Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (4): 657-667.doi: 10.3864/j.issn.0578-1752.2013.04.001

• AGRICULTURE INFORMATION TECHNOLOGY •     Next Articles

The Molecular Identification of Transgenic Hpa110-42 Wheat and Resistance Evaluation on Fusarium Head Blight

 YANG  Min, QIN  Bao-Ping, LIU  Chang-Lai, CAI  Hong-Sheng, WANG  Zhen-Lin, LIANG  Yuan-Cun, YIN  Yan-Ping   

  1. 1山东农业大学农学院/作物生物学国家重点实验室/山东省作物生物学重点实验室,山东泰安 271018
    2.南京农业大学植物保护学院,南京210095
    3.山东农业大学植物保护学院,山东泰安 271018
  • Received:2012-11-20 Online:2013-02-15 Published:2013-01-24

Abstract: 【Objective】This study aims to screen Fusarium head blight (FHB) resistance plants in Hpa110-42 transgenic wheat plants and provide materials for FHB resistance breeding of wheat.【Method】T2 transgenic wheat plants were identified by PCR, Southern blot and RT-PCR, assuring whether the foreign Hpa110-42 gene was integrated and expressed in transgenic wheat plants. The resistance to FHB of transgenic wheat plants was evaluated by a dripping method to single flower, and its resistance physiology was studied.【Result】PCR, Southern blotting and RT-PCR analyses have confirmed successful integration of the foreign Hpa110-42 gene into the genome of the Yangmai 158 with 1 to 3 copies and stable inheritance and expression. Disease bioassays of transgenic plants revealed that the average percentage of diseased spikelets of transgenic lines T2-17, T2-15, T2-68, T2-44 and T2-36 were highly significantly lower than YM158. Compared with Sumai 3, the average percentage of diseased spikelets of all transgenic lines was highly significantly higher than Sumai 3 excepting line T2-17. In the transgenic lines, the average percentage of diseased spikelets of line T2-17 was significantly lower than other lines, in which T2-36, T2-11 and T2-20 have reached highly significant difference level. It is showed by physiological analysis that the activities of PAL, chitinase and β-1,3-glucanase in the high resistance transgenic plants increased faster than Yangmai 158 after inoculation. The soluble protein content in all plants had a downward trend, while its content in high resistance plants is consistently higher than others. Moreover, β-1,3-glucanase activity and soluble protein content were negatively correlated with resistance grade of FHB. 【Conclusion】 The foreign Hpa110-42 gene was stably inherited, normally expressed and positively participated in the regulation of FHB resistance, and Hpa110-42 transgenic wheat plants with resistance to FHB were obtained.

Key words: Hpa110-42 , transgenic wheat plants , gene expression , Fusarium head blight , resistance physiology

[1]Buerstmayr H, Steiner B, Lemmens M, Ruckenbauer P. Resistance to fusarium head blight in winter wheat: Heritability and trait associations. Crop Science, 2000, 40: 1012-1018.

[2]Alfano J R, Collmer A. The typeⅢ (Hrp) secretion pathway of plant pathogenic bacteria: Trafficking harpins, Avr proteins, and death. Journal of Bacteriology, 1997, 179(18): 5655-5662.

[3]He S Y, Bauer D W, Collmer A, Beer S V. Hypersensitive response elicited by Ereinia amylovora harpin requires active plant metabolism. Molecular Plant-Microbe Interactions, 1994, 7(2): 289-292.

[4]He S Y, Huang H C, Collmer A. Pseudomonas syringae pv. syringae harpinPss: A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell, 1993, 73: 1255-1266.

[5]Wei Z M, Laby R J, Zumoff C H, Bauer D W, He S Y, Collmer A, Beer S V. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science, 1992, 257(5066): 85-88.

[6]Pandey A K, Ger M J, Huang H E, Yip M K, Zeng J Q, Feng T Y. Expression of the hypersensitive response-assisting protein in Arabidopsis results in harpin-dependent hypersensitive cell death in response to Erwinia carotovora. Plant Molecular Biology, 2005, 59: 771-780.

[7]马玲莉, 霍蓉, 高学文, 何丹, 邵敏, 王琦. 转harpinXooc蛋白编码基因hrf2对油菜抗菌核病的影响. 中国农业科学, 2008, 41(6): 1655-1660.

Ma L L, Huo R, Gao X W, He D, Shao M, Wang Q. Transgenic rape with hrf2 gene encoding harpinXooc resistant to Sclerotinia Sclerotinorium. Scientia Agricultura Sinica, 2008, 41(6): 1655-1660. (in Chinese)

[8]Peng J L, Bao Z L, Ren H Y, Wang J S, Dong H S. Expression of harpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology, 2004, 94: 1048-1055.

[9]Malnoy M, Venisse J S, Chevreau E. Expression of a bacterial effector, harpin N, causes increased resistance to fire blight in Pyrus communis. Tree Genetics and Genomes, 2005, 1(2): 41-49.

[10]Li P, Lu X Z, Shao M, Long J Y, Wang J S. Genetic diversity of Harpins from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance in tobacco. Science in China:  Life Sciences, 2004, 47(5): 461-469.

[11]Zou L F, Wang X P, Xiang Y, Zhang B, Li Y R, Xiao Y L, Wang J S, Walmsley A R, Chen G Y. Elucidation of the hrp clusters of Xanthomonas oryzae pv. oryzicola that control the hypersensitive response in nonhost tobacco and pathogenicity in susceptible host rice. Applied and Environmental Microbiology, 2006, 72(9): 6212-6224.

[12]Liu F Q, Liu H X, Jia Q, Wu X J, Guo X J, Zhang S J, Song F, Dong H S. The internal glycine-rich motif and cysteine suppress several effects of the HpaGXooc protein in plants. Phytopathology, 2006, 96: 1052-1059.

[13]Wu X J, Wu T Q, Long J Y, Yin Q, Zhang Y, Chen L, Liu R X, Gao T C, Dong H S. Productivity and biochemical properties of green tea in response to the intact molecule and functional fragments of HpaGXooc, a harpin protein from the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola. Journal of Biosciences, 2007, 32: 1119-1131.

[14]Chen L, Zhang S J, Zhang S S, Qu S P, Ren X Y, Long J Y, Yin Q, Qian J, Sun F, Zhang C L, Wang L X, Wu X J, Wu T Q, Zhang Z K, Cheng Z Q, Hayes M, Beer S V, Dong H S. A fragment of the Xanthomonas oryzae pv. oryzicola harpin HpaGXooc reduces disease and increases yield of rice in extensive grower plantings. Phytopathology, 2008, 98: 792-802.

[15]Chen L, Qian J, Qu S P, Long J Y, Yin Q, Zhang C L, Wu X J, Sun F, Wu T Q, Hayes M, Beer S V, Dong H S. Identification of specific fragments of HpaGXooc, a harpin protein from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in plants. Phytopathology, 2008, 98: 781-791.

[16]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamic. Proceedings of the National Academy of Sciences of the USA, 1984, 81: 8014-8018.

[17]Ma C H, Zhai C X, Wang L A, Chen X, LI Y C, Guo X L, Cui S P, Li G M. Induced resistance by the toxin filtrate of Bipolaris maydis race T cultivation. Agricultural Sciences in China, 2006, 5(9): 678-684.

[18]史树德, 孙亚卿, 魏磊. 植物生理学实验指导, 北京: 中国林业出版社, 2011, 4: 88-96.

Shi S D, Sun Y Q, Wei L. Experimental Guide of Plant Physiology. Beijing: China Forestry Press, 2011, 4: 88-96. (in Chinese)

[19]Reboutier D, Frankart C, Briand J, Biligui B, Laroche S, Rona J P, Barny M A, Bouteau F. The HrpNea harpin from Erwinia amylovora triggers differential responses on the nonhost Arabidopsis thaliana cells and on the host apple cells. Molecular Plant-Microbe Interactions, 2007, 20(1): 94-100.

[20]Peng J L, Dong H S, Dong H P, Delaney T P, Bonaserab J M, Beer S  V. Harpin-elicited hypersensitive cell death and pathogen resistance require the NDR1 and EDS1 genes. Physiological and Molecular Plant Pathology, 2003, 62: 317-326.

[21]Liu R X, Chen L, Jia Z H, Lü B B, Shi H J, Shao W L, Dong H S. Transcription factor AtMYB44 regulates induced expression of the ETHYLENE INSENSITIVE2 genein Arabidopsis responding to a harpin protein. Molecular Plant-Microbe Interactions, 2011, 24(3): 377-389.

[22]Zhang C L, Shi H J, Chen L, Wang X M, Lü B B, Zhang S P, Liang Y, Liu R X, Qian J, Sun W W, You Z Z, Dong H S. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae. BMC Plant Biology, 2011, 11: 11.

[23]Dong H S, Delaney T P, Bauer D W, Beer S V. Harpin induce disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. The Plant Journal, 1999, 20(2): 207-215.

[24]刘香利, 金伟波, 刘缙, 赵惠贤, 郭蔼光. 高分子量麦谷蛋白亚基基因1Bx14转化小麦. 中国农业科学, 2011, 44(21): 4350-4357.

Liu X L, Jin W B, Liu J, Zhao H X, Guo A G. Transformation of wheat with high molecular weight glutenin subunit gene 1Bx14. Scientia Agricultura Sinica, 2011, 44(21): 4350-4357. (in Chinese)

[25]王利国, 李玲, 范冬雨. 墨兰炭疽菌侵染过程与几丁质酶、β-1,3-葡聚糖酶活性的变化. 园艺学报, 2005, 32(6): 1133-1135.

Wang L G, Li L, Fan D Y. Studies on infection processes of colletotrichum gloeosporioides and activities of chitinase and β-1,3-glucanase in leaves of cymbidium sinense. Acta Horticulturae Sinica, 2005, 32(6): 1133-1135. (in Chinese)

[26]程红梅, 简桂良, 倪万潮, 杨红华, 王志兴, 孙文姬, 张保龙, 王晓峰, 马存, 贾士荣. 转几丁质酶和β-1,3-葡聚糖酶基因提高棉花对枯萎病和黄萎病的抗性. 中国农业科学, 2005, 38(6): 1160-1166.

Cheng H M, Jian G L, Ni W C, Yang H H, Wang Z X, Sun W J, Zhang B L, Wang X F, Ma C, Jia S R. Increase of fusarium- and verticillium- resistance by transferring chitinase and glucanase gene into cotton. Scientia Agricultura Sinica, 2005, 38(6): 1160-1166. (in Chinese)

[27]左豫虎, 康振生, 杨传平, 芮海英, 娄树宝, 刘惕若. β-1,3-葡聚糖酶和几丁质酶活性与大豆对疫霉根腐病抗性的关系. 植物病理学报, 2009, 39(6): 600-607.

Zuo Y H, Kang Z S, Yang C P, Rui H Y, Lou S B, Liu X R. Relationship between activities of β-1,3-glacanase and chitinase and resistance to phytophthora root rot in soybean. Acta Phytopathologica Sinica, 2009, 39(6): 600-607. (in Chinese)

[28]张长伟, 凌英华, 桑贤春, 李平, 赵芳明, 杨正林, 李云峰, 方立魁, 何光华. 转苦瓜几丁质酶基因McCHIT1水稻及其稻瘟病抗性. 作物学报, 2011, 37(11): 1991-2000.

Zhang C W, Ling Y H, Sang X C, Li P, Zhao F M, Yang Z L, Li Y F, Fang L K, He G H. Transgenic rice lines harboring McCHIT1 gene from balsam pear (Momordica charantia L.) and their blast resistance. Acta Agronomica Sinica, 2011, 37(11): 1991-2000. (in Chinese)

[29]冯洁, 陈其煐. 棉株体内几种生化物质与抗枯萎病之间关系的初步研究. 植物病理学报, 1991, 21(4): 291-297.

Feng J, Chen Q H. On the biochemical substances in cotton plants related to the resistance to fusarium wilt. Acta Phytopathologica Sinica, 1991, 21(4): 291-297. (in Chinese)

[30]李淼, 檀根甲, 李瑶, 丁克坚, 产祝龙, 凌云. 猕猴桃品种酚类物质及可溶性蛋白含量与抗溃疡病的关系. 植物保护, 2009, 35(1): 37-41.

Li M, Tan G J, Li Y, Ding K J, Chan Z L, Ling Y. Relationships between the contents of phenolics, soluble proteins in plants of kiwifruit cultivars and their resistance to kiwifruit bacterial canker by Pseudomonas syringae pv. actinidiae. Plant Protection, 2009, 35(1): 37-41. (in Chinese)

[31]章元寿. 植物病理生理学. 南京: 江苏科学技术出版社, 1996: 34-38.

Zhang Y S. Physiological Plant Pathology. Nanjing: Jiangsu Science and Technology Press, 1996: 34-38. (in Chinese)
[1] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[2] ZOU Ting, LIU LiLi, XIANG JianHua, ZHOU DingGang, WU JinFeng, LI Mei, LI Bao, ZHANG DaWei, YAN MingLi. Cloning of MYBL2 Gene from Brassica and Its PCR Identification in Genomes A, B and C [J]. Scientia Agricultura Sinica, 2023, 56(3): 416-429.
[3] HE Dan, YOU XiaoLong, HE SongLin, ZHANG MingXing, ZHANG JiaoRui, HUA Chao, WANG Zheng, LIU YiPing. Identification of Callose Synthetase Gene Family and Functional Analysis of PlCalS5 in Paeonia lactiflora [J]. Scientia Agricultura Sinica, 2023, 56(16): 3183-3198.
[4] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[5] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[6] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
[7] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[8] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[9] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[10] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[11] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[12] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[13] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[14] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[15] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!