Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (22): 4552-4560.doi: 10.3864/j.issn.0578-1752.2012.22.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Detection of Quantitative Trait Loci for Plant Height in Different Environments Using an RIL Population in Cucumber

 MIAO  , HAN  , GU  Xing-Fang, ZHANG  Sheng-Ping, ZHANG  Zhong-Hua, HUANG  San-Wen, WANG  , YE    

  1. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Genetic Improvement, Ministry of Agriculture, Beijing 100081
  • Received:2012-01-19 Online:2012-11-15 Published:2012-09-26

Abstract: 【Objective】Plant height is related closely to cucumber (Cucumis sativus L.) yield and plant development. QTL analysis for the traits related to plant height in cucumber can provide a basis for fine mapping and gene cloning. The result not only provide a theoretical basis for molecular assistant selection (MAS) breeding in plant morphogenesis and high yield, but also integrate research results of plant height.【Method】Phenotypic data of 148 F9 recombinant inbred lines (RILs) which originated from a narrow-cross between 9110Gt and 9930 were investigated four times in different seasons. Using a SSR linkage map, the multiple QTL model (MQM) method of software package MapQTL version 4.0 was employed to map and analyze QTLs. Based on the whole genome sequence, the genomic regions harboring QTLs related to plant height were analyzed using comparative mapping and BLAST soft. 【Result】 QTL mapping analysis was conducted for three cucumber traits related to plant height, length of the main stem internode, and node number of main stem, in this study. Eleven QTLs were detected for these traits. These QTLs were mapped on chromosomes 1, 2, 5 and 6, respectively. Their LOD values varied between 3.03 and 12.73, which explained 6.2%-32.1% of the phenotypic variation. Five QTLs explained phenotypic variation more than 10%. Three QTLs (27.3% ) were found to be expressed consistently under four cropping seasons in greenhouse cultivation. QTL cluster was detected on Chr.1. 【Conclusion】 Based on the results in this study, it is speculated that there are at least four genes controlling plant height of cucumber, de gene controlling the determinate habit in cucumber was found in the region of QTLs mapped on the long-arm of Chr.6.

Key words: cucumber , plant height , quantitative trait locus (QTL) , recombinant inbred lines (RILs) , sequence analysis

[1]辛  明,秦智伟,周秀艳. 黄瓜植株高度遗传分析及其分子标记.东北农业大学学报,2008,39(5): 34-38.

Xin M, Qin Z W, Zhou X Y. Molecular marker and genetic analysis of plant height in cucumber. Journal of Northeast Agricultural University, 2008, 39(5): 34-38. (in Chinese)

[2]嵇  怡,徐  强,缪旻珉,梁国华,高海洁,罗晶晶,陈学好. 黄瓜遗传图谱构建及株高相关性状的QTL定位.园艺学报,2009, 36 (10) : 1450-1456.

Ji Y, Xu Q , Miao M M, Liang G H, Gao H J, Luo J J , Chen X H. Construction of genetic l inkage map and QTLs analysis for the related traits of plant height in cucumber. Acta Horticulturae Sinica, 2009, 36 (10): 1450-456.(in Chinese)

[3]戚春章,袁珍珍. 矮秧黄瓜.中国蔬莱,1983(3):14.

Qi C Z, Yuan Z Z. Dwarf cucumber. China Vegetables,1983(3): 14.(in Chinese)

[4]孙小镭,邬树桐,宋绪峨. 中国矮生刺黄瓜品系特性的研究初报.园艺学报,1990, 1: 59-64.

Sun X L, Wu S T, Song X E. Studies on characters and genetic effects of determinate cucumber. Acta Horticulturae Sinica, 1990, 1: 59-64.(in Chinese)

[5]武  涛,秦智伟,周秀艳,杜亚琳. 葫芦科作物矮化突变体的遗传学及细胞生理学研究进展.中国蔬莱,2009(24): 1-6.

Wu T, Qin Z W, Zhao X Y, Du Y L. Research progress on genetics and cytophysiology of cucurbitaceae dwarf mutants. China Vegetables, 2009(24): 1-6.(in Chinese)

[6]Wehner T C. Gene list 2005 for cucumber. Cucurbit Genetics Cooperative Report, 2005, 28/29: 105-141.

[7]嵇  怡,徐  强,陈学好.黄瓜株高性状遗传模型分析.扬州大学学报,2009,30(3): 75-79.

Ji Y, Xu Q, Chen X H. Genetic model analysis of plant height in Cucumis sativus L. Journal of Yangzhou University. 2009, 30(3): 75-79. (in Chinese )

[8]张卫华,刘文宝,杜永丽,曹齐卫,孙小镭.黄瓜株高性状遗传规律的初步分析.山东农业科学, 2011(10): 12-14.

Zhang W H, Liu W B, Du Y L, Cao Q W, Sun X L. Preliminary analysis on plant height inheritance of cucumber. Shandong Agricultural Sciences, 2011(10): 12-14. (in Chinese )

[9]Serquen F C, Bacher J, Staub J E. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativas L.) using random amplified polymorphic DNA makers. Molecular Breeding, 1997, 3(4): 257-268.

[10]Dijkuizen A, Staub J E. QTL conditioning yield and fruit quality traits in cucumber (Cucumis sativus L.): Effects of environment and genetic background. Journal of New Seeds, 2002, 4: 1-30.

[11]Fazio G, Chung S M, Staub J E. Comparative analysis of response to phenotypic and marker−assisted selection for multiple ateral branching in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2003, 107(5): 875-883.

[12]Nam Y W, Lee J R, Song K H, Lee M K, Robbins M D, Chung S M, Staub J E, Zhang H B.Construction of two BAC libraries from cucumber (Cucumis sativus L.) and identification of clones linked to yield component quantitative trait loci. Theoretical and Applied Genetics, 2005, 111:150-161.

[13]Weng Y Q, Johnson S, Staub J E. An extended intervarietal microsatellite linkage map of cucumber, Cucumis sativus L. HortScience, 2010, 45(6):882-886.

[14]Li Y, Yang L, Pathak M, Li D, He X, Weng Y.Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theoretical and Applied Genetics, 2011, 123(6):973-983.

[15]王深浩,李海真,张忠华,贺  俊,贾长才,张  帆,黄三文. 南瓜矮生基因Bu的比较定位.园艺学报, 2011, 38(1):95-100.

Wang S H, Li H Z, Zhang Z H, He J, Jia C C, Zhang F, Huang S W. Comparative mapping of the dwarf gene Bu from tropical pumpkin (Cucurbita moschata Duchesne). Acta Horticulturae Sinica, 2011, 38(1):95-100. (in Chinese)

[16]Miao H, Zhang S P, Wang X W, Zhang Z H, Li M, Mu S Q, Cheng Z C, Zhang R W, Huang S W, Xie B Y, Fang Z Y, Zhang Z X, Weng Y Q. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica, 2011, 182:167-176.

[17]苗  晗,顾兴芳,张圣平,武  剑,方智远,张振贤. 黄瓜复雌花性状QTL定位分析.园艺学报,2010, 37(9):1449-1455.

Miao H, Gu X F, Zhang S P, Wu J, Fang Z Y, Zhang Z X. Mapping QTLs for multiple pistillate flowers in cucumber. Acta Horticulturae Sinica, 2010, 37(9):144-1455.(in Chinese)

[18]苗  晗,顾兴芳,张圣平,张忠华,黄三文,王  烨,程周超,张若纬,穆生奇,李  曼,方智远,张振贤. 黄瓜果实相关性状QTL定位分析. 中国农业科学,2011,44(24):5031-5040.

Miao H, Gu X F, Zhang S P, Zhang Z H, Huang S W, Wang Y, Cheng Z C, Zhang R W, Mu S Q, Li M, Fang Z Y, Zhang Z X. Mapping QTLs for fruit−associated traits in Cucumis sativus L. Scientia Agricultura Sinica, 2011, 44(24):5031-5040.(in Chinese)

[19]Huang S W, Li R Q, Zhang Z H, Li L, Gu X F, Fan W, William J L, Wang X W, Xie B Y , Ni P X, Ren Y Y, Zhu H M, Li J, Lin K, Jin W W, Fei Z J, Li G C, Staub J, Kilian A, van der Vossen E A G, Wu Y, Guo J, He J, Jia Z Q, Ren Y, Tian G, Lu Y, Ruan J, Qian W B, Wang M W, Huang Q F, Li B, Xuan Z L, Cao J J, Asan, Wu Z G, Zhang J B, Cai Q L, Bai Y Q, Zhao B W, Han Y H, Li Y, Li X F, Wang S H, Shi Q X, Liu S Q, Cho W K, Kim J Y, Xu Y, Katarzyna H U, Miao H, Cheng Z C, Zhang S P, Wu J, Yang Y H, Kang H X, Man L, Liang H Q, Ren X L, Shi Z B, Wen M, Jian M, Yang H L, Zhang G J, Yang Z T, Chen R, Liu S F, Li J W, Ma L J, Liu H, Zhou Y, Zhao J, Fang X D, Li G Q, Li Y G, Liu DY, Zheng H K, Zhang Y, Qin N, Li Z, Yang G H, Yang S, Bolund L, Kristiansen K, Zheng H C, Li S C, Zhang X Q, Yang H M, Wang J, Sun R F, Zhang B X, Jiang S Z, Wang J, Du Y C, Li S G. The genome of the cucumber, Cucumis sativus L. Nature Genetic, 2009, 475:1-7.

[20]胡  珀,韩天富. 植物茎秆性状形成与发育的分子基础.植物学通报,2008, 25 (1):1-13.

Hu P, Han T F. Molecular basis of stem trait formation and development in plants. Chinese Bulletin of Botany, 2008, 25 (1):1-13. (in Chinese)

[21]Wei L R, Xu J C, Li X B, Qian Q, Zhu L H. Genetic analysis and mapping of the dominant dwarfing gene D−53 in rice. Journal of Integrative Plant Biology, 2006, 48(4):447-452.

[22]Cho Y G, Eun M Y, McCouch S R, Chae Y A. The semidwarf gene sd−l of rice (Oryza sativa L.)Ⅱ.molecular, mapping and marker assisted selection. Theoretical and Applied Genetics, 1994, 89:54-59.

[23]Ma H L, Zhang S B, Ji L. Fine mapping and in silico isolation of the eui1 gene controlling upper internode elongation in rice. Plant Molecular Biology, 2006, 60: 87-94.

[24]丁安明,崔  法,李  君,赵春华,王秀芹,王洪刚. 小麦单株产量与株高的QTL分析. 中国农业科学, 2011, 44(14): 2857-2867.

Ding A M, Cui F, Li J, Zhao C H, Wang X Q, Wang H G. QTL analysis on grain yield per plant and plant height in Wheat. Scientia Agricultura Sinica, 2011, 44(14): 2857-2867. (in Chinese)

[25]李卓坤,谢全刚,朱占玲,刘金良,韩淑晓,田  宾,袁倩倩,田纪春. 基于QTL定位分析小麦株高的杂种优势. 作物学报,2010, 36(5): 771-778.

Li Z K, Xei Q G, Zhu Z L, Lui J L, Han S X, Tian B, Yuan Q Q, Tian J C. Analysis of plant height heterosis based on QTL mapping in Wheat. Acta Agronomica Sinica, 2010, 36(5): 771-778. (in Chinese)

[26]王翠玲, 孙朝辉, 库丽霞, 王铁固, 陈彦惠. 利用永久F2群体在不同光周期环境下定位玉米株高QTL.作物学报,2011, 37(2): 271-279.

Wang C L, Sun C H, Ku L X, Wang T G, Chen Y H. Detection of quantitative trait loci for plant height in different photoperiod environments using an immortalized F2 population in maize. Acta Agronomica Sinica, 2011, 37(2): 271-279.(in Chinese)

[27]陈青君,张海英,王永健,李婉钰,张  峰,毛爱军,程继鸿,陈明远.温室黄瓜产量相关农艺性状QTLs的定位.中国农业科学,2010,43(1):112-122.

Chen Q J, Zhang H Y, Wang Y J, Li W Y, Zhang F, Mao A J, Cheng J H, Chen M Y. Mapping and analyzing QTLs of yield-associated agronomic traits of greenhouse cucumbers. Scientia Agricultura Sinica, 2010,43(1): 112-122. (in Chinese )

[28]Clark R M, Wagler T N, Quijada P, Doebley J. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nature Genetics, 2006, 38(5): 594-597.

[29]Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309(5735): 741-745.

[30]赵敬会,王瑞雪,李荣冲,梁晶龙,张  涛.白菜SAUR 基因家族的生物信息学分析. 中国农学通报,2012, 28(22):130-137.

Zhao J H, Wang R X, Li R C, Liang J L, Zhang T. Bioinformatics analysis of SAUR gene family in Brassica rapa. Chinese Agricultural Science Bulletin, 2012, 28(22): 130-137. (in Chinese )

[31]李华丽,陈美霞,周东新,陈顺辉,陶爱芬,李延坤,马红勃,祁建民,郭玉春.烟草六个重要性状的QTL 定位.作物学报,2011, 37(9): 1577-1584.

Li H L, Chen M X, Zhou D X, Chen S H, Tao A F, Li Y K, Ma H B, Qi J M, Guo Y C. QTL Analysis of six important traits in tobacco (Nicotiana tabacum L.). Acta Agronomica Sinica, 2011, 37(9): 1577-1584 .(in Chinese )
[1] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[2] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[3] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[4] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[5] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[6] GAO ZhiYuan,XU JiLi,LIU Shuo,TIAN Hui,WANG ZhaoHui. Variations of Winter Wheat Nitrogen Harvest Index in Field Wheat Population [J]. Scientia Agricultura Sinica, 2021, 54(3): 583-595.
[7] GUO ShuQing,SONG Hui,YANG QingHua,GAO JinFeng,GAO XiaoLi,FENG BaiLi,YANG Pu. Analyzing Genetic Effects for Plant Height and Panicle Traits by Means of the Mixed Inheritance Model of Major Gene Plus Polygene in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(24): 5177-5193.
[8] CHEN Yang,WANG Lei,BAI YouLu,LU YanLi,NI Lu,WANG YuHong,XU MengZe. Quantitative Relationship Between Effective Accumulated Temperature and Plant Height & Leaf Area Index of Summer Maize Under Different Nitrogen, Phosphorus and Potassium Levels [J]. Scientia Agricultura Sinica, 2021, 54(22): 4761-4777.
[9] WANG JunJie,TIAN Xiang,QIN HuiBin,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,QIAO ZhiJun. Regulation Effects of Photoperiod on Growth and Leaf Endogenous Hormones in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2021, 54(2): 286-295.
[10] WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
[11] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[12] WANG JunJie,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,TIAN Xiang,QIN HuiBin,QIAO ZhiJun. Comprehensive Evaluation of Photoperiod Sensitivity Based on Different Traits of Broomcorn Millet [J]. Scientia Agricultura Sinica, 2020, 53(3): 474-485.
[13] HAO YanRong,DU Wei,HOU SiYu,WANG DongHang,FENG HongMei,HAN YuanHuai,ZHOU MeiLiang,ZHANG KaiXuan,LIU LongLong,WANG JunZhen,LI HongYing,SUN ZhaoXia. Identification of ARF Gene Family and Expression Pattern Induced by Auxin in Fagopyrum tataricum [J]. Scientia Agricultura Sinica, 2020, 53(23): 4738-4749.
[14] ZHOU Qi,LIU XiaoPing,BO KaiLiang,MIAO Han,DONG ShaoYun,GU XingFang,ZHANG ShengPing. Cloning and Analysis of Folate Synthesis Key Genes in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(18): 3764-3776.
[15] ZOU JianQiu. New Research Progress on Sorghum Breeding and Cultivation Techniques [J]. Scientia Agricultura Sinica, 2020, 53(14): 2769-2773.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!