试点的方案》解读. 中国资源综合利用, 2016,34(10):15-16.
China National Resources Recycling Association. Interpretation of the plan for promoting the pilot of agricultural waste recycling. China Resources Comprehensive Utilization, 2016,34(10):15-16. (in Chinese)
[2] PAGANS E L, FONT X, SÁNCHEZ A. Biofiltration for ammonia removal from composting exhaust gases. Chemical Engineering Journal, 2005,113(2/3):105-110.
doi: 10.1016/j.cej.2005.03.004
[3] 汪开英, 吴捷刚, 赵晓洋. 畜禽场空气污染物检测技术综述. 中国农业科学, 2019,52(8):1458-1474.
doi: 10.3864/j.issn.0578-1752.2019.08.015
WANG K Y, WU J G, ZHAO X Y. Review of measurement technologies for air pollutants at livestock and poultry farms. Scientia Agricultura Sinica, 2019,52(8):1458-1474. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.08.015
[4] 简保权, 周磊, 杨红文, 秦学敏, 邓先德. 规模畜禽场臭气防治研究进展. 安徽农业科学, 2014,42(17):5511-5513, 5619.
JIAN B Q, ZHOU L, YANG H W, QIN X M, DENG X D. Research progress of odor controlling in scale livestock and poultry farms. Journal of Anhui Agricultural Sciences, 2014,42(17):5511-5513, 5619. (in Chinese)
[5] NDEGWA P M, HRISTOV A N, AROGO J, SHEFFIELD . A review of ammonia emission mitigation techniques for concentrated animal feeding operations. Biosystems Engineering, 2008,100(4):453-469.
doi: 10.1016/j.biosystemseng.2008.05.010
[6] DOMINGO J, ROVIRA J, VILAVERT L, NADAL M, FIGUERAS M J, SCHUHMACHER M. Health risks for the population living in the vicinity of an integrated waste management facility: Screening environmental pollutants. Science of the Total Environment, 2015,518/519:363-370.
doi: 10.1016/j.scitotenv.2015.03.010
[7] 曹文胜, 曹军, 王阳, 刘永德. 微生物接种应用于好氧堆肥的研究进展. 绿色科技, 2016(24):18-19, 21.
CAO W S, CAO J, WANG Y, LIU Y D. Application of microbial inoculation in aerobic composting: A review. Journal of Green Science and Technology, 2016(24):18-19, 21. (in Chinese)
[8] ANDERSEN J K, BOLDRIN A, CHRISTENSEN T H, SCHEUTZ C. Greenhouse gas emissions from home composting of organic household waste. Waste Management, 2010,30(12):2475-2482.
pmid: 20674324
[9] 张红玉, 李国学, 杨青原. 生活垃圾堆肥过程中恶臭物质分析. 农业工程学报, 2013,29(9):192-199.
ZHANG H Y, LI G X, YANG Q Y. Odor pollutants analyzing during municipal solid waste (MSW) composting. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(9):192-199. (in Chinese)
[10] 简保权. 猪粪堆肥过程中NH3和H2S的释放特点及除臭微生物的筛选研究[D]. 武汉: 华中农业大学, 2006.
JIAN B Q. Studies on the characteristics of ammonia and hydrogen sulfide volatilization during composting of pig manure and screening of deodorizing microorganisms[D]. Wuhan: Huazhong Agricultural University, 2006. (in Chinese)
[11] 许修宏, 赵晓雨, 李洪涛, 徐杰. 牛粪堆肥中氮素转化关键菌群的动态变化影响. 东北农业大学学报, 2015,46(8):26-31.
XU X H, ZHAO X Y, LI H T, XU J. Dynamic variation of key nitrogen transformation microflora in cow manure compost. Journal of Northeast Agricultural University, 2015,46(8):26-31. (in Chinese)
[12] 廖黎明, 赵力剑, 卢宇翔, 陈孟林, 宿程远. 固体废弃物堆肥过程中氮素转化及损失控制策略研究. 环境工程, 2019,37(2):133-137.
LIAO L M, ZHAO L J, LU Y X, CHEN M L, SU C Y. Nitrogen trans formation and loss control strategy during composting of municipal solid wastes. Environmental Engineering, 2019,37(2):133-137. (in Chinese)
[13] 刘璐, 陈同斌, 郑国砥, 高定, 陈俊, 张军, 林海, 黄卓. 污泥堆肥厂臭气的产生和处理技术研究进展. 中国给水排水, 2010,26(13):120-124.
LIU L, CHEN T B, ZHENG G D, GAO D, CHEN J, ZHANG J, LIN H, HUANG Z. Odor production and treatment technologies in sewage sludge composting plant. China Water & Wastewater, 2010,26(13):120-124. (in Chinese)
[14] 于海娇. 猪粪堆肥化处理中硫化氢释放规律及处理工艺研究[D]. 沈阳: 沈阳建筑大学, 2015.
YU H J. Research on H2S release rule and treatment technology in pig manure composting[D]. Shenyang: Shenyang Jianzhu University, 2015. (in Chinese)
[15] 朱娟娟, 刘永德, 赵继红. 污泥堆肥过程中臭气的控制. 中国资源综合利用, 2014,32(3):43-44.
ZHU J J, LIU Y D, ZHAO J H. Discussion on controlling odor during sludge composting. China Resources Comprehensive Utilization, 2014,32(3):43-44. (in Chinese)
[16] 杜颖, 田野, 刘善江, 孙昊. 堆肥与有机肥料中硫含量检测方法研究. 湖北农业科学, 2018,57(15):84-87.
DU Y, TIAN Y, LIU S J, SUN H. Study on the determination of sulfur in composts and organic fertilizers. Hubei Agricultural Sciences, 2018,57(15):84-87. (in Chinese)
[17] MUSTAFA M F, LIU Y J, DUAN Z H, GUO H W, XU S, WANG H T, LU W J. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste. Journal of Hazardous Materials, 2017,327:35-43.
doi: 10.1016/j.jhazmat.2016.11.046 pmid: 28038430
[18] NIE E, ZHENG G D, SHAO Z Z, YANG J, CHEN T B. Emission characteristics and health risk assessment of volatile organic compounds produced during municipal solid waste composting. Waste Management, 2018,79:188-195.
doi: 10.1016/j.wasman.2018.07.024 pmid: 30343745
[19] RINCÓN C A, GUARDIA A D, COUVERT A, ROUX S L, SOUTREL I, DAUMOIN M, BENOIST J C. Chemical and odor characterization of gas emissions released during composting of solid wastes and digestates. Journal of Environmental Management, 2019,233:39-53.
doi: 10.1016/j.jenvman.2018.12.009 pmid: 30554023
[20] 尚斌, 周谈龙, 董红敏, 陶秀萍, 李路路, 刘杨. 生物过滤法去除死猪堆肥排放臭气效果的中试. 农业工程学报, 2017,33(11):226-232.
SHANG B, ZHOU T L, DONG H M, TAO X P, LI L L, LIU Y. Pilot scale test on removal effect of odor from pig manure and carcass composting by biofiltration. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(11):226-232. (in Chinese)
[21] 赵占楠, 赵继红, 马闯, 魏明宝, 张宏忠, 叶长明. 污泥堆肥过程中挥发性有机物(VOCs)的研究进展. 大气污染防治, 2014,32(11):93-97.
ZHAO Z N, ZHAO J H, MA C, WEI M B, ZHANG H Z, YE C M. Research progress of volatile organic compounds(VOCs) generated in sewage composting. Air Pollution Control, 2014,32(11):93-97. (in Chinese)
[22] 李明峰, 马闯, 赵继红, 刘桓嘉, 张蔓. 污泥堆肥臭气的产生特征及防控措施. 环境工程, 2014,32(1):92-96.
LI M F, MA C, ZHAO J H, LIU H J, ZHANG M. Odor in the progress of sewage sludge composting: production, characteristics, prevention and control strategies. Environmental Engineering, 2014,32(1):92-96. (in Chinese)
[23] KOMILIS D P, HAM R K, PARK J K. Emission of volatile organic compounds during composting of municipal solid wastes. Water Research, 2004,38(7):1707-1714.
pmid: 15026225
[24] HAN Z L, QI F, WANG H, LI R Y, SUN D Z. Odor assessment of NH3 and volatile sulfide compounds in a full-scale municipal sludge aerobic composting plant. Bioresource Technology, 2019,282:447-455.
doi: 10.1016/j.biortech.2019.03.062 pmid: 30889536
[25] GONZÁLEZ D, COLÓN J, SÁNCHEZ A, GABRIEL D. A systematic study on the VOCs characterization and odour emissions in a full-scale sewage sludge composting plant. Journal of Hazardous Materials, 2019,373:733-740.
doi: 10.1016/j.jhazmat.2019.03.131 pmid: 30959287
[26] KUMAR A, ALAIMO C P, HOROWITZ R, MITLOEHNER F M, KLEEMAN M J, GREEN P G. Volatile organic compound emissions from green waste composting: Characterization and ozone formation. Atmospheric Environment, 2011,45(10):1841-1848.
doi: 10.1016/j.atmosenv.2011.01.014
[27] EITZER B D. Emissions of volatile organic chemicals from municipal solid waste composting facilities. Environmental Science & Technology, 1995,29(4):896-902.
pmid: 22176396
[28] CONDE E, ALBA J, LOPEZ . Removal of complex mixtures of VOC (thinner) from waste air and establishment of the evolution of microbial consortium during biofiltration process. Advances in Air Pollution, 2001,10:355-364.
[29] KULIKOWSKA D. Kinetics of organic matter removal and humification progress during sewage sludge composting. Waste Management, 2016,49:196-203.
doi: 10.1016/j.wasman.2016.01.005 pmid: 26783099
[30] AWASTHI M K, DUAN Y, AWASTHI S K, LIU T, ZHANG Z Q. Effect of biochar and bacterial inoculum additions on cow dung composting. Bioresource Technology, 2020, 297:122407.
doi: 10.1016/j.biortech.2019.122407 pmid: 31776104
[31] LIU J, XU X H, LI H T, XU Y. Effect of microbiological inocula on chemical and physical properties and microbial community of cow manure compost. Biomass and Bioenergy, 2011,35(8):3433-3439.
doi: 10.1016/j.biombioe.2011.03.042
[32] KOYAMA M, NAGAO N, SYUKRI F, RAHIM A A, KAMARUDIN M S, TODA T, MITSUHASHI T, NAKASAKI K. Effect of temperature on thermophilic composting of aquaculture sludge: NH3 recovery, nitrogen mass balance, and microbial community dynamics. Bioresource Technology, 2018,265:207-213.
doi: 10.1016/j.biortech.2018.05.109 pmid: 29902653
[33] 周黎明. 畜禽规模养殖粪污的处理与利用. 畜牧兽医杂志, 2016,35(4):34-38.
ZHOU L M. Processing and utilization of the waste in the scale breeding of livestock and poultry. Journal of Animal Science and Veterinary Medicine, 2016,35(4):34-38. (in Chinese)
[34] 张晓华, 高帅, 段洪峰, 文立华, 戴求仲, 燕海峰. 中小规模奶牛场粪污处理与利用方案. 家畜生态学报, 2019,40(1):54-59.
ZHANG X H, GAO S, DUAN H F, WEN L H, DAI Q Z, YAN H F. Waste treatment and utilization in small and medium-sized dairy farm. Acta Ecologiae Animals Domastici, 2019,40(1):54-59. (in Chinese)
[35] 李群岭, 耿富卿. 好氧堆肥接种微生物的效果研究进展. 作物研究, 2014,28(7):867-870.
LI Q L, GENG F Q. Effect of aerobic composting on microorganism inoculation: A review. Crop Research, 2014,28(7):867-870. (in Chinese)
[36] CHAN M T, SELVAM A, WONG J W C. Reducing nitrogen loss and salinity during ‘struvite' food waste composting by zeolite amendment. Bioresource Technology, 2016,200:838-844.
doi: 10.1016/j.biortech.2015.10.093 pmid: 26590758
[37] SUN Y, ZHU L P, XU X H, MENG Q X, MEN M Q, XU B S, DENG L T. Correlation between ammonia-oxidizing microorganisms and environmental factors during cattle manure composting. Revista Argentins de Microbiología, 2019,51(4):371-380.
[38] 黄丹丹. 猪场沼液贮存中的气体排放研究[D]. 杭州: 浙江大学, 2013.
HUANG D D. Study on gas emission from piggery digested slurry[D]. Hanzhuo: Zhejiang University, 2013. (in Chinese)
[39] LIU L, KONG H M, LU B B, WANG J B, XIE Y, FANG P. The use of concentrated monosodium glutamate wastewater as a conditioning agent for adjusting acidity and minimizing ammonia volatilization in livestock manure composting. Journal of Environmental Management, 2015,161:131-136.
doi: 10.1016/j.jenvman.2015.06.029 pmid: 26164271
[40] 问鑫, 高凤仙. 堆肥技术在处理死畜禽上的应用. 湖南饲料, 2018(1):24-28.
WEN X, GAO F X. Application of composting technology in dead livestock and poultry treatment. Hunan Feed, 2018(1):24-28. (in Chinese)
[41] 张鹤, 李孟婵, 杨慧珍, 王友玲, 路永莉, 张春红, 邱慧珍. 不同碳氮比对牛粪好氧堆肥腐熟过程的影响. 甘肃农业大学学报, 2019,54(1):60-67.
ZHANG H, LI M C, YANG H Z, WANG Y L, LU Y L, ZHANG C H, QIU H Z. Effect of different carbon and nitrogen ratio on decayed process of aerobic composting of cow dung. Journal of Gansu Agricultural University, 2019,54(1):60-67. (in Chinese)
[42] ZHANG L, SUN X Y. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresource Technology, 2014,171:274-284.
doi: 10.1016/j.biortech.2014.08.079
[43] 田野, 刘善江, 陈益山. 不同水分和物料配比条件下堆肥氨气排放量研究. 中国土壤与肥料, 2019(5):127-134.
TIAN Y, LIU S J, CHEN Y S. Study on ammonia emission from composting under different moisture and material ratios. Soil and Fertilizer Sciences in China, 2019(5):127-134. (in Chinese).
[44] PETRIC I, HELIĆ A, AVDIĆ A. Evolution of process parameters and determination of kinetics for co-composting of organic fraction of municipal solid waste with poultry manure. Bioresource Technology, 2012, 117:107-116.
doi: 10.1016/j.biortech.2012.04.046 pmid: 22609720
[45] ZHANG H Y, LI G X, GU J, WANG G Q, LI Y Y, ZHANG D F. Influence of aeration on volatile sulfur compounds (VSCs) and NH3 emissions during aerobic composting of kitchen waste. Waste Management, 2016,58:369-375.
pmid: 27595496
[46] 沈玉君, 孟海波, 张朋月, 赵立欣, 周海宾, 侯月卿. 猪粪堆肥挥发性有机物的产生规律与影响因素. 农业工程学报, 2017,33(5):211-216.
SHEN Y J, MENG H B, ZHANG P Y, ZHAO L X, ZHOU H B, HOU Y Q. Generation law and influencing factors of volatile organic compounds during pig manure composting. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(5):211-216. (in Chinese)
[47] 覃俊达. 微生物特性对农业废物堆肥腐殖化的影响研究. 农业科技与信息, 2016,35:106-108, 111.
QIN J D. Effects of Microbial characteristics on humification of agricultural waste composting. Agricultural Science-technology and Information, 2016(35):106-108, 111. (in Chinese)
[48] 任甜甜, 陈静, 刘乃芝, 徐辉, 蒋正民, 石玉青. 猪粪好氧堆肥技术研究进展. 广东饲料, 2015,24(2):44-47.
REN T T, CHEN J, LIU N Z, XU H, JIANG Z M, SHI Y Q. Aerobic composting technology of pig manure: A review. Guangdong feed, 2015,24(2):44-47. (in Chinese)
[49] KOYAMA M, NAGAO N, SYUKRI F, RAHIM A A, TODA T, TRAN Q N M T, NAKASAKI K. Ammonia recovery and microbial community succession during thermophilic composting of shrimp pond sludge at different sludge properties. Journal of Cleaner Production, 2020,251:119718.
doi: 10.1016/j.jclepro.2019.119718
[50] 朱新梦, 董雯怡, 王洪媛, 严昌荣, 刘宏斌, 刘恩科. 牛粪堆肥方式对温室气体和氨气排放的影响. 农业工程学报, 2017,33(10):258-264.
ZHU X M, DONG W Y, WANG H Y, YAN C R, LIU H B, LIU E K. Effects of cattle manure composting methods on greenhouse gas and ammonia emissions. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(10):258-264. (in Chinese)
[51] YANG F, LI Y, HAN Y H, QIAN W T, LI G X, LUO W H. Performance of mature compost to control gaseous emissions in kitchen waste composting. Science of the Total Environment, 2019,657:262-269.
pmid: 30543975
[52] XU Z, ZHAO B, WANG Y Y, XIAO J L, WANG X. Composting process and odor emission varied in windrow and trough composting system under different air humidity conditions. Bioresource Technology, 2020,297:122482.
pmid: 31812913
[53] ONWOSI C O, IGBOKWE V C, ODIMBA J N, EKW I E, NWANKWOALA M O, IROH I N, EZEOGU L I. Composting technology in waste stabilization: On the methods, challenges and future prospects. Journal of Environmental Management, 2017,190:140-157.
doi: 10.1016/j.jenvman.2016.12.051 pmid: 28040590
[54] 王亚飞, 李梦婵, 邱慧珍, 张文明, 张春红, 李亚娟. 不同畜禽粪便堆肥的微生物数量和养分含量的变化. 甘肃农业大学学报, 2017,52(3):37-45.
WANG Y F, LI M C, QIU H Z, ZHANG W M, ZHANG C H, LI Y J. Changes of microbial quantity and nutrient content in different composting of livestock manure. Journal of Gansu Agricultural University, 2017,52(3):37-45. (in Chinese)
[55] 万合锋, 武玉祥, 聂飞, 杨广明, 黄振兴. 农业废物堆肥化处理技术控制简述. 浙江农业科学, 2019,60(3):523-527.
WAN H F, WU Y X, NIE F, YANG G M, HUANG Z X. Technical control of composting treatment of agricultural waste. Journal of Zhejiang Agricultural Sciences, 2019,60(3):523-527. (in Chinese)
[56] ZHU L J, ZHAO Y, ZHANG W S, ZHOU H X, CHEN X M, LI Y J, WEI D, WEI Z M. Roles of bacterial community in the transformation of organic nitrogen toward enhanced bioavailability during composting with different wastes. Bioresource Technoligy, 2019,285:121326.
[57] 张昊, 陈芳, 申杰, 皮劲松. 畜禽粪便堆肥产臭与生物除臭的研究进展. 家畜生态学报, 2018,39(1):84-89.
ZHANG H, CHEN F, SHEN J, PI J S. Research progress on odor emission in composting of livestock and poultry manure and biological deodorization. Acta Ecologiae Animals Domastici, 2018,39(1):84-89. (in Chinese)
[58] WANG Y, BI L L, LIAO Y H, LU D D, ZHANG H D, LIAO X D, LIANG J B, WU Y B. Influence and characteristics of Bacillus stearothermophilus in ammonia reduction during layer manure composting. Ecotoxicology and Environmental Safety, 2019,180:80-87.
pmid: 31078019
[59] 刘标, 尹红梅, 刘惠知. 病死猪堆肥降氨除臭微生物的筛选与鉴定. 科学技术与工程, 2018,18(34):248-252.
LIU B, YIN H M, LIU H Z. Screening and identification of deodorant microorganism for dead-pig composting. Science Technology and Engineering, 2018,18(34):248-252. (in Chinese)
[60] 于洪久, 郭炜, 王大蔚, 李玉梅, 刘杰, 边道林. 微生物菌剂对堆肥过程中氨挥发的影响. 黑龙江八一农垦大学学报, 2016,28(1):73-75, 83.
YU H J, GUO W, WANG D W, LI Y M, LIU J, BIAN D L. Effects of microorganism agent on ammonia volatilization during manures composting. Journal of Heilongjiang Bayi Agricultural University, 2016,28(1):73-75, 83. (in Chinese)
[61] 张生伟, 黄旺洲, 姚拓, 杨巧丽, 王鹏飞, 李生贵, 闫尊强, 滚双宝. 高效微生物除臭剂在畜禽粪便堆制中的应用效果及其除臭机理研究. 草业学报, 2016,25(9):142-151.
doi: 10.11686/cyxb2015388
ZHANG S W, HUANG W Z, YAO T, YANG Q L, WANG P F, LI S G, YAN Z Q, GUN S B. Effects of efficient microbial deodorizer in livestock manure composting and its deodorizing mechanism. Acta Prataculturae Sinica, 2016,25(9):142-151. (in Chinese)
doi: 10.11686/cyxb2015388
[62] 范建华, 李尚民, 吴兆林, 储卫华, 金波, 顾华兵, 彭兵, 窦新红. 嗜热除臭型发酵菌剂筛选及其在鸡粪堆肥发酵中的应用. 中国家禽, 2018,40(18):36-39.
FAN J H, LI S M, WU Z L, CHU W H, JIN B, GU H B, PENG B, DOU X H. Selection of heat resistant and deodorant fermentation agents and its application in composting of chicken manure. China Poultry, 2018,40(18):36-39. (in Chinese)
[63] RENE E R, SERGIENKO N, GOSWAMI T, LÓPEZ E, KUMAR G, SARATALE G D, VENKATACHALAM P, PAKSHIRAJAN K, SWAMINATHAN T. Effects of concentration and gas flow rate on the removal of gas-phase toluene and xylene mixture in a compost biofilter. Bioresource Technology, 2018,248(B):28-35.
doi: 10.1016/j.biortech.2017.08.029
[64] DAS J, RENE E R, DUPONT C, DUFOERNY A, BLIN J, HULLEBUSCH E D. Performance of a compost and biochar packed biofilter for gas-phase hydrogen sulfide removal. Bioresource Technology, 2019,273:581-591.
pmid: 30476867
[65] FERDOWSI M, RAMIREZ A A, JONES J P, HEITZ M. Elimination of mass transfer and kinetic limited organic pollutants in biofilters: A review. International Biodeterioration & Biodegradation, 2017,119:336-348.
[66] LIU F, FIENCKE C, GUO J B, RIETH R, DONG R J, PFEIFFER E. Performance evaluation and optimization of field-scale bioscrubbers for intensive pig house exhaust air treatment in northern Germany. Science of the Total Environment, 2017,579:694-701.
doi: 10.1016/j.scitotenv.2016.11.039
[67] SAN-VALERO P, PENYA-ROJA J M, ALVAREZ-HORNOS F J, BUITRÓN G, GABALDÓN C, QUIJANO G. Fully aerobic bioscrubbers for the desulfurization of H2S-rich biogas. Fuel, 2019,241:884-891.
doi: 10.1016/j.fuel.2018.12.098
[68] 刘建伟, 栾昕荣. 规模化养殖场氨排放控制技术研究进展. 中国畜牧杂志, 2016,52(10):49-55.
LIU J W, LUAN X R. Advances of ammonia emission control technology in large-scale farms. Chinese Journal of Animal Science, 2016,52(10):49-55. (in Chinese)
[69] MUDLIAR S, GIRI B, PADOLEY K, SATPUTE D, DIXIT R, BHATT P, PANDEY R, JUWARKAR A, VALDYA A. Bioreactors for treatment of VOCs and odours-A review. Journal of Environmental Management, 2010,91(5):1039-1054.
pmid: 20181422
[70] BARBUSINSKI K, KALEMBA K, KASPERCZYK D, URBANIEC K, KOZIK V. Biological methods for odor treatment-A review. Journal of Cleaner Production, 2017,152:223-241.
doi: 10.1016/j.jclepro.2017.03.093
[71] RYBARCZYK P, SZULCZYŃSKI B, GEBICKI J, HUPKA J. Treatment of malodorous air in biotrickling filters: A review. Biochemical Engineering Journal, 2019,141:146-162.
doi: 10.1016/j.bej.2018.10.014
[72] 黄玉杰, 陈贯虹, 张强, 张闻, 孔学, 傅晓文, 王加宁. 微生物除臭剂在畜禽粪便无害化处理中的应用进展. 当代畜牧, 2017,9:53-57.
HUANG Y J, CHEN G H, ZHANG Q, ZHANG W, KONG X, FU X W, WANG J N. Application of microbial deodorant in the harmless treatment of livestock manure. Contemporary Animal Husbandry, 2017,9:53-57. (in Chinese)
[73] NAGHDI M, CLEDON M, BRAR S K, RAMIREZ A A. Nitrification of vegetable waste using nitrifying bacteria. Ecological Engineering, 2018,121:83-88.
doi: 10.1016/j.ecoleng.2017.07.003
[74] CHO K H, KIM J, KANG S, PARK H, KIM S, KIM Y M. Achieving enhanced nitrification in communities of nitrifying bacteria in full-scale wastewater treatment plants via optimal temperature and pH. Separation and Purification Technology, 2014,132:697-703.
doi: 10.1016/j.seppur.2014.06.027
[75] 卢云黎, 谢卫民, 钱宝. 几种常见除臭微生物的应用. 水利水电快报, 2016,37(11):59-61.
LU Y L, XIE W M, QIAN B. Application of several common deodorizing microorganisms. Express Water Resources & Hydropower Information, 2016,37(11):59-61. (in Chinese)
[76] RAMÍREZ M, GÓMEZ J M, AROCA G, CANTERO D. Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam. Bioresource Technology, 2009,100(21):4989-4995.
doi: 10.1016/j.biortech.2009.05.022 pmid: 19501506
[77] CHO K S, RYU H W, LEE N Y. Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillus thiooxidans. Journal of Bioscience and Bioengineering, 2000,90(1):25-31.
pmid: 16232813
[78] 屈艳芬, 叶锦韶, 尹华. 生物过滤法处理城市污水处理厂臭气. 生态科学, 2005,24(1):18-20.
QU Y F, YE J S, YIN H. Removal on odor of municipal sewage by biofiltration. Ecological Science, 2005,24(1):18-20. (in Chinese)
[79] 韩保安, 凌超, 李扬, 鲍大林, 赵鸿涛, 胡子全, 赵海泉. 猪粪除臭菌的筛选、复配以及培养条件的优化. 家畜生态学报, 2017,38(12):55-61, 72.
HAN B A, LING C, LI Y, BAO D L, ZHAO H T, HU Z Q, ZHAO H Q. Selection of pig manure deodorant, compound and optimization of culture conditions. Journal of Domestic Animal Ecology, 2017,38(12):55-61, 72. (in Chinese)
[80] 曾苏, 李南华, 贺琨, 胡子全. 垃圾微生物除臭剂的筛选、复配及其培养条件的优化. 微生物学杂志, 2015,35(2):72-77.
ZENG S, LI N H, HE K, HU Z Q. Screening, combination of microbial deodorant for garbage & optimization of its culture conditions. Journal of Microbiology, 2015,35(2):72-77. (in Chinese)
[81] 李海龙, 胡峻, 吴小国, 马威, 刘美玲. 除臭微生物的筛选、鉴定及其应用效果. 环境科学与技术, 2016,39(S2):73-78.
LI H L, HU J, WU X G, MA W, LIU M L. Screening, identification of deodorant microbial and its application effect. Environment Science & Technology, 2016,39(S2):73-78. (in Chinese)
[82] 张生伟, 姚拓, 黄旺洲, 杨巧丽, 滚双宝. 猪粪高效除臭微生物菌株筛选及发酵条件优化. 草业学报, 2015,24(11):38-47.
doi: 10.11686/cyxb2014513
ZHANG S W, YAO T, HUANG W Z, YANG Q L, GUN S B. Optimization of fermentation conditions of swine manure and screening for efficient microbial deodorant strains. Acta Prataculturae Sinica, 2015,24(11):38-47. (in Chinese)
doi: 10.11686/cyxb2014513
[83] 沈琦, 孙筱君, 吴逸飞, 姚晓红, 李园成, 孙宏, 王新, 汤江武. 畜禽粪污除臭微生物的筛选与鉴定. 浙江农业科学, 2019,60(11):2110-2113.
SHEN Q, SUN X J, WU Y F, YAO X H, LI Y C, SUN H, WANG X, TANG J W. Screening and identification of deodorant microorganism for livestock manure. Journal of Zhejiang Agricultural Science, 2019,60(11):2110-2113. (in Chinese)
[84] 张宏才, 魏荷芬, 汪顺丽, 胡子全, 赵海泉. 鸡粪除臭菌的筛选、培养条件优化及其应用. 安全与环境学报, 2017,17(1):250-255.
ZHANG H C, WEI H F, WANG S L, HU Z Q, ZHAO H Q. Optimized microorganism for deodorizing the chicken manure, and the related culture conditions. Journal of Safety and Environment, 2017,17(1):250-255. (in Chinese)
[85] 刘雪纯, 耿晓晴, 丁轲, 余祖华, 李旺, 李元晓, 何万领. 规模化猪场粪污高效脱硫菌的分离、筛选与鉴定. 中国畜牧杂志, 2020,56(3):107-110.
LIU X C, GENG X Q, DING K, YU Z H, LI W, LI Y X, HE W L. Isolation, screening and identification of high efficient desulfurizing bacteria from pig manure. Chinese Journal of Animal Science, 2020,56(3):107-110. (in Chinese)
[86] LIU Y X, HU T T, SONG Y J, CHEN H P, LV Y K. Heterotrophic nitrogen removal by Acinetobacter sp. Y1 isolated from coke plant wastewater. Journal of Bioscience and Bioengineering, 2015,120(5):594-554.
[87] YANG J R, WANG Y, CHEN H, LYU Y K. Ammonium removal characteristics of an acid-resistant bacterium Acinetobacter sp. JR1 from pharmaceutical wastewater capable of heterotrophic nitrification- aerobic denitrification. Bioresource Technology, 2019,274:56-64.
pmid: 30500764
[1] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[2] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[3] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[4] LI XiaoYing, WU JunKai, WANG HaiJing, LI MengYuan, SHEN YanHong, LIU JianZhen, ZHANG LiBin. Characterization of Volatiles Changes in Chinese Dwarf Cherry Fruit During Its Development [J]. Scientia Agricultura Sinica, 2021, 54(9): 1964-1980.
[5] WANG Bing,LI HuiMin,CAO HaiQun,WANG GuiRong. Mechanisms and Applications of Plant-Herbivore-Natural Enemy Tritrophic Interactions Mediated by Volatile Organic Compounds [J]. Scientia Agricultura Sinica, 2021, 54(8): 1653-1672.
[6] QIN JianHui,LI JinQiao,ZHAO Xu,LI KeBin,CAO YaZhong,YIN Jiao. Expression, Purification and Functional Analysis of Odorant Binding Protein 11 (OBP11) in Anomala corpulenta [J]. Scientia Agricultura Sinica, 2021, 54(14): 3017-3028.
[7] WANG ShanShan,ZHAO ChenHui,LI HongLian,ZHANG BingBing,LIANG YingHai,SONG HongWei. Analysis of Fruit Aromatic Components of Ten Plum Germplasm Resources in Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(11): 2476-2486.
[8] WANG KaiYing,WU JieGang,ZHAO Xiaoyang. Review of Measurement Technologies for Air Pollutants at Livestock and Poultry Farms [J]. Scientia Agricultura Sinica, 2019, 52(8): 1458-1474.
[9] Ling LI,Yao TAN,XiaoRong ZHOU,BaoPing PANG. Molecular Cloning, Prokaryotic Expression and Binding Characterization of Odorant Binding Protein GdauOBP20 in Galeruca daurica [J]. Scientia Agricultura Sinica, 2019, 52(20): 3705-3712.
[10] LI XiaoYing,WANG HaiJing,XU NingWei,CAO CuiLing,LIU JianZhen,WU ChunCheng,ZHANG LiBin. Analysis of Volatile Components in Cerasus Humilis (Bge.) Sok by Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry [J]. Scientia Agricultura Sinica, 2019, 52(19): 3448-3459.
[11] LI Du, NIU ChangYing, LI FengQi, LUO Chen. Binding Characterization of Odorant Binding Protein OBP56h in Drosophila suzukii with Small Molecular Compounds [J]. Scientia Agricultura Sinica, 2019, 52(15): 2616-2623.
[12] DONG Jing,ZHONG ChuanFei,WANG GuiXia,CHANG LinLin,SUN Jian,SUN Rui,ZHANG HongLi,LI Rui,WEI YongQing,ZHENG ShuQi,ZHANG YunTao. Comparative Study on Fruit Volatiles of Different Day-Neutral Strawberry Cultivars in Autumn and Winter [J]. Scientia Agricultura Sinica, 2019, 52(13): 2309-2327.
[13] CHEN DongKai, ZHANG LinYa, XING ZhenLong, LEI ZhongRen. Identification and Function of the OBP13 Protein from the Leafminer (Liriomyza sativae) [J]. Scientia Agricultura Sinica, 2018, 51(5): 893-904.
[14] CHENG DengMiao, LI ZhaoJun, ZHANG XueLian, FENG Yao, ZHANG ShuQing. Removal of Veterinary Antibiotics in Livestock and Poultry Manure: A Review [J]. Scientia Agricultura Sinica, 2018, 51(17): 3335-3352.
[15] LIU HangWei, ZHANG Qiang, Geng Ting, DONG Kun, AN XingKui, WANG Qi, ZHANG YongJun, GUO YuYuan. Comparison of Two Methods in Analysis of Binding Characteristics of Odorant Binding Proteins AlucOBP21 of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2017, 50(23): 4585-4592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!