Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (20): 4233-4241.doi: 10.3864/j.issn.0578-1752.2012.20.013

• HORTICULTURE • Previous Articles     Next Articles

Effects of Salt Stress on Mesophyll Cell Structures and Photosynthetic Characteristics in Leaves of Wine Grape (Vitis spp.)

 QIN  Ling, KANG  Wen-Huai, QI  Yan-Ling, CAI  Ai-Jun   

  1. 1.河北科技师范学院生命科技学院,河北昌黎 066600
    2.河北科技大学生物科学与工程学院,石家庄 050018
  • Received:2012-06-07 Online:2012-10-15 Published:2012-09-03

Abstract: 【Objective】The changes of cell structures and photosynthetic characteristics in leaves of three grapes, cultivars ‘Cabernet Sauvignon’(Vitis vinifera L.), rootstock ‘5BB’ (Vitis berlandieri × Vitis riparia), and scion/rootstock combinations ‘Cabernet Sauvignon/5BB’, were investigated under salt stress conditions to offer a theoretical basis and technique reference for selecting salt-tolerant genes in grapevine cultivars, rootstocks and scion/rootstock combinations.【Method】In a pot culture experiment, grapevine plants were treated with NaCl at 0 and 100 mmol•L-1 for 30 d. When the height of grapevines was about 60 cm, chlorophyll contents, gas exchange and chlorophyll fluorescence parameters, and cell structure characteristics in leaves were determined by using spectrophotometer, chlorophyll fluorometer, and observed with microscope and transmission electron microscopy.【Results】Compared with the control, the thickness of epidermis cells, palisade tissue and spongy tissue in leaves of grapevine increased, and thickness ratio of the palisade/spongy tissue reduced under salt stress(100 mmol.L-1 NaCl). Thylakoids became swollen, the length and width of chloroplast increased by 130%-150% and 130%-200%, respectively. Meanwhile, chlorophyll (especially Chl b) content, PSII potential activity(Fv/Fo), maximal photochemistry efficiency of PSII (Fv/Fm) and net photosynthetic rate(Pn) dramatically decreased in leaves of grapevines under salt stress(100 mmol•L-1 NaCl). There was a difference in effect on three grapevines by salt stress. Among them, ‘5BB’ showed a lesser negative effect on cell and chloroplast structures, photosynthetic rate, and PSII photochemical reaction. ‘Cabernet Sauvignon’ in the middle and ‘Cabernet Sauvignon/5BB’ was the largest.【Conclusion】The alterations of mesophyll cell structure and chlorophyll content under salt stress(100 mmol•L-1 NaCl) could led to the deduction of photosynthetic electron transfer efficiency and photosynthetic rate. Rootstock ‘5BB’ exhibited higher salt-tolerance characters which may be beneficial to improve the salt-tolerance of ‘Cabernet Sauvignon’ by grafting on the ‘5BB’.

Key words: grapevine, salt stress, photosynthetic characteristic, cells structure, rootstock

[1]Parida A K, das A B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349.

[2]FAO.2010. FAO stat.data,http://faostat.fao.org.

[3]Verma S K, Singh S K, Krishna H. The effect of certain rootstocks on the grape cultivar ‘Pusa Urvashi’(Vitis vinifera L.). International Journal of Fruit Science, 2010, 10(1): 16-28.

[4]Mehanna H, Fayed T, Rashedy A. Response of two grapevine rootstocks to some salt tolerance treatments under saline water conditions. Journal of Horticultural Science & Ornamental Plants, 2010, 2: 93-106.

[5]Tillett R, Ergul A, Albion R, Schlauch K, Cramer G, Cushman J. Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape(Vitis vinifera L.) based on curation and mining of large-scale EST data sets. BMC Plant Biology, 2011, 11(1): 86-96.

[6]Troncoso A, Matte C, Cantos M, Lavee S. Evaluation of salt tolerance of in vitro-grown grapevine rootstock varieties. Vitis, 1999, 38(2): 55-60.

[7]Paranychianakis N, Angelakis A. The effect of water stress and rootstock on the development of leaf injuries in grapevines irrigated with saline effluent. Agricultural Water Management, 2008, 95(4): 375-382.

[8]Fisarakis I, Chartzoulakis K, Stavrakas D. Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agricultural Water Management, 2001, 51(1): 13-27.

[9]Walker R, Torokfalvy E, Scott n S, Kriedemann P. An analysis of photosynthetic response to salt treatment in Vitis vinifera. Functional Plant Biology, 1981, 8(3): 359-374.

[10]Hatami E, Esna-ashari M, Javadi T. Effect of salinity on some gas exchange characteristics of grape(Vitis vinifera) cultivars. International Journal of Agriculture and Biology, 2010, 12: 308-310.

[11]Ben-asher J, Tsuyuki I, Bravdo B A, Sagih M. Irrigation of grapevines with saline water: I. Leaf area index, stomatal conductance, transpiration and photosynthesis. Agricultural Water Management, 2006, 83(1/2): 13-21.

[12]Bauls J, Primo-millo E. Effects of salinity on some citrus scion- rootstock combinations. Annals of Botany, 1995, 76(1): 97-102.

[13]Schmutz U, Ldders P. Effect of NaCl salinity on growth, leaf gas exchange, and mineral composition of grafted mango rootstocks (var.‘13-1’and ‘Turpentine’). Gartenbauwiss, 1999, 64(2): 60-64.

[14]高光林, 姜卫兵, 汪良驹, 韩浩章, 戴美松. 砧木对盐处理下“丰水”梨幼树光合特性的影响. 园艺学报, 2003. 30(3): 258-262.

Gao G L, Jiang W B, Wang L J, Han H Z, Dai M S. Effects of rootstocks on photosynthetic properties of young ‘Fengshui’ pear trees under salinity. Acta Horticulturae Sinica, 2003. 30(3): 258-262. (in Chinese)

[15]廖祥儒, 贺普超, 朱新产. 盐渍对葡萄光合色素含量的影响. 园艺学报, 1996, 3: 300-302.

Liao X R, He P C, Zhu X C. Effect of salt stress on the contents of photosynthetic pigments of grape leaf. Acta Horticulturae Sinica,1996, 3: 300-302. (in Chinese)

[16]Poljakoff-mayber A. Morphological and anatomical changes in plants as a response to salinity stress. Plants in Saline Environments- Ecological Studies, 1975, 15: 97-117.

[17]Carter D, Cheeseman J. The effects of external NaCl on thylakoid stacking in lettuce plants. Plant, Cell & Environment, 1993, 16(2): 215-222.

[18]Rascher U, Liebig M, Lttge U. Evaluation of instant light‐response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant, Cell & Environment, 2000, 23(12): 1397-1405.

[19]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)- General Subjects, 1989, 990(1): 87-92.

[20]Longstreth D J, Nobel P S. Salinity effects on leaf anatomy. Plant Physiology, 1979, 63(4): 700-703.

[21]Rahman M S, Matsumuro T, Miyake H, Takeoka Y. Salinity-induced ultrastructural alterations in leaf cells of rice (Oryza sativa L.). Plant Production Science-Tokyo-, 2000, 3(4): 422-429.

[22]Locy R D, Chang C C, Nielsen B L, Singh N K. Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plants. Plant Physiology, 1996, 110(1): 321-328.

[23]孙龙华, 简令成. 逆境中沙冬青叶片细胞叶绿体的结构. 实验生物学报, 1995, 28(4): 427-429.

Sun L H, Jian L C.The special structure of chloroplasts in the leaf cells of Mongolian Ammopiptanthus under adverse circumstances. Acta Biologiae Experimentlis Sinica, 1995, 28(4): 427-429. (in Chinese)

[24]许祥明, 叶和春, 李国凤. 植物抗盐机理的研究进展. 应用与环境生物学报, 2000,  6(4): 379-387.

Xu M X, Ye H C, Li G F. Progress in research of plant tolerance to saline stress. Chinese Journal of Applied and Environmental Biology, 2000, 6(4): 379-387. (in Chinese)

[25]朱新广, 张其德. NaCl 对光合作用影响的研究进展. 植物学通报, 1999, 16(4): 332-338.

Zhu X G, Zhang Q D. Advances in the research on the effects of NaCl on photosynthesis. Chinese Bulletin of Botany, 1999, 16(4): 332-338. (in Chinese)

[26]Caemmerer S, Farquhar G. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 1981, 153(4): 376-387.

[27]Yamane K, Kawasaki M, Taniguchi M, Miyake H. Correlation between chloroplast ultra-structure and chlorophyll fluorescence characteristics in the leaves of rice (Oryza sativa L.) grown under salinity. Plant Production Science, 2008, 11(1): 139-145.
[1] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[2] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[3] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[4] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[5] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[6] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[7] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[8] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[9] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[10] CuiQing WU,JingXin SUN,PingYi GUO,HongFu WANG,XinHui WU. Effects of Agronomic Managements on Yield and Lodging Resistance of Millet [J]. Scientia Agricultura Sinica, 2021, 54(6): 1127-1142.
[11] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[12] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[13] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[14] SUN Lei,WANG XiaoYue,WANG HuiLing,YAN AiLing,ZHANG GuoJun,REN JianCheng,XU HaiYing. The Influence of Rootstocks on the Growth and Aromatic Quality of Two Table Grape Varieties [J]. Scientia Agricultura Sinica, 2021, 54(20): 4405-4420.
[15] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!