Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (19): 3921-3931.doi: 10.3864/j.issn.0578-1752.2012.19.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Validation of QTL for Oil Content in a Population of Worldwide Rapeseed Cultivars by Association Analysis

 SUN  Zhong-Yong, CHENG  Shuang, WANG  Ji-Bian, HUANG  Ji-Xiang, CHEN  Fei, NI  Xi-Yuan, ZHAO  Jian-Yi   

  1. 1.浙江省农业科学院作物与核技术利用研究所,杭州 310021
    2.杭州师范大学生命与环境科学学院,杭州 310036
    3.浙江大学农业与生物技术学院,杭州 310058
  • Received:2012-05-02 Online:2012-10-01 Published:2012-07-25

Abstract: 【Objective】 The objective of this study is to validate the genetic stability of 7 major QTL for oil content,which were detected in authors’ previous researches, and to assess the feasibility of marker assisted selection for improving seed oil content using closely linked functional makers.【Method】Fourteen lipid related candidate gene markers located in the 7 QTL regions were chosen to amplify 81 core collections of Brassica napus and then a linkage disequilibrium was estimated by marker-trait association analysis. Meanwhile, the allelic distribution among 81 world-wide cultivars in each QTL was investigated.【Result】By association analysis, significant differences in oil content were detected between favorable and unfavorable allele genotypes in each of six linked markers flanking four QTL (OilA1, OilA5, OilA7 and OilC8-1), respectively. Over 5 percentage in oil content could be increased by assembling favorable alleles together through four QTL linked markers Ra2E04,ZAAS919,ZAAS828 and ZAAS441. According to the marker genotypes, in the loci of OilA1 and OilC8-1, higher than 80% of European cultivars have carried positive alleles from “Sollux”, while 80% and 60% Chinese materials contain unfavorable alleles. On OilA5 and OilA7, almost all the tested European varieties did not show favorable alleles from “Gaoyou” and for Chinese materials, also only around 20%-30% cultivars carrying these positive alleles.【Conclusion】Six orthologous gene markers (corresponding to At3g51830, At2g42450, At2g44620,At1g73600, At1g73480 and At1g13560), which closely link to OilA1, OilA5, OilA7 and OilC8-1 might be functional important in the accumulation of oil content in rapeseed. When favorable alleles from three QTL including OilA7 or all four selected QTL combined together, the oil content could be increased more than 5 percentages. The results showed that the positive alleles in screened out 4 QTL loci are potentially interesting for present breeding programs in China, while the Chinese alleles from OilA5 and OilA7 should be also attractive to rapeseed breeders in European countries.

Key words: Brassica napus, oil content, association analysis, marker assistant selection (MAS)

[1]李云昌, 胡  琼, 梅德圣, 李英德, 徐育松. 选育高含油量双低油菜品种的理论与实践. 中国油料作物学报, 2006, 28(1): 92-96.

Li Y C, Hu Q, Mei D S, Li Y D, Xu Y S. Theory and practice for the development of canola varieties with high oil content. Chinese Journal of Oil Crop Sciences, 2006, 28(1): 92-96. (in Chinese)

[2]Ecke W, Uzunova M, Wiessleder K. Mapping the genome of rapeseed (Brassica napus L.): II. Localisation of genes controlling erucic acid synthesis and seed oil content. Theoretical and Applied Genetics, 1995, 91: 972-977.

[3]Burns M J, Barnes S R, Bowman J G, Clarke M H E, Werner C P, Kearsey M J. QTL analysis of an intervarietal set of substitution lines in Brassica napus: Seed oil content and fatty acid composition. Heredity, 2003, 90: 39-48. 

[4]Zhao J Y, Becker H C, Zhang D Q, Zhang Y, Ecke W. Oil content in a European×Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions. Crop Science, 2005, 45: 51-59. 

[5]Zhao J, Becker H C, Zhang D Q, Zhang Y, Ecke W. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theoretical and Applied Genetics, 2006, 113: 33-38.

[6]Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, Wang Y, Jiang C, Wang H, Xu A, Huang R, Li D, Meng J. Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theoretical and Applied Genetics, 2012, 124: 407-421.

[7]Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu J, Deschamps M, Margale E, Vincourt P, Renard M. Genetic control of oil content in oilseed rape (Brassica napus L. ). Theoretical and Applied Genetics, 2006, 113: 1331-1345. 

[8]Qiu D, Morgan J, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theoretical and Applied Genetics, 2006, 114: 67-80. 

[9]Prasanna B M, Pixley K, Warburton M, Xie C. Molecular marker-assisted breeding options for maize improvement in Asia. Molecular Breeding, 2010, 26(2): 339-356.

[10]石玉真, 刘爱英, 李俊文, 邵艳华, 袁有禄. 与棉花纤维强度连锁的主效QTL应用于棉花分子标记辅助育种. 分子植物育种, 2007, 5(4): 521-527.

Shi Y Z, Liu A Y, Li J W, Shao Y H, Yuan Y L. The major QTLs linked to fiber strength for cotton breeding program by molecular marker assisted selection. Molecular Plant Breeding, 2007, 5(4): 521-527. (in Chinese)

[11]Smýkal P, Šafá?ová D, Navrátil M, Dostalová R. Marker assisted pea breeding: eIF4E allele specific markers to pea seed-borne mosaic virus (PSbMV) resistance. Molecular Breeding, 2010, 26(3): 425-438.

[12]Neeraja C N, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard B C Y, Septiningsih E M, Vergara G, Sanchez D, Xu K, Ismail A M, Mackill D J. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theoretical and Applied Genetics, 2007, 115(6): 767-776.

[13]Pilet M L, Duplan G, Archipano M, Barret P, Baron C, Horvais R, Tanguy X, Lucas M O, Renard M, Delourme R. Stability of QTL for field resistance to blackleg across two genetic background in oilseed rape. Crop Science, 2001, 41(1): 197-215.

[14]Plieske J, Struss D. STS makers linked to phoma resistence genes of the Brassica B-genome revealed sequence homology between Brassica nigra and Brassica napus. Theoretical and Applied Genetics, 2001, 102(4): 483-488.

[15]刘志文, 王  英, 刘雪平, 傅廷栋, 薛永常, 涂金星, 马朝芝. 甘蓝型黄籽油菜分子标记辅助选择的效果分析. 华北农学报, 2006, 21(2): 57-61.

Liu Z W, Wang Y, Liu X P, Fu T D, Xue Y C, Tu J X, Ma C Z. The effects analysis of molecular marker-assisted selection in yellow- seeded Brassica napus. Acta Agriculturae Boreali-Sinica, 2006, 21(2): 57-61. (in Chinese)

[16]倪西源, 徐小栋, 黄吉祥, 陈 飞, 周伟军, 赵坚义. 利用分子标记辅助选育油菜隐性上位互作核不育临保系. 浙江大学学报: 农业与生命科学版, 2011, 37(4): 407-412. 

Ni X Y, Xu X D, Huang J X, Chen F, Zhou W J, Zhao J Y. Marker assisted selection for temporary maintainers of a recessive epistemic genic male sterility in Brassica napus L.. Journal of Zhejiang University: Agriculture and Life Sciences, 2011, 37(4): 407-412. (in Chinese)

[17]任丽平, 倪西源, 黄吉祥, 雷伟侠, 曹明富, 赵坚义. 甘蓝型油菜一个代表性核心种质的遴选. 中国农业科学, 2008, 41(11): 3521-3531.

Ren L P, Ni X Y, Huang J X, Lei W X, Cao M F, Zhao J Y, Core collection of a representative germplasm population in Brassica napus. Scientia Agricultura Sinica, 2008, 41(11): 3521-3531. (in Chinese)

[18]Zhu J. Mixedmodel approaches for estimating genetic variances and covariance. Journal of Biomath, 1992, 7: 1-11.

[19]Radoev M, Becker H C, Ecke W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics, 2008, 179: 1547-1558.

[20]Basunanda P, Radoev M, Ecke W, Friedt W, Becker H C, Snowdon R J. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics, 2010, 120: 271-281.

[21]Chen W, Zhang Y S, Yao J B, Ma C Z, Tu J X, Fu T D. Quantitative trait loci mapping for two seed yield component traits in an oilseed rape (Brassica napus) cross. Plant Breeding, 2011, 130: 640-646.

[22]Zhang L W, Yang G S, Liu P W, Hong D F, Li S P, He Q B. Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theoretical and Applied Genetics, 2011, 122: 21-31.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[3] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[4] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[7] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[8] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[9] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
[10] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[11] JianBo HE,FangDong LIU,WuBin WANG,GuangNan XING,RongZhan GUAN,JunYi GAI. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Its Applications to Genetic and Breeding Studies [J]. Scientia Agricultura Sinica, 2020, 53(9): 1704-1716.
[12] LiYuan PAN,JianBo HE,JinMing ZHAO,WuBin WANG,GuangNan XING,DeYue YU,XiaoYan ZHANG,ChunYan LI,ShouYi CHEN,JunYi GAI. Detection Power of RTM-GWAS Applied to 100-Seed Weight QTL Identification in a Recombinant Inbred Lines Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1730-1742.
[13] ShuGuang LI,YongCe CAO,JianBo HE,WuBin WANG,GuangNan XING,JiaYin YANG,TuanJie ZHAO,JunYi GAI. Genetic Dissection of Protein Content in a Nested Association Mapping Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1743-1755.
[14] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[15] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!