Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (8): 1458-1474.doi: 10.3864/j.issn.0578-1752.2019.08.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Review of Measurement Technologies for Air Pollutants at Livestock and Poultry Farms

WANG KaiYing,WU JieGang,ZHAO Xiaoyang   

  1. Institute of Agricultural Bio-Environmental Engineering, Zhejiang University, Hangzhou 310058
  • Received:2018-08-02 Accepted:2019-02-22 Online:2019-04-16 Published:2019-04-26

Abstract:

With the intensification of livestock breeding, the air quality problem of livestock farms caused by high density breeding is becoming more and more serious. Animal husbandry has become one of the important sources of air pollutants in China. Air emitted from most intensive livestock houses contains a large amount of pollutants, including ammonia, sulfides, particulate matters (PM), volatile organic compounds (VOCs), which not only poses a big threat to animals and workers in livestock farms, but also spreads to the surrounding environment resulting in air pollution. Scientific and applicable air pollutants measuring methods are the basis of monitoring and controlling air pollution in livestock and poultry farms. In this article, the detection methods of livestock farming related hazardous gases (e.g., NH3, H2S), greenhouse gases, particulate matters and odor were summarized. The detection methods of hazardous gases in livestock houses mainly include chemical analysis, semiconductor gas sensor detection, spectroscopic methodology and mass spectrometry. The wet-chemical method is cheap and can detect gases sensitively and accurately, while it cannot detect gases in real time, and the process is time-consuming and labor-intensive. The gas tube is cheap and easy to operate, but the deviation is great. Electrochemical sensor is of high sensitivity, moderate cost and can be used to detect gas concentration continuously, however, the devices are easy to age. Spectrum method and mass spectrometry can detect gas quickly and accurately, but it is not suitable for conventional air detection of productive livestock farming due to its high costs. In this paper, the detection methods of greenhouse gases (e.g., CH4, CO2) generated from animal intestinal fermentation and livestock environment were also summarized. It is hard to conclude an accurate detection of greenhouse gases in animal husbandry, because the concentrations of greenhouse gases in animal husbandry changes all the time (diurnal and seasonal) and are related to other factors including sampling points. No international common testing method and measurement standard are concluded till now, therefore, the research of greenhouse gases detection method and standard in animal husbandry should be carried out as soon as possible. The detection methods of particulate matters (PM) in livestock farms were reviewed from three aspects: physical, chemical and biological characteristics. PM contains complex components in livestock farms, therefore, it is highly needed to improve PM detection technology. Besides, the component analysis and sensory analysis of odorous substances in livestock farms were overviewed. The odor analysis of professional olfactory discernment personnel owns stronger subjectivity and costs higher than gas chromatography- mass spectrometry. While, using gas chromatography-mass spectrometry is unable to determine all gaseous organic compounds with one sample. Combining gas chromatography and dynamic olfactometer can be more efficient for comprehensive analysis of odor samples. In this article, detection methods and techniques of air pollutants in animal husbandry were comprehensively reviewed to provide a reference for the development of air pollutants detection technologies in livestock and poultry breeding in China.

Key words: livestock and poultry farm, air pollution, measurement, harmful gases, particulate matter, odor

Table 1

Comparison of active and passive gas dosimeter tubes"

气体检测管种类
Gas sampling tube type
准确性
Accuracy
检测限
Detection limit
反应时间
Reaction time
采样成本
Cost
主动式 Active 较差 Worse 较高 Higher s 较低 Lower
被动式 Passive 较好 Better 较低 Lower h 较高 Higher

Table 2

Comparison of NH3 measurement methods"

灵敏度
Sensitivity
检测方法
Testing method
数据表达
Readout
采样方式
Active or passive
反应时间
Response time
仪器成本
Cost
湿化学法
Wet-chemical method
0.1-1mg·L-1
Point
间接
Indirect
主动
Active
h
Low
pH试纸法
pH test paper method
mL·L-1
Point
直接
Direct
被动
Passive
s 非常低
Very low
主动采样管
Active dosimeter tubes
0.5 mL·L-1
Point
直接
Direct
主动
Active
s
Low
被动采样管
Passive dosimeter tubes
mL·L-1
Point
直接
Direct
被动
Passive
h
Low
电化学传感器法
Electrochemical sensor method
μL·L-1
Point
直接
Direct
主动/被动
Active/Passive
h
High
半导体传感器法
Semiconductor sensor method
mL·L-1
Point
直接
Direct
主动
Active
s
Low
FTIR光谱法
FTIR spectral method
μL·L-1 开路
Point
直接
Direct
被动
Passive
min 非常高
Very high
UV-DOAS探测仪
UV-DOAS detector
μL·L-1 开路
Open path
直接
Direct
被动
Passive
s
High
光声红外探测器法
Photoacoustic infrared detector method
mL·L-1
Point
直接
Direct
主动
Active
s 高-非常高
High-very high
质谱法
Mass spectrometry method
μL·L-1 开路
Open path
直接
Direct
主动
Active
s
High

Table 3

Comparison of H2S measurement methods"

灵敏度
Sensitivity
检测方法
Testing method
数据表达
Readout
采样方式
Active or passive
反应时间
Response time
仪器成本
Cost
湿化学法
Wet-chemical method
0.1-1 mg·L-1
Point
间接
Indirect
主动
Active
h
Low
主动采样管
Active dosimeter tubes
mL·L-1
Point
直接
Direct
被动
Passive
h
Low
被动采样管
Passive dosimeter tubes
mL·L-1
Point
直接
Direct
主动
Active
s
Low
半导体传感器法
Semiconductor sensor method
mL·L-1
Point
直接
Direct
主动
Active
s
Low
FTIR光谱法
FTIR spectral method
μL·L-1 开路
Open path
直接
Direct
被动
Passive
min
High
气相色谱法
Gas chromatography method
mL·L-1 开路
Open path
直接
Direct
主动
Active
s
High

Table 4

Advantages and disadvantages of greenhouse gas detection methods for the intestinal fermentation of domestic animals"

检测方法 Testing method 优点 Advantages 缺点 Disadvantages
呼吸代谢箱法
Respiratory metabolism box method
发展较为成熟,应用广泛;可精确的测量肠道发酵产生的甲烷
Mature development and wide application; Accurate measurement of methane produced by intestinal fermentation
不能真实反映家畜体外的自然环境;构造和维修费用昂贵
Unable to reflect the external natural environment of livestock; High cost
六氟化硫示踪法
sulfur hexafluoride tracer method
投资和运行费用低;可进行群体检测
Low investment and operating costs; Group detection
发展不够成熟,仪器设备有待改进
Instruments and equipment need to be improved
头罩法和面罩法
Headcover and mask method
成本低
Low cost
低估甲烷产量;准确度不高;使用具有局限性
Understating methane production; Low accuracy; Limitations of usage

Table 5

Chemical composition analysis methods for PM emission from livestock and poultry farm"

分析内容
Analysis content
采样器
Sampler
分析方法
Analytic method
离子
Ions
带尼龙滤膜的颗粒物采样器
Particle sampler with nylon filter membrane
离子色谱法
Chromatography of ions
元素
Elements
带特氟龙滤膜的颗粒物采样器
Particle sampler with Teflon filter membrane
能量色散X射线光谱分析法
Energy dispersive x-ray spectroscopy
有机碳、元素碳
OC、EC
带石英滤膜的颗粒物采样器
Particle sampler with quartz filter membrane
热光学分析法
Thermal optical analysis

Table 6

Analysis methods for odor components from livestock and poultry farm"

成分分析方法
Component analysis
method
原理
Theory
检测物质
Substance detected
优点
Advantages
缺点
Disadvantages
参考文献
References
湿化学法
Wet-chemical method
利用被测气体成分与示剂的化学反应来测定气体浓度
Determination of gas concentration by chemical reaction between measured gases and indicators
NH3、H2S、SO2、硫醇类物质等
NH3, H2S, SO2, thiols, etc.
方法成熟,检测精度较高
mature method and high precision
检测时间较长
Longer detection time
[107]
气体探测管
Gas tubes
利用被测气体成分附着在固体指示剂表面的显色反应来测定气体浓度
Determination of gas concentration by color reaction of the gas components attached to the surface of the solid indicators
NH3、H2S、二甲基硫醚等
NH3, H2S, dimethyl sulfide, etc.
使用方便
Convenience of usage
检测精度较低
Low detection accuracy
[108, 109]
气相色谱分析法
Gas chromatography
利用不同组分在流动相(载气)和固定相间的分配差异进行分离
Separation of different components between mobile phase (carrier gas) and stationary phase
H2S、CS2、甲苯、二甲苯、吲哚类物质等
H2S, CS2, toluene, xylene, indole, etc.
分析速度快,灵敏度高
Fast analysis and high sensitivity
无法反映恶臭的气味特征,采样容器易造成样品污染和损失
Unable to reflect the smell characteristics of odors; samples easy to get polluted
[110-112]
质谱分析法
Mass spectrometry
将样品离子化,变为气态离子混合物,并按质荷比(m/z)分离,从而测定物质的质量与含量及其结构
Ionized into a gaseous ion mixture and separated according to the mass charge ratio (m/z), so as to determine the mass, content and structure of the substance.
甲苯、二甲苯、等
Toluene, xylene, etc.
分析对象范围广泛、检测灵敏度高
Wide range and high sensitivity
仪器使用、维护成本高
High cost
[113-116]
色谱-质谱联用法
Chromatography-mass spectrometry
结合气相色谱法对混合物的高效分离能力与质谱法对纯化合物的准确定性能力对恶臭进行分析
Analysis of odor by high efficientseparation of mixtures by gas chromatography and accurate qualitative analysis of pure compounds by mass spectrometry
SO2、甲苯、二甲苯、等多种恶臭物质
SO2, toluene, xylene, etc.
结合色谱法与质谱法优点
Combined advantages of chromatography and mass spectrometry
仪器使用、维护成本高
High cost
[117-120]
[1] SCHAUER J J, CASS G R . Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers. Environmental Science & Technology, 2000,34(9):1821-1832.
[2] BENCS L, RAVINDRA K, de HOOG J, RASOAZANANY E O, DEUTSCH F, BLEUX N, BERGHMANS P, ROEKENS E, KRATA A, Van GRIEKEN R . Mass and ionic composition of atmospheric fine particles over Belgium and their relation with gaseous air pollutants. Journal of Environmental Monitoring, 2008,10(10):1148-1157.
doi: 10.1039/b805157g
[3] SHEPHERD T A, ZHAO Y, LI H, STINN J P, HAYES M D, XIN H . Environmental assessment of three egg production systems - Part II-Ammonia, greenhouse gas, and particulate matter emissions. Poultry Science, 2015,94(3):534-543.
doi: 10.3382/ps/peu075
[4] 阎波杰, 潘瑜春 . 规模化畜禽养殖场粪便养分数据空间化表征方法. 农业机械学报, 2014,45(11):154-158.
YAN B J, PAN Y C . Research on characterization method of statistical data of scale raising farms. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(11):154-158. (in Chinese)
[5] NI J Q, HEBER A J, LIM T T, DIEHL C A, DUGGIRALA R K, HAYMORE B L . Hydrogen sulphide emission from two large pig-finishing buildings with long-term high-frequency measurements. Journal of Agricultural Science, 2002,138(2):227-236.
doi: 10.1017/S0021859601001824
[6] TREMBLAY F J B, MASSE D I . Instrumentation for precise quantification of methane emissions from dairy herds. Canadian Biosystems Engineering, 2008,50:721-728.
[7] NI J, HEBER A J . Sampling and measurement of ammonia at animal facilities//Sparks D. L. Advances in Agronomy. 2008: 201-269.
[8] CAI L, KOZIEL J A, LIANG Y, NGUYEN A T, XIN H . Evaluation of zeolite for control of odorants emissions from simulated poultry manure storage. Journal of Environmental Quality, 2007,36(1):184-193.
doi: 10.2134/jeq2006.0052
[9] 代小蓉 . 集约化猪场NH3的排放系数研究. 浙江大学, 2010.
DAI X R . Study on ammonia emission factors in intensive pig farms. Zhejiang University, 2010. ( in Chinese)
[10] DONHAM K J, REYNOLDS S J, WHITTEN P, MERCHANT J A, BURMEISTER L, POPENDORF W J . Respiratory dysfunction in swine production facility workers - dose-response relationships of environmental exposures and pulmonary-function. American Journal of Industrial Medicine, 1995,27(3):405-418.
doi: 10.1002/(ISSN)1097-0274
[11] 刘春青, 张勇 . 猪舍氨气含量检测方法综述. 猪业科学, 2011,28(11):80-82.
LIU C Q, ZHANG Y . Review on detection methods of ammonia content in pigsty. Swine Industry Science, 2011,28(11):80-82. (in Chinese)
[12] CURTIS S E, ANDERSON C R, SIMON J, JENSEN A H, DAY D L, KELLEY K W . Effects of aerial ammonia, hydrogen-sulfide and swine-house dust on rate of gain and respiratory-tract structure in swine. Journal Of Animal Science, 1975,41(3):735-739.
doi: 10.2527/jas1975.413735x
[13] MANNEBECK H . Comparison of the effects of different systems on ammonia emissions. London: Elsevier Applied Science, 1991.
[14] 潘序武, 王爱军 . 碘量法中标准溶液配置与标定应注意的问题. 职业与健康, 2008,24(19):2030-2031.
Pan X W, WANG A J . Issues on preparation and demarcation of standard solution of iodimetry. Occupation and Health, 2008,24(19):2030-2031. (in Chinese)
[15] NJAGI J, ERLICHMAN J S, ASTON J W, LEITER J C, ANDREESCU S . A sensitive electrochemical sensor based on chitosan and electropolymerized Meldola blue for monitoring NO in brain slices. Sensors & Actuators B Chemical, 2010,143(2):673-680.
[16] XIN H, LIANG Y, TANAKA A, GATES R S, WHEELER E F, CASEY K D, HEBER A J, NI J Q, LI H . Ammonia emissions from u. s. poultry houses: part i - measurement system and techniques, International Conference on Air Pollution From Agricultural Operations, 2003.
[17] JI B, ZHENG W, GATES R S, GREEN A R . Design and performance evaluation of the upgraded portable monitoring unit for air quality in animal housing. Computers & Electronics in Agriculture, 2016,124:132-140.
[18] WHEELER E F, CASEY K D, GATES R S, XIN H, ZAJACZKOWSKI J L, TOPPER P A, LIANG Y, PESCATORE A J . Ammonia emissions from twelve u. s. Broiler chicken houses. Transactions of the Asae, 2006,49(5):1495-1512.
doi: 10.13031/2013.22042
[19] PREDICALA B Z, CORTUS E L, FENGLER R, CHRISTIANSON S K . Assessing the performance of hydrogen sulfide monitoring devices and a water spray method to reduce worker exposure in swine buildings:2006 portland,Oregon, July 9-12, 2006 .
[20] BICUDO J R, TENGMAN C L, JACOBSON L D, SULLIVAN J E . Odor, hydrogen sulfide and ammonia emissions from swine farms in minnesota. Proceedings of the Water Environment Federation, 2000: 589-608.
[21] 王娇娇, 高云, 雷明刚, 童宇, 黎煊, 吴雨桐, 杨天园, 李冬, 朱望武 . 无线Mesh网络下的猪舍环境监测综合系统设计. 华中农业大学学报, 2015,34(6):130-135.
WANG J J, GAO Y, LEI M G, TONG Y, LI X, WU Y T, YANG T Y, LI D, ZHU W W . Design of a piggery environmental monitoring system in the wireless Mesh network. Journal of Huazhong Agricultural University, 2015,34(6):130-135. (in Chinese)
[22] ZENG L, HE M, YU H, LI D . An H2S sensor based on electrochemistry for chicken coops. Sensors, 2016,16(9):1398.
[23] MAASIKMETS M, TEINEMAA E, KAASIK A, KIMMEL V . Measurement and analysis of ammonia, hydrogen sulphide and odour emissions from the cattle farming in Estonia. Biosystems Engineering, 2015,139:48-59.
doi: 10.1016/j.biosystemseng.2015.08.002
[24] FABIAN-WHEELER E E, HILE M L, MURPHY D J, HILL D E, MEINEN R, BRANDT R C, ELLIOTT H A, HOFSTETTER D . Operator exposure to hydrogen sulfide from dairy manure storages containing gypsum bedding. J Agric Saf Health, 2017,23(1):9-22.
doi: 10.13031/issn.1074-7583
[25] OH K S, WOO S I . Chemiluminescence analyzer of NOx as a high-throughput screening tool in selective catalytic reduction of NO. Sci Technol Adv Mater, 2011,12(5):1425-1432.
[26] POLLACK I B, LERNER B M, RYERSON T B . Evaluation of ultraviolet light-emitting diodes for detection of atmospheric NO2 by photolysis - chemiluminescence. Journal of Atmospheric Chemistry, 2010,65(2-3):111-125.
doi: 10.1007/s10874-011-9184-3
[27] LIU Z, WANG L, BEASLEY D, OVIEDO E . Effect of moisture content on ammonia emissions from broiler litter: A laboratory study. Journal of Atmospheric Chemistry, 2007,58(1):41-53.
doi: 10.1007/s10874-007-9076-8
[28] HEBER A J, NI J Q, HAYMORE B L, DUGGIRALA R K, KEENER K M . Air quality and emission measurement methodology at swine finishing buildings. Transactions of the Asae, 2001,44(44):1765-1778.
[29] WANG K, HUANG D, YING H, LUO H . Effects of acidification during storage on emissions of methane, ammonia, and hydrogen sulfide from digested pig slurry. Biosystems Engineering, 2014,122:23-30.
doi: 10.1016/j.biosystemseng.2014.03.002
[30] JIN Y, TENG T L, NI J . Aerial emission monitoring at a dairy farm in indiana: in 2010 asabe annual international meeting. David L. Lawrence Convention Center, Pittsburgh, Pennsylvania, USA, 2010.
[31] WORLEY J W, DAS K C . Swine manure solids separation and composting using alum. Applied Engineering in Agriculture, 2000,16(5):555-561.
doi: 10.13031/2013.5299
[32] JACOBSON L D, JANNI K A, ARELLANO P E, PIJOAN C J . Winter swine ventilation evaluation using air quality criteria. Paper - American Society of Agricultural Engineers (USA), 1992,56(1):103-119.
[33] PARBST K E, KEENER K M, HEBER A J, NI J Q . Comparison between low-end discrete and high-end continuous measurements of air quality in swine buildings. Applied Engineering in Agriculture, 2000,16(16):693-699.
doi: 10.13031/2013.5377
[34] 许稳, 刘学军, 孟令敏, 郑鲲 . 不同养殖阶段猪舍氨气和颗粒物污染特征及其动态. 农业环境科学学报, 2018,37(6):1248-1254.
XU W, LIU X J, MENG L M, ZHENG K . Dynamics and pollution features of ammonia and particulate matter during different pig breeding stages. Journal of Agro-Environment Science, 2018, 37(6):1248-1254. (in Chinese)
[35] DRAGER . Drager-Tube Handbook. 9th Ed. Lubeck, Germany: 1994.
[36] WHEELER E F, WEISS R W J, WEIDENBOERNER E . Evaluation of instrumentation for measuring aerial ammonia in poultry houses. Journal of Applied Poultry Research, 2000,9(9):443-452.
doi: 10.1093/japr/9.4.443
[37] CHENG S, LI Y, GENG S, HU L, FU X, HAN X . Effects of dietary fresh fermented soybean meal on growth performance, ammonia and particulate matter emissions, and nitrogen excretion in nursery piglets. Journal of Zhejiang University SCIENCE B focuses on Biomedicine, Biochemistry & Biotechnology, 2017,18(12):1083-1092.
[38] SKEWES P A, HARMON J D . Ammonia quick test and ammonia dosimeter tubes for determining ammonia levels in broiler facilities. Appl. Poult. Res, 1995(4):148-153.
[39] HUSSAIN O M, RAO K S . Characterization of activated reactive evaporated MoO3 thin films for gas sensor applications. Materials Chemistry & Physics, 2003,80(3):638-646.
[40] KAWASHIMA S, YONEMURA S . Measuring ammonia concentration over a grassland near livestock facilities using a semiconductor ammonia sensor. Atmospheric Environment, 2001,35(22):3831-3839.
doi: 10.1016/S1352-2310(01)00145-5
[41] LI L H, GAO L A . Remote monitoring system of henhouse harmful gases:the 2010 international conference on computer application and system modeling, 2010.
[42] SECREST C D . Field measurement of air pollutants near swine confined animal feeding operations using UV DOAS and FTIR. Proceedings of The Society of Photo-Optical Instrumentation Engineers (Spie). 2001: 98-104.
[43] MOUNT G H, RUMBURG B, HAVIG J, LAMB B, WESTBERG H . Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet.Atmospheric Environment, 2002(36):1799-1810.
[44] 何莹, 张玉钧, 尤坤, 王立明, 高彦伟, 徐金凤, 高志岭, 马文奇 . 奶牛场氨排放特征的光谱检测. 光谱学与光谱分析, 2016,36(3):783-787.
HE Y, ZHANG Y J, YOU K, WANG L M, GAO Y W, XU J F, GAO Z L, MA W Q . Study on Ammonia Emission Rules in a Dairy Feedlot Based on Laser Spectroscopy Detection Method. Spectroscopy and Spectral Analysis, 2016,36(3):783-787. (in Chinese)
[45] HARRIS D B, SHORES R C, JONES L G . Ammonia emission factors from swine finishing operations. Denver: 10th Annual International Emission Inventory Conference, One Atmosphere, One Inventory, Many Challenges, 2001.
[46] 高星星, 张尉, 方贤才, 肖进, 罗友谊 . 自校准式NH3浓度检测装置设计与研究. 中国农机化学报, 2017,38(8):82-86.
GAO X X, ZHANG W, FANG X C, XIAO J, LUO Y Y . Design and research of self-calibration NH3 gas detection device. Journal of Chinese Agricultural Mechanization, 2017,38(8):82-86. (in Chinese)
[47] WORLEY J W, CZARICK M, FAIRCHILD B D, RITZ C W, HARPER L A, HALE B D, NAEHER L P . Monitoring of ammonia and fine particulates downwind of broiler houses:2008 Providence, Rhode Island, June 29 - July 2, 2008.
[48] HARRIS D B, KIRCHGESSNER D A, NATSCHKE D F, THOMPSON E L, CHILDERS J W, CLAYTON M, PHILLIPS W J . Comparison of an innovative nonlinear algorithm to classical least-squares for analyzing open-path fourier transform infrared spectra collected at a concentrated swine production facility. Applied Spectroscopy, 2002,56(3):325-336.
doi: 10.1366/0003702021954917
[49] TRABUE S, KERR B, SCOGGIN K . Odor and odorous compound emissions from manure of swine fed standard and dried distillers grains with soluble supplemented diets. Journal of Environmental Quality, 2016,45(3):915-923.
doi: 10.2134/jeq2015.10.0511
[50] CHIUMENTI A . Complete nitrification-denitrification of swine manure in a full-scale, non-conventional composting system. Waste Management, 2015,46:577-587.
doi: 10.1016/j.wasman.2015.07.035
[51] NORMAN M, HANSEL A, WISTHALER A . O2 + as reagent ion in the PTR-MS instrument: Detection of gas-phase ammonia. International Journal of Mass Spectrometry, 2007,265(2-3):382-387.
doi: 10.1016/j.ijms.2007.06.010
[52] FEILBERG A, HANSEN M J, LIU D, NYORD T . Contribution of livestock H2S to total sulfur emissions in a region with intensive animal production. Nature Communications, 2017,8(1):1069.
doi: 10.1038/s41467-017-01016-2
[53] YOON H S, SEONG K W, CHOI K S . A study of odor emission characteristics from human waste/livestock manure treatment facilities in Korea. Ksce Journal of Civil Engineering, 2015,19(3):564-571.
doi: 10.1007/s12205-013-0618-0
[54] ZHANG D, LUO W, YUAN J, LI G, LUO Y . Effects of woody peat and superphosphate on compost maturity and gaseous emissions during pig manure composting. Waste Management, 2017,68.
[55] 汪开英, 黄丹丹, 应洪仓 . 畜牧业温室气体排放与减排技术. 中国畜牧杂志, 2010(24):20-22, 26.
WANG K Y, HUANG D D, YING H C . The greenhouse gas emission and mitigation technologies of animal husbandry.Chinese Journal of Animal Science, 2010(24):20-22, 26. (in Chinese)
[56] 张运涛, 方德罗 . 反刍动物甲烷排放及其对全球变暖的影响. 中国畜牧杂志, 1999,35(1):47-48.
ZHANG Y T, FANG D L . Effects of methane emissions from ruminants on global warming. Chinese Journal of Animal Science, 1999,35(1):47-48. (in Chinese)
[57] IPPC. Climate change 2001: the scientific basis, contribution of group 1 to the third assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press, 2001.
[58] 史海山, 丁学智, 龙瑞军, 黄小丹, 阳伏林, 齐小晶 . 舍饲绵羊甲烷和二氧化碳的日排放动态. 生态学报, 2008,28(2):877-882.
SHI H S, DING X Z, LONG R J, HUANG X D, YANG F L, QI X J . Diurnal dynamics of methane and carbon dioxide released from indoor-fed sheep. Acta Ecologica Sinica, 2008,28(2):877-882. (in Chinese)
[59] JOHNSON K, HUYLER M, WESTBERG H, LAMB B, ZIMMERMAN P . Measurement of methane emissions from ruminant livestock using a sf6 tracer technique. Environmental Science & Technology, 1994,28(2):359-362.
[60] HASSOUNA M, EGLIN T . Measuring emissions from livestock farming: greenhouse gases, ammonia and nitrogen oxides. 2017.
[61] NAYLOR T A, WIEDEMANN S G, PHILLIPS F A, WARREN B, MCGAHAN E J, MURPHY C M . Emissions of nitrous oxide, ammonia and methane from Australian layer-hen manure storage with a mitigation strategy applied. Animal Production Science, 2016,56(9):1367.
doi: 10.1071/AN15584
[62] LI J, LUO J, SHI Y, LINDSEY S, HOULBROOKE D, LEDGARD S . Nitrous oxide emissions from dairy farm effluent applied to a New Zealand pasture soil. Soil Use & Management, 2015,31(2):279-289.
[63] HAO X, CHANG C, LARNEY F J, TRAVIS G R . Greenhouse gas emissions during cattle feedlot manure composting. Journal of Environmental Quality, 2001,30(2):376.
doi: 10.2134/jeq2001.302376x
[64] XU S, HAO X, STANFORD K, MCALLISTER T, LARNEY F J, WANG J . Greenhouse gas emissions during co-composting of cattle mortalities with manure. Nutrient Cycling In Agroecosystems, 2007,78(2):177-187.
doi: 10.1007/s10705-006-9083-1
[65] GAUTAM D P, RAHMAN S, FORTUNA A M, BORHAN M S, SAINI-EIDUKAT B, BEZBARUAH A N . Characterization of zinc oxide nanoparticle (nZnO) alginate beads in reducing gaseous emission from swine manure. Environmental Technology, 2016,38(9):1-24.
[66] SARKER N C, RAHMAN S, BORHAN M S, RAJASEKARAN P, SANTRA S, OZCAN A . Nanoparticles in mitigating gaseous emissions from liquid dairy manure stored under anaerobic condition. Journal of Environmental Sciences, 2019.
[67] BJORNEBERG D L L A B W . Measurements of atmospheric ammonia, methane, and nitrous oxide at a concentrated dairy production facility in southern Idaho using openpath FTIR spectrometry. Transactions of the ASABE, 2009: 52-55.
[68] NAYLOR T A, WIEDEMANN S G, PHILLIPS F A, WARREN B, MCGAHAN E J, MURPHY C M . Emissions of nitrous oxide, ammonia and methane from Australian layer-hen manure storage with a mitigation strategy applied. Animal Production Science, 2016,56(9):1367.
doi: 10.1071/AN15584
[69] SHAO L, GRIFFITHS P R, LEYTEM A B . Advances in data processing for open-path Fourier transform infrared spectrometry of greenhouse gases. Analytical Chemistry, 2010,82(19):8027-8033.
doi: 10.1021/ac101711r
[70] KYOUNG S RO P G H S . Estimating ammonia and methane emissions from CAFOS using an openpath optical remote sensing technology:ASABE meeting, 2007.
[71] NGWABIE N M, JEPPSSON K H, NIMMERMARK S, SWENSSON C, GUSTAFSSON G . Multi-location measurements of greenhouse gases and emission rates of methane and ammonia from a naturally-ventilated barn for dairy cows. Biosystems Engineering, 2009,103(1):68-77.
doi: 10.1016/j.biosystemseng.2009.02.004
[72] SHIRAISHI M W N T E . Measurement and regulation of environmental hazardous gas emissions from beef cattle manure composting. International Congress Series, 2006: 1293-1303.
[73] VIGURIA M LÓPEZ D M, ARRIAGA H, MERINO P . Ammonia and greenhouse gases emission from on-farm stored pig slurry. Water Air & Soil Pollution, 2015,226(9):285.
[74] GB.中华人民共和国国家标准环境空气质量标准. 北京: 中国环境科学出版社, 2012.
GB.Ambient air quality standard. Beijing: China Environmental Press, 2012. ( in Chinese)
[75] MELO J O, SOTO S F, KATAYAMA I A, WENCESLAU C F, PIRES A G, VERAS M M, FURUKAWA L N S, de CASTRO I, NASCIMENTO SALDIVA P H, HEIMANN J C . Inhalation of fine particulate matter during pregnancy increased IL-4 cytokine levels in the fetal portion of the placenta. Toxicology Letters, 2015,232(2):475-480.
doi: 10.1016/j.toxlet.2014.12.001
[76] OLE-KENNETH NIELSEN M P M N . Projection of SO2, NOX, NMVOC, NH3 and particle emissions-2012 -2035. 2013.
[77] CAMBRA-LOPEZ M, TORRES A G, AARNINK A J A, OGINK N W M . Source analysis of fine and coarse particulate matter from livestock houses. Atmospheric Environment, 2011,45(3):694-707.
doi: 10.1016/j.atmosenv.2010.10.018
[78] 汪开英, 戴圣炎, 王玲娟 . 畜禽场空气悬浮颗粒物污染与其监控技术研究进展. 农业机械学报, 2017,48(6):232-241.
WANG K Y, DAI S Y, WANG L J . Research progress on pollution and monitoring technology of particulate matter from livestock and poultry farms. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(6):232-241. (in Chinese)
[79] HEBER A J, BOGAN B W, NI J Q, LIM T T, RAMIREZDORRONSORO J C, CORTUS E L, DIEHL C A, HANNI S M, XIAO C H, CASEY K D . The national air emissions monitoring study: overview of barn sources. : central theme, technology for all: sharing the knowledge for development. Proceedings of the International Conference of Agricultural Engineering, Xxxvii Brazilian Congress of Agricultural Engineering, International Livestock Environment Symposium - Iles Viii, Iguassu Falls City, Brazil, August To September, 2008.
[80] HAYES M, XIN H W, LI H, SHEPHERD T, CHEN Y X, ZHAO Y, STINN J . Ammonia, greenhouse gas, and particulate matter concentrations and emissions of aviary layer houses in the Midwestern USA. :Ix International Livestock Environment Symposium, 2012.
[81] MAGHIRANG R G, PUMA M C, CLARK P, LIU Y L . Dust concentrations and particle size distribution in an enclosed swine nursery. Transactions of the ASAE, 1997,40(40):749-754.
doi: 10.13031/2013.21305
[82] LIN X J, CORTUS E L, ZHANG R, JIANG S, HEBER A J . Air Emissions from Broiler Houses in California. Transactions of the ASABE, 2012,55(5):1895-1908.
doi: 10.13031/2013.42377
[83] ULENS T, MILLET S, WEYENBERG S V, MEEREN P V D, LANGENHOVE H V, DEMEYER P . Results of measurements of particulate matter concentrations inside a pig fattening facility. Biotechnologie Agronomie Société Et Environnement, 2016,20(1):13-16.
[84] MOSTAFA E, NANNEN C, HENSELER J, DIEKMANN B, GATES R, BUESCHER W . Physical properties of particulate matter from animal houses—empirical studies to improve emission modelling. Environmental Science & Pollution Research, 2016,23(12):12253-12263.
[85] 吴胜, 沈丹, 唐倩, 戴鹏远, 李延森, 李春梅 . 规模化半封闭式猪场舍内颗粒物、氨气和二氧化碳分布规律. 畜牧与兽医, 2018,50(3):30-38.
WU S, SHEN D, TANG Q, DAI P Y, LI Y S, LI C M . Distribution of particulate matters and noxious gases in large-scale semi-enclosed swine houses. Animal Husbandry and Veterinary Medicine, 2018,50(3):30-38. (in Chinese)
[86] ROUMELIOTIS T S, DIXON B J, HEYST B J V . Characterization of gaseous pollutant and particulate matter emission rates from a commercial broiler operation part I: Observed trends in emissions. Atmospheric Environment, 2010,44(31):3770-3777.
doi: 10.1016/j.atmosenv.2010.06.052
[87] HINDS W C . Aerosol technology: properties, behavior, and measurement of airborne particles. Journal of Aerosol Science, 1999,31(9):1121-1122.
[88] JUNG J H, SUN Y P, LEE J E, LEE B U, BAE G N . Distinguishing biotic and abiotic particles using an ultraviolet aerodynamic particle sizer for real-time detection of bacterial bioaerosols. Environmental Engineering Science, 2012,29(9):866-874.
doi: 10.1089/ees.2011.0276
[89] PETERS T M, OTT D, O'SHAUGHNESSY P T . Comparison of the Grimm 1. 108 and 1. 109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles. Annals of Occupational Hygiene, 2006,50(8):843.
[90] 赵鹏, 朱彤, 梁宝生, 胡敏, 康凌, 宫继成 . 北京郊区农田夏季大气颗粒物质量和离子成分谱分布特征. 环境科学, 2006,27(2):193-199.
ZHAO P, ZHU T, LIANG B S, HU M, KANG L, GONG J C . Characteristics of mass distributions of aerosol particle and its inorganic water soluble ions in summer over a suburb farmland in Beijing. Environmental Science, 2006,27(2):193-199. (in Chinese)
[91] MARPLE V, OLSON B, ROMAY F, HUDAK G, GEERTS S M, LUNDGREN D . Second generation micro-orifice uniform deposit impactor, 120 moudi-ii: design, evaluation, and application to long-term ambient sampling. Aerosol Science & Technology, 2014,48(4):427-433.
[92] MCCLURE J W . Determination of particulate emissions from confined animal housing. Dissertations & Theses - Gradworks, 2009.
[93] JOO H S, NDEGWA P M, HEBER A J, NI J Q, BOGAN B W, RAMIREZ-DORRONSORO J C, CORTUS E L . articulate matter dynamics in naturally ventilated freestall dairy barns. Atmospheric Environment, 2013,69(69):182-190.
doi: 10.1016/j.atmosenv.2012.12.006
[94] CAMBRA-LÓPEZ M, HERMOSILLA T, AARNINK A J A, OGINK N W M . A methodology to select particle morpho-chemical characteristics to use in source apportionment of particulate matter from livestock houses. Computers & Electronics in Agriculture, 2012,81(2):14-23.
[95] 王丽文, 王云艳 . 离子色谱法同时测定大气颗粒物中七种阴离子分析方法的研究. 中国环境监测, 1993(4):12-13.
WANG L W, WANG Y Y . Study on simultaneous determination of seven anions in atmospheric particles by ion chromatography. Environmental Monitoring in China, 1993(4):12-13. (in Chinese)
[96] 王红伟, 方建龙, 林少彬 . 超声提取离子色谱法测定大气PM2. 5中9种阴、阳离子. 中国卫生检验杂志, 2015(24):4203-4206.
WANG H W, FANG J L, LIN S B . Determination of 9 kinds of anions and cations in atmospheric PM2. 5 by ultrasonic extraction ion chromatography,Chinese Journal of Health Laboratory Technology, 2015(24):4203-4206. (in Chinese)
[97] DING Y, MOU S . [Determination of choline chloride and trimethylamine in feedstuff by ion chromatography]. Se pu = Chinese journal of chromatography / Zhongguo hua xue hui, 2004,22(2):174.
[98] MASIOL M, SQUIZZATO S, RAMPAZZO G, PAVONI B . Source apportionment of PM 2. 5 at multiple sites in Venice (Italy): Spatial variability and the role of weather. Atmospheric Environment, 2014,98:78-88.
doi: 10.1016/j.atmosenv.2014.08.059
[99] 徐海, 刘琦, 王龙山 . X射线荧光光谱法测定土壤样品中碳氮硫氯等31种组分. 岩矿测试, 2007,26(6):490-492.
XU H, LIU Q, WANG L S . Determination of 31 components in soil samples by x-ray fluorescence spectrometry. Rock and Mineral Analysis, 2007,26(6):490-492. (in Chinese)
[100] BIRCH M E, CARY R A . Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust. Aerosol Science & Technology, 1996,25(3):221-241
[101] LI Q F, WANGLI L, JAYANTY R K M, SHAH S B . Organic and elemental carbon in atmospheric fine particulate matter in an animal agriculture intensive area in north Carolina: estimation of secondary organic carbon concentrations. Open Journal of Air Pollution, 2013,2(1):7-18.
doi: 10.4236/ojap.2013.21002
[102] GERALD . A biophysiochemical analysis of settled livestock and poultry housing dusts. American Journal of Agricultural & Biological Science, 2014,9(2):153-166.
[103] 汪开英, 魏波, 罗皓杰 . 畜禽规模养殖场的恶臭检测与评估方法. 中国畜牧杂志, 2009,45(24):24-27.
WANG K Y, WEI B, LUO H J . Odor detection and evaluation method for livestock and poultry scale farms. Chinese Journal of Animal Science, 2009,45(24):24-27. (in Chinese)
[104] SCHIFFMAN S S, WILLIAMS C M . Science of odor as a potential health issue. Journal of Environmental Quality, 2005,34(1):129.
[105] APT V H, HEERES P, HARSSEMA H . A review of 20 years of standardization of odor concentration measurement by dynamic olfactometry in Europe. Air Repair, 1999,49(6):705-715.
[106] SCHIFFMAN S S, BENNETT J L, RAYMER J H . Quantification of odors and odorants from swine operations in north Carolina. Agricultural & Forest Meteorology, 2001,108(3):213-240.
[107] 程秉珂, 池靖, 张欣 . 4-己基间苯二酚分光光度法测定大气中的丙烯醛. 中国环境监测, 1990(5):20-23.
CHENG B K, CHI J, ZHANG X . Spectrophotometric determination of acrolein in the atmosphere with 4-hexyl resorcinol,Environmental Monitoring in China, 1990(5):20-23. (in Chinese)
[108] JACOBSON L D, JANNI K A, ARELLANO P E, PIJOAN C J . Winter swine ventilation evaluation using air quality criteria. Paper - American Society of Agricultural Engineers (USA), 1992,56(1):103-119.
[109] MELSE R W, WERF A W V D . Biofiltration for mitigation of methane emission from animal husbandry. Environmental Science & Technology, 2005,39(14):5460.
[110] 金胜昔, 徐伯洪, 肖宏瑞, 闫慧芳 . 空气中吲哚和甲基吲哚的气相色谱法. 卫生研究, 1997(1):18-19.
JIN S X, XU B H, XIAO H R, YAN H F . Determinations of indole and methylindole in air by gas chromatography.Journal of Hygiene Research, 1997(1):18-19. (in Chinese)
[111] 韩丛碧, 李凌波 . 硫化学发光检测器-气相色谱法测定废气中挥发性硫化物. 中国环境监测, 2012,28(3):93-96.
HAN C B, LI L B . Analysis of volatile sulfur compounds in waste gases by gas chromatography with a sulfur chemiluminescence detector. Environmental Monitoring in China, 2012,28(3):93-96. (in Chinese)
[112] 鲁丽娜, 贺东霞 . 气相色谱法同时测定室内装修后的多种有害气体. 中国卫生检验杂志, 2005,15(12):1482, 1520.
LU L N, HE D X . Simultaneous determination of various harmful gases after interior decoration by gas chromatography, Chinese Journal of Health Laboratory Technology, 2005,15(12):1482, 1520. (in Chinese)
[113] 李芳, 凌大鹏, 陆平, 严奉轩, 陈宁 . 空气中苯、甲苯、乙苯等有害气体的质谱在线监测: 中国物理学会质谱分会全国学术交流会, 2008.
LI F, LING D P, LU P, YAN F X, CHEN N . On-line monitoring of harmful gases such as benzene, toluene and ethylbenzene in the air:National Academic Exchange Meeting of the Mass Spectrometry Branch of the Chinese Physical Society, 2008. ( in Chinese)
[114] FEILBERG A, BILDSOE P, NYORD T . Application of PTR-MS for measuring odorant emissions from soil application of manure slurry. Sensors, 2015,15(1):1148.
doi: 10.3390/s150101148
[115] HANSEN M J, KASPER P L, APS A, FEILBERG A . Key odorants from pig production based on improved measurements of odor threshold values combining olfactometry and proton-transfer-reaction mass spectrometry (ptr-ms). Sensors, 2018,18(3):788.
doi: 10.3390/s18030788
[116] KASPER P L, MANNEBECK D, OXBØL A, NYGAARD J V, HANSEN M J, FEILBERG A . Effects of dilution systems in olfactometry on the recovery of typical livestock odorants determined by ptr-ms. Sensors, 2017,17(8):1859.
doi: 10.3390/s17081859
[117] AKDENIZ N, JACOBSON L D, HETCHLER B P, BEREZNICKI S D, HEBER A J, KOZIEL J A, CAI L, ZHANG S, PARKER D B . Odor and odorous chemical emissions from animal buildings: Part 2. Odor Emissions. Transactions of the Asabe, 2010, IN PRESS(6):2357-2368.
[118] CAI L, KOZIEL J A, LIANG Y, NGUYEN A T, XIN H . Evaluation of zeolite for control of odorants emissions from simulated poultry manure storage. Journal of Environmental Quality, 2007,36(1):184-193.
doi: 10.2134/jeq2006.0052
[119] 王玉军, 邢志贤, 张秀芳, 侯志广, 赵晓松, 窦森, 周米平 . 便携式气相色谱-质谱联用仪现场测定畜禽粪便堆肥中挥发性有机物. 分析化学, 2012,40(6):899-903.
WANG Y J, XING Z X, ZHANG X F, HOU Z G, ZHAO X S, DOU S, ZHOU M P . On-site detection of volatile organic compounds during composting treatment of livestock and poultry manure by gc-ms. Chinese Journal of Analytical Chemistry, 2012,40(6):899-903. (in Chinese)
[120] ZHU W, KOZIEL J A, MAURER D L . Mitigation of livestock odors using black light and a new titanium dioxide-based catalyst: proof-of-concept. Atmosphere, 2017,8(6):103.
doi: 10.3390/atmos8060103
[121] 刘波, 王文林, 刘筱, 范婤, 杨婉静, 徐乔, 关雷, 曾杰亮, 李文静, 何斐 . 畜禽养殖恶臭物质组成与测定及评估方法研究进展. 生态与农村环境学报, 2017(10):872-881.
LIU B, WANG W L, LIU X, FAN C, YANG W J, XU Q, GUAN L, CENG J L, LI W J, HE F . A review of researches on composition, measurement and assessment of odorants in livestock and poultry breeding.Journal of Ecology and Rural Environment, 2017(10):872-881. (in Chinese)
[1] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[2] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[3] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[4] LI XiaoYing, WU JunKai, WANG HaiJing, LI MengYuan, SHEN YanHong, LIU JianZhen, ZHANG LiBin. Characterization of Volatiles Changes in Chinese Dwarf Cherry Fruit During Its Development [J]. Scientia Agricultura Sinica, 2021, 54(9): 1964-1980.
[5] WANG Bing,LI HuiMin,CAO HaiQun,WANG GuiRong. Mechanisms and Applications of Plant-Herbivore-Natural Enemy Tritrophic Interactions Mediated by Volatile Organic Compounds [J]. Scientia Agricultura Sinica, 2021, 54(8): 1653-1672.
[6] QIN JianHui,LI JinQiao,ZHAO Xu,LI KeBin,CAO YaZhong,YIN Jiao. Expression, Purification and Functional Analysis of Odorant Binding Protein 11 (OBP11) in Anomala corpulenta [J]. Scientia Agricultura Sinica, 2021, 54(14): 3017-3028.
[7] WANG ShanShan,ZHAO ChenHui,LI HongLian,ZHANG BingBing,LIANG YingHai,SONG HongWei. Analysis of Fruit Aromatic Components of Ten Plum Germplasm Resources in Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(11): 2476-2486.
[8] WEI QiHang,REN YanFang,HE JunYu,LI ZhaoJun. Research Progress of Microbial Deodorization in Livestock and Poultry Wastes Composting [J]. Scientia Agricultura Sinica, 2020, 53(15): 3134-3145.
[9] Ling LI,Yao TAN,XiaoRong ZHOU,BaoPing PANG. Molecular Cloning, Prokaryotic Expression and Binding Characterization of Odorant Binding Protein GdauOBP20 in Galeruca daurica [J]. Scientia Agricultura Sinica, 2019, 52(20): 3705-3712.
[10] LI XiaoYing,WANG HaiJing,XU NingWei,CAO CuiLing,LIU JianZhen,WU ChunCheng,ZHANG LiBin. Analysis of Volatile Components in Cerasus Humilis (Bge.) Sok by Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry [J]. Scientia Agricultura Sinica, 2019, 52(19): 3448-3459.
[11] LI Du, NIU ChangYing, LI FengQi, LUO Chen. Binding Characterization of Odorant Binding Protein OBP56h in Drosophila suzukii with Small Molecular Compounds [J]. Scientia Agricultura Sinica, 2019, 52(15): 2616-2623.
[12] DONG Jing,ZHONG ChuanFei,WANG GuiXia,CHANG LinLin,SUN Jian,SUN Rui,ZHANG HongLi,LI Rui,WEI YongQing,ZHENG ShuQi,ZHANG YunTao. Comparative Study on Fruit Volatiles of Different Day-Neutral Strawberry Cultivars in Autumn and Winter [J]. Scientia Agricultura Sinica, 2019, 52(13): 2309-2327.
[13] JIN XiuKuan, MA MaoTing, ZHAO TongKe, AN ZhiZhuang, JIANG LingLing. Effects of Nitrogen Application on Yield, Water and Nitrogen Use Efficiency of Winter Wheat Under Supplemental Irrigation Based on Measured Soil Moisture Content [J]. Scientia Agricultura Sinica, 2018, 51(7): 1334-1344.
[14] CHEN DongKai, ZHANG LinYa, XING ZhenLong, LEI ZhongRen. Identification and Function of the OBP13 Protein from the Leafminer (Liriomyza sativae) [J]. Scientia Agricultura Sinica, 2018, 51(5): 893-904.
[15] DAI PengYuan, SHEN Dan, TANG Qian, LI YanSen, LI ChunMei. Research Progress on Characteristics of Particulate Matter in Livestock Houses and Its Harmful Effects on Respiratory Tract Health of Livestock and Poultry [J]. Scientia Agricultura Sinica, 2018, 51(16): 3214-3225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!