Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (22): 4543-4551.doi: 10.3864/j.issn.0578-1752.2012.22.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Relationship Between the Expression of Genes Encoding Resistance-related Enzymes and the Resistance to Sclerotinia sclerotiorum in Resynthesized Brassica napus with High Level of Resistance

 WAN  Hua-Fang, LIU  , YAO  , MEI  Jia-Qin, DING  Yi-Juan, LIANG  , YING  , QU  Cun-Min, LU  , KUN  , LI  Jia-Na, QIAN  , WEI    

  1. College of Agronomy and Biotechnology, Southwest University/ Engineering Research Center of South Upland Agriculture, Ministry of Education/Chongqing Rapeseed Engineering and Technology Research Center, Chongqing 400716
  • Received:2012-09-04 Online:2012-11-15 Published:2012-10-08

Abstract: 【Objective】 The relationship between the expression of genes encoding resistance-related enzymes and the resistance to S. sclerotiorum in resynthesized B. napus RB165 with high level of resistance was investigated.【Method】 RB165 was employed to investigate sclerotinia resistance using detached leaf and stem assay and to monitor the expression of genes encoding resistance-related enzymes (oxalate oxidase, Cu/Zn superoxidase dismutase, β-1,3-glucanase and chitinase) after sclerotinia inoculation with qRT-PCR, together with the resistant parental adopter (RP), four natural rapeseed lines with diverse levels of resistance.【Result】The leaf resistance was highly and positively correlated to that of the stem (r = 0.93) among 6 accessions. The resistance of RB165 was lower than that of RP, but significantly higher than that of natural rapeseed. The pattern of gene relative expression detected with qRT-PCR at 0, 6, 12, 24, 36 hours post inoculation (hpi) of S. sclerotiorum significantly differed in leaf, but the dynamics was similar among 6 accessions, i.e. OXO was inhibited, Cu/Zn SOD was inhibited at the beginning of inoculation, and then activated, PR2 was strongly induced twice and PR3 was dramatically activated. 【Conclusion】 RB165 was more resistant to S. sclerotiorum than natural rapeseed. No significant relationship was detected between S. sclerotiorum resistance and the expression of OXO, Cu/Zn SOD, PR2 and PR3.

Key words: Brassica incana, resynthesized Brassica napus, Sclerotinia sclerotiorum, pathogenesis related genes, qRT-PCR

[1]Zhao Y, Wang M L. Inheritance and agronomic performance of an apetalous flower mutant in Brassica napus L.. Euphytica, 2004, 137: 381-386.

[2]Wang H Z, Liu G H, Zheng Y B, Wang X F, Yang Q. Breeding of the Brassica napus cultivar Zhongshuang 9 with high-resistance to Sclerotinia sclerotiorum and dynamics of its important defense enzyme activity. Scientia Agricultura Sinica, 2003, 2(11): 1192-1197.

[3]Li C X, Liu S Y, Sivasithamparam K, Barbetti M J. New sources of resistance to Sclerotinia stem rot caused by Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and Brassica juncea germplasm screened under Western Australian conditions. Australasian Plant Pathology, 2009, 38(2): 149-152.

[4]Singh R, Singh D, Li H, Sivasithamparam S, Yadav N R, Salisbury P, Barbetti M J. Management of Sclerotinia rot of oilseed Brassica focus on India. Brassica, 2008, 10: 1-27.

[5]Harsh G, Chhaya A,Prabhjodh S S, Balvir K, Michael R, Shashi K B, Hardeep S, Charandeep S, Martin J B, Surinder S B. High level of resistance to Sclerotinia sclerotiorum in introgression lines derived from hybridization between wild crucifers and the crop Brassica species B.napus and B.juncea. Field Crops Research, 2010, 117: 51-58.

[6]Mei J Q, Qian L W, Disi J O, Yang X R, Li Q F, Li J N, Frauen M, Cai D, Qian W. Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B.oleracea. Euphytica, 2011, 177: 393-399.

[7]Godoy G, Steadman J R, Dickman M B, Dam R. Use of mutants to demonstrate the role of oxalic acid in patho-genicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiological and Molecular Plant Pathology, 1990, 37: 179-191.

[8]Bolton M D, Thomma B P H J, Nelson, B D. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 2006, 7: 1-16.

[9]Leon J, Lawton M A, Raskin I. Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiology, 1995, 108: 1673-1678.

[10]Alvarez M E, Penndll R I, Meijer P J. Reactive oxygen intermediates mediate a systemic signal networks in the establishment of plant immunity. Cell, 1998, 92: 773-784.

[11]Thompson C, Dunwell J M, Johnstone C E, Lay V, Ray J, Schmitt M, Watson H, Nisbet G. Degradation of oxalic acid by transgenic oilseed rape plants expressing oxalate oxidase. Euphytica, 1995, 85: 169-172.

[12]Dong X B, Ji R Q, Guo X L, Foster S J, Chen H, Dong C H, Liu Y Y, Hu Q, Liu S Y. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta, 2008, 288: 331-340.

[13]Chipps T J, Gilmore B, Myers J R, Stotz H U. Relationship between oxalate, oxalate oxidase activity, oxalate sensitivity, and white mold susceptibility in Phaseolus coccineus. Phytopathology, 2005, 95: 292-299.

[14]Livingstone, D M, Hampton J L, Phipps P M, Grabau E A. Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiology, 2005, 137: 1354-1362.

[15]Liang Y, Srivastava S, Rahaman M H, Strelkov S E, Kav N N V. Proteome change in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge. Journal of Agricultural and Food Chemistry, 2008, 56(6): 1963-1976.

[16]杨鸯鸯, 李  云, 丁  勇, 徐春雷, 张成桂, 刘  英, 甘  莉. 甘蓝型油菜Cu/ZnSOD和FeSOD基因的克隆及菌核病菌诱导表达. 作物学报, 2009, 35(1): 71-78.

Yang Y Y, Li Y, Ding Y, Xu C L, Zhang C G, Liu Y, Gan L. Cloning of Cu/Zn-superoxide dismutase of Brassica napus and its induced expression by Sclerotinia sclerotiorum. Acta Agronomic Sinica, 2009, 35(1): 71-78. (in Chinese)

[17]齐绍武, 官春云, 刘春林. 甘蓝型油菜品系一些酶的活性与抗菌核病的关系. 作物学报, 2004, 30(3): 270-273.

Qi S W, Guan C Y, Liu C L. Relationship between some      enzyme activity and resistance of Sclerotinia sclerotiorum of  rapeseed cultivars. Acta Agronomic Sinica, 2004, 30(3): 270-273. (in Chinese)

[18]Mauch F, Mauch M B, Bollrt T. Antifungal hydrolases in pea tissue:  II. Inhibition of fungal growth by combinations of chitinase and beta-1,3-glucanase. Plant Physiology, 1988, 88(3): 936-942.

[19]Van Loon L C, Van Strien E A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 2002, 55: 85-97.

[20]Mei J Q, Wei D Y, Disi J O, Ding Y J, Liu Y, Qian W. Screening resistance against Sclerotinia sclerotiorum in Brassica crops with use of detached stem assay under controlled environment. European Journal of Plant Pathology, 2012, 134(3): 599-604.

[21]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.

[22]Wojtaszek P. Mechanisms for the generation of reactive oxygen species in plant defense response. Acta Physiology Plant, 1997, 19: 581-589.

[23]Klidbenstein D J, Dietrich R A, Martin A C, Last R L, Dangl J L. Lsd1 regulates salicylic acid induction of copper zinc superoxide dismutase in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 1999, 12: 1022-1026.

[24]Paranidharan V, Palaniswami A, Vidhyasekaran P, Valazhahan R. Induction of enzymatic scavengers of active oxygen species in rice in response to infection by Rhizoctonia solani. Acta Physiology Plant, 2003, 25: 91-96.

[25]Kuzniak E, Sklodowska M. Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta, 2005, 222: 192-200.

[26]Cao T, Srivastava S, Rahman M H, Kav N N V, Hotte N, Deyholos M K, Strelkov S E. Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection. Plant Science, 2008, 174: 97-115.

[27]Castresana C, de Carvalho F, Gheysen G, Habets M, Inze D, Van Montagu M. Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia β-1,3-glucanase gene. The Plant Cell, 1990, 2: 1131-1144.

[28]Philip S, Joseph A, Kumar A, Jacob C, Kothandaraman R. Detection of β-1,3-glucanase isoforms against Corynespora leaf disease of rubber (Hevea brasiliensis). Indian Journal of Natural Rubber Research, 2001, 14: 1-6.

[29]Gygi S P, Rochon Y, Franza B R, Aebersold R. Correlation between protein and mRNA abundance in yeast. Molecular and Cell Biology, 1999, 19: 1720-1730.
[1] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[2] YaRu CHAI,YiJuan DING,SiYu ZHOU,WenJing YANG,BaoQin YAN,JunHu YUAN,Wei QIAN. Identification of the Resistance to Sclerotinia Stem Rot in HIGS-SsCCS Transgenic Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2020, 53(4): 761-770.
[3] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[4] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[5] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[6] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[7] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[8] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[9] WAN DongLi,HOU XiangYang,DING Yong,REN WeiBo,WANG Kai,LI XiLiang,WAN YongQing. Response and the Expression of Pi-Responsive Genes in Leymus chinensis Under Inorganic Phosphate Treatment [J]. Scientia Agricultura Sinica, 2019, 52(23): 4215-4227.
[10] YUAN JunHu,DING YiJuan,YANG WenJing,YAN BaoQin,CHAI YaRu,MEI JiaQin,QIAN Wei. Identification of Genes Encoding Secretory Proteins Related to the Pathogenicity of Sclerotinia sclerotiorum Using TRV-HIGS [J]. Scientia Agricultura Sinica, 2019, 52(23): 4274-4284.
[11] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
[12] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
[13] LIU XiaoChen, WU ShengYong, LEI ZhongRen, WANG HaiHong. Growth Kinetics and Virulence of Two Beauveria bassiana Strains in Frankliniella occidentalis Under Different Temperatures [J]. Scientia Agricultura Sinica, 2018, 51(8): 1484-1492.
[14] ZHANG Xu,LING Hui,LIU Feng,HUANG Ning,WANG Ling,MAO HuaYing,LI CongNa,TANG HanChen,SU WeiHua,SU YaChun,QUE YouXiong. Cloning and Expression Analysis of a Ⅱd Sub-Group WRKY Transcription Factor Gene from Sugarcane [J]. Scientia Agricultura Sinica, 2018, 51(23): 4409-4423.
[15] HongHong HE,ZongHuan MA,YuanXia ZHANG,Juan ZHANG,ShiXiong LU,ZhiQiang ZHANG,Xin ZHAO,YuXia WU,Juan MAO. Identification and Expression Analysis of LBD Gene Family in Grape [J]. Scientia Agricultura Sinica, 2018, 51(21): 4102-4118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!