Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (8): 1510-1523.doi: 10.3864/j.issn.0578-1752.2020.08.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress

WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan(),CUI Cui()   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400716
  • Received:2019-08-09 Accepted:2019-11-14 Online:2020-04-16 Published:2020-04-29
  • Contact: QingYuan ZHOU,Cui CUI E-mail:zhouqy2005@163.com;cuigreeny@163.com

Abstract:

【Objective】The QTLs and tolerance genes related to the germination characters of rape seeds under the stress of tribenuron-methyl were studied, which laid the foundation for screening and cultivating the germplasm of tribenuron-methyl resistant rape and exploring the molecular mechanism of tribenuron-methyl tolerance during the germination of rape seeds.【Method】A high generation RIL population consisted of 175 lines, which were constructed from the synthetic Brassica napus 10D130 and the conventional variety Brassica napus ZS11, was treated with 0.15 mg·kg -1 tribenuron-methyl solution for seed germination test and the control was under the distilled water. The phenotypic data that including relative germination vigor (RGV), relative germination rate (RGR), relative root length (RRL) and relative dry weight (RDW) were analyzed by Excel software. Then, the RIL population was genotyped with 6K SNP chip, and the high-density genetic linkage map was constructed by JoinMap4.0 software. Based on the genetic map, the relative values of four characters were mapped by using Multiple QTL mapping method of MapQTL software. And the genes sequence of Brassica napus were searched according to the confidence interval of each QTL, next, blast with Arabidopsis genome sequence in turn and select the candidate genes that may be related to the tolerance to tribenuron-methyl stress.【Result】The frequency distribution of each traits for RIL population's was continuous with the large variation range, which were consistent with the characteristics of quantitative characters, so it were suitable for the detection of QTL. Correlation analysis showed that there was a significant positive correlation between RGR and RGV, and the correlation coefficient was 0.587. In addition, the constructed genetic map contained 1 897 polymorphic SNP markers covering 3 214.19 cM of the genome of Brassica napus with an average map distance of 1.69 cM. By this map, 22 QTLs related to 4 phenotypic traits were detected and the phenotypic contribution rate was between 6.4% and 12.6%. Among them, there were 6 and 3 QTLs related to RGV and RGR, 8 and 5 QTLs related to RRL and RDW, respectively. Also, the confidence intervals of QTLs for RGV and RGR were found to overlap completely or partially at 64.857 cM, 55.935 cM and 56.645 cM of chromosome A01. Through sequence alignment, 30 candidate genes were screened, including 18 cytochrome P450 family members, 5 glycosyltransferase family genes, 1 GSTF related gene, 1 ABC transporter related gene and 1 ALS gene, all of which were detoxified by accelerating metabolism, and related to the mechanism of herbicide resistance, especially ALS is the target enzyme of sulfonylurea herbicide. Furthermore, others genes were screened, including 1 BHLH gene and 1 JAZ6 gene which could interact to protect against stress; and 1 LSU2 protein gene which was involved in the detoxification of cell oxidants and plant defense response; and 1 MATE family member which was involved in the transport of flavonoids, alkaloids, metal ions, other metabolites and plant stress response caused by toxic substances.【Conclusion】22 QTLs that significantly associated with tribenuron-methyl tolerance related traits and 30 candidate genes for the tolerance to tribenuron-methyl were found. These genes are involved in the stress response caused by toxic substances by accelerating the transport and metabolism of toxic molecules, which may be related to the resistance regulation and response mechanism of plants to tribenuron-methyl.

Key words: tribenuron-methyl, Brassica napus L., germination, QTL, candidate genes

Table 1

Significant analysis of root length at each concentration of the two parents"

浓度Concentration
(mg·kg-1)
ZS11 10D130
均值
Mean (cm)
显著性检验
Significant (P<0.05)
降幅
Percentage reduction (%)
均值
Mean (cm)
显著性检验
Significant (P<0.05)
降幅
Percentage reduction (%)
CK 7.88 a 6.78 a
0.075 7.08 a -10.15 5.71 a -15.78
0.15 6.91 a -12.31 4.16 b -38.64
0.25 4.25 b -46.07 2.12 c -68.73
0.50 2.77 c -64.85 0.86 c -87.32

Table 2

Phenotype variation of 4 related traits in parents and F2:7 population"

性状
Trait
亲本 Parent F2:7群体 F2:7 populations
ZS11 10D130 平均数±标准差Mean±SD 极差Range 变异系数CV (%)
相对发芽势RGV 1.00 0.97 0.98±0.18 1.33 18.7
相对发芽率RGR 1.00 0.97 1.00±0.14 1.04 13.5
相对根长RRL 0.88 0.61 0.53±0.19 0.92 36.0
相对干重RDW 0.99 0.87 0.98±0.15 1.89 15.1

Table 3

Analysis of the differences of the F2:7 population"

性状
Trait
重复间差异性 Inter repetition difference 株系间差异性 Difference among strains
自由度df F 显著性Significant 自由度df F 显著性Significant
相对发芽势RGV 2 0.597 0.551 174 3.356 3.8E-22
相对发芽率RGR 2 1.136 0.322 174 3.707 1.2E-25
相对根长RRL 2 0.009 0.991 174 36.920 2.5E-157
相对干重RDW 2 0.766 0.466 174 3.175 2.5E-20

Fig. 1

Phenotype frequency distribution of 4 related traits in F2:7 population RGV: Relative germination vigor; RGR: Relative germination rate; RRL: Relative root length; RDW: Relative dry weight. The same as below"

Table 4

Correlation analysis of 4 related traits in F2:7 population"

性状 Trait 相对发芽势 RGV 相对发芽率 RGR 相对根长 RRL 相对干重 RDW
相对发芽势RGV 1
相对发芽率RGR 0.587** 1
相对根长RRL -0.049 -0.110 1
相对干重RDW -0.122 0.072 -0.107 1

Table 5

QTLs for 4 related traits from F2:7 population of oilseed"

性状
Trait
位点
Loci
左标记
Left marker
右标记
Right marker
染色体
Chr.
位置
Position (cM)
阈值
LOD
贡献率
Expl. (%)
置信区间
Confidence interval (cM)
相对发芽势
RGV
qRGVC02-1 / AX-86224097 C02 0.000 3.04 7.7 0.000—0.468
qRGVC03-1 AX-95665263 AX-177835191 C03 68.724 2.88 7.3 67.838—69.724
qRGVC07-1 AX-177830550 AX-95503939 C07 79.903 2.82 7.1 72.776—80.784
qRGVA01-1 AX-95656842 AX-182125504 A01 55.935 2.61 6.6 54.426—56.645
qRGVA01-2 AX-182153395 AX-182155384 A01 64.857 2.65 6.7 62.861—67.428
qRGVA06-1 AX-95501842 AX-177829720 A06 106.205 2.62 6.7 105.840—108.202
相对发芽率
RGR
qRGRA01-1 AX-95509232 AX-177830916 A01 56.645 4.31 10.7 55.935—57.420
qRGRA01-2 AX-182153395 AX-182155384 A01 64.857 2.95 7.5 62.861—67.428
qRGRA03-1 AX-95508795 AX-95509572 A03 127.616 2.82 7.2 125.682—129.203
相对根长
RRL
qRRLA04-1 AX-182176371 AX-95505772 A04 94.698 4.51 11.2 88.608—97.938
qRRLA04-2 AX-95507645 AX-177833715 A04 113.308 5.12 12.6 108.264—114.008
qRRLA04-3 AX-177827854 AX-95503983 A04 132.285 2.89 7.3 130.443—134.464
qRRLA06-1 AX-95664740 AX-95506250 A06 98.667 3.46 8.7 97.389—101.050
qRRLA06-2 AX-105306485 AX-95664864 A06 113.134 3.35 8.4 112.441—113.682
qRRLA06-3 AX-95656835 AX-105307005 A06 124.073 4.01 10.0 123.077—130.636
qRRLA09-1 AX-105307894 AX-177910950 A09 284.516 3.06 7.7 283.174—285.872
qRRLC01-1 AX-105335237 AX-105335655 C01 45.715 2.51 6.4 42.779—47.043
相对干重
RDW
qRDWA03-1 AX-95663919 AX-95638137 A03 98.052 2.98 7.5 97.681—99.234
qRDWA04-1 AX-95662645 AX-182137198 A04 17.105 3.2 8.1 12.178—19.860
qRDWA04-2 AX-179307304 AX-95664963 A04 39.299 2.93 7.4 38.667—41.328
qRDWA02-1 AX-179307763 AX-177832049 A02 125.116 2.65 6.7 121.653—129.830
qRDWC03-1 AX-105338724 AX-105308542 C03 187.649 2.52 6.4 185.306—188.940

Fig. 2

Putative QTLs of 4 related traits in the genetic linkage map"

Table 6

A summary of candidate genes associated with tribenuron-methyl related traits"

性状
Trait
位点
Loci
染色体
Chr.
物理区间
Physical interval
(bp)
候选基因
Candidate gene
拟南芥基因
Arabidopsis gene
基因
Gene
描述
Description
相对发
芽势
RGV
qRGVC07-1 C07 33957781—34814007 BnaC07g29830D AT5G24660 LSU2 细胞氧化剂解毒;对防御反应调控
Cellular oxidant detoxification; Regulation of defense response
qRGVA01-1 A01 6196365—6753945 BnaA01g12870D AT4G23030 / MATE家族蛋白 MATE efflux family protein
相对发
芽率
RGR
qRGRA01-1 A01 6196365—6753945 BnaA01g12870D AT4G23030 / MATE家族蛋白 MATE efflux family protein
qRGRA03-1 A03 14987907—15498700 BnaA03g31340D AT3G10670 ABCI6 参与生物发生或修复氧化破坏的Fe-S簇
Involved in the biogenesis or repair of oxidatively damaged Fe-S clusters.
相对
根长
RRL
qRRLA04-1 A04 14446411—15117001 BnaA04g19030D AT2G32740 GT13 半乳糖基转移酶13 Galactosyltransferase 13
BnaA04g17910D AT2G30860 GSTF9 编码GST phi类谷胱甘肽转移酶
Encodes glutathione transferase belonging to the phi class of GSTs
BnaA04g18440D AT2G31790 UGT UDP-糖基转移酶超家族蛋白
UDP-Glycosyltransferase superfamily protein
qRRLA04-2 A04 15913314—16484458 BnaA04g21090D AT2G36760 UGT73C2 UDP-葡萄糖基转移酶73C2
UDP-glucosyl transferase 73C2
qRRLA04-3 A04 17814614—17923085 BnaA04g24370D AT2G42250 CYP712A1 CYP712A的成员 Member of CYP712A
qRRLA06-1 A06 21396095—21528844 BnaA06g31960D AT4G39510 CYP96A12 CYP96A的成员 Member of CYP96A
BnaA06g32050D AT4G27710 CYP709B3 CYP709B的成员 Member of CYP709B
qRRLA06-2 A06 21528844—22092492 BnaA06g32370D AT3G25180 CYP82G1 编码细胞色素P450单加氧酶
Encodes a cytochrome P450 monooxygenase
BnaA06g32970D AT3G26290 CYP71B26 细胞色素P450成员 Putative cytochrome P450
BnaA06g32980D AT2G02580 CYP71B9 CYP71B的成员 Member of CYP71B
BnaA06g32990D AT3G26300 CYP71B34 细胞色P450 Putative cytochrome P450
BnaA06g33000D AT3G48560 ALS 催化乙酰乳酸的形成;被磺酰脲类除草剂抑制等
Catalyzing the formation of acetolactate; Inhibited by the sulphonylurea herbicide. etc
BnaA06g33010D AT3G26220 CYP71B3 细胞色素P450单加氧酶
Cytochrome P450 monooxygenase
BnaA06g33020D AT3G26210 CYP71B23 细胞色素P450成员 Putative cytochrome P450
BnaA06g33030D AT3G26200 CYP71B22 细胞色素P450成员 Putative cytochrome P450
BnaA06g33040D AT3G26190 CYP71B21 细胞色素P450成员 Putative cytochrome P450
BnaA06g33060D AT3G26170 CYP71B19 细胞色素P450成员 Putative cytochrome P450
BnaA06g33050D AT3G26180 CYP71B20 细胞色素P450成员 Putative cytochrome P450
BnaA06g33070D AT3G26165 CYP71B18 细胞色素P450成员 Putative cytochrome P450.
qRRLC01-1 C01 3631449—3936101 BnaC01g06930D AT1G13080 CYP71B2 细胞色素P450单加氧酶
Cytochrome P450 monooxygenase
相对
干重
RDW
qRDWA02-1 A02 8524524—9460659 BnaA02g15990D AT1G72450 JAZ6 调节防御反应及茉莉酸介导的信号传导途径Regulation of defense response and jasmonic acid mediated signaling pathway
BnaA03g22720D AT1G72210 BHLH96 BHLH DNA结合超家族蛋白
BHLH DNA-binding superfamily protein
BnaA02g15580D AT2G46960 CYP709B1 CYP709B的成员 Member of CYP709B
qRDWA03-2 A03 10805287—12106754 BnaA03g22720D AT2G26480 UGT76D1 UDP-葡萄糖基转移酶76D1
UDP-glucosyl transferase 76D1
BnaA03g25050D AT4G12320 CYP706A6 CYP706A的成员 Member of CYP706A
qRDWA04-1 A04 1637957—2461363 BnaA04g03050D AT3G57220 GT 糖基转移酶家族蛋白
Glycosyl transferase family 4 protein
qRDWC03-1 C03 47920601—48510329 BnaC03g59160D AT2G25160 CYP82F1 细胞色素P450成员
Cytochrome P450, family 82, subfamily F,
[1] GREEN J M . Current state of herbicides in herbicide-resistant crops. Pest Management Science, 2014,70(9):1351-1357.
[2] DONG B, QIAN W, HU J . Dissipation kinetics and residues of florasulam and tribenuron-methyl in wheat ecosystem. Chemosphere, 2015,120:486-491.
[3] MAZUR B J, FALCO S C . The development of herbicide resistant crops. Annual Review of Plant Biology, 1989,40(1):441-470.
[4] YU C Y, DONG J G, HU S W, XU AI X . Exposure to trace amounts of sulfonylurea herbicide tribenuron-methyl causes male sterility in 17 species or subspecies of cruciferous plants. BMC Plant Biology, 2017,17(1):95-11.
[5] YU C, HU S, HE P, SUN G, ZHANG C, YU Y . Inducing male sterility in Brassica napus L. by a sulphonylurea herbicide, tribenuron-methyl. Plant Breeding, 2006,125(1):61-64.
[6] 周清元, 王倩, 叶桑, 崔明圣, 雷维, 郜欢欢, 赵愉风, 徐新福, 唐章林, 李加纳, 崔翠 . 苯磺隆胁迫下油菜萌发期相关性状的全基因组关联分析. 中国农业科学, 2019,52(3):399-413.
ZHOU Q Y, WANG Q, YE S, CUI M S, LEI W, GAO H H, ZHAO Y F, XU X F, TANG Z L, LI J N, CUI C . Genome-wide association analysis of tribenuron-methyl tolerance related traits in Brassica napus L. under germination. Scientia Agricultura Sinica, 2019,52(3):399-413. (in Chinese)
[7] 孙妍妍, 曲高平, 黄谦心, 吕金洋, 郭媛, 胡胜武 . 甘蓝型油菜抗苯磺隆突变体ALS基因分析与SNP标记. 中国油料作物学报, 2015,37(5):589-595.
SUN Y Y, QU G P, HUANG Q X, LÜ J Y, GUO Y, HU S W . SNP markers for acetolactate synthase genes from tribenuron-methyl resistant mutants in Brassica napus L. Chinese Journal of Oil Crop Sciences, 2015,37(5):589-595. (in Chinese)
[8] 杜慧平, 杜慧玲 . 苯磺隆在土壤中的消解动态和残留测定. 山西农业科学, 2015(1):50-53.
DU H P, DU H L . Tribenuron-methly degradation dynamics and residual in soil. Journal of Shanxi Agricultural Sciences, 2015(1):50-53. (in Chinese)
[9] NGUYEN T C, ABRAMS S R, FRIEDT W, SNOWDON R J . Quantitative trait locus analysis of seed germination, seedling vigour and seedling-regulated hormones in Brassica napus. Plant Breeding, 2018,137(3):388-401.
[10] YU X, YANG A, JAMES A T . Selecting soybeans for sulfonylurea herbicide tolerance: A comparative proteomic study of seed germinations. Crop and Pasture Science, 2017,68(1):27-32.
[11] 王倩, 崔翠, 叶桑, 崔明圣, 赵愉风, 林呐, 唐章林, 李加纳, 周清元 . 甘蓝型油菜种子萌发期耐苯磺隆种质筛选与综合评价. 作物学报, 2018,44(8):1169-1184.
WANG Q, CUI C, YE S, CUI M S, ZHAO Y F, LIN N, TANG Z L, LI J N, ZHOU Q Y . Screening and comprehensive evaluation of germplasm resources with tribenuron-methyl tolerance at germination stage in rapeseed ( Brassica napus L.). Acta Agronomica Sinica, 2018,44(8):1169-1184. (in Chinese)
[12] 李慧慧, 张鲁燕, 王建康 . 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010,36(6):918-931.
LI H H, ZHANG L Y, WANG J K . Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agronomica Sinica, 2010,36(6):918-931. (in Chinese)
[13] LI Z, MEI S, MEI Z, LIU X, FU T, ZHOU G, TU J . Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in oilseed rape ( Brassica napus). Euphytica, 2014,197(3):341-353.
[14] BASNET R K, DUWAL A, TIWARI D N, XIAO D, MONAKHOS S, BUCHER J, MALIEPAARD C . Quantitative trait locus analysis of seed germination and seedling vigor in Brassica rapa reveals QTL hotspots and epistatic interactions. Frontiers in Plant Science, 2015,6:1032.
[15] LANG L, XU A, DING J, ZHANG Y, ZHAO N, TIAN Z, LIU Y, WANG Y, LIU X, LIANG F H, ZHANG B B, QIN M F, DALELHAN J, HUANG Z . Quantitative trait locus mapping of salt tolerance and identification of salt-tolerant genes in Brassica napus L. Frontiers in Plant Science, 2017,8:1000.
[16] 荐红举, 肖阳, 李加纳, 马珍珍, 魏丽娟, 刘列钊 . 利用SNP遗传图谱定位盐、旱胁迫下甘蓝型油菜种子发芽率的QTL. 作物学报, 2014,40(4):629-635.
JIAN H J, XIAO Y, LI J N, MA Z Z, WEI L J, LIU L Z . QTL Mapping for germination percentage under salinity and drought stresses in Brassica napus L. using a SNP genetic map. Acta Agronomica Sinica, 2014,40(4):629-635. (in Chinese)
[17] GUAN Q, ZHANG Y X, XU X L, SUN D Q, LI S Y, LIN H, PAN L Y, MA Y H . Development of DNA molecular marker and several new types of molecular markers. Heilongjiang Agricultural Sciences, 2008,1:102-104.
[18] LIU C, SUKUMARAN S, CLAVERIE E, SANSALONI C, DREISIGACKER S, REYNOLDS M . Genetic dissection of heat and drought stress QTLs in phenology-controlled synthetic-derived recombinant inbred lines in spring wheat. Molecular Breeding, 2019,39(3):34.
[19] 刘列钊, 李加纳 . 利用甘蓝型油菜高密度SNP遗传图谱定位油酸、亚麻酸及芥酸含量QTL位点. 中国农业科学, 2014,47(1):24-32.
LIU L Z, LI J N . QTL Mapping of oleic acid, linolenic acid and erucic acid content in Brassica napus by using the high density SNP genetic map. Scientia Agricultura Sinica, 2014,47(1):24-32. (in Chinese)
[20] 侯林涛, 王腾岳, 荐红举, 王嘉, 李加纳, 刘列钊 . 甘蓝型油菜盐胁迫下幼苗鲜重和干重 QTL 定位及候选基因分析. 作物学报, 2017,43(2):179-189.
HOU L T, WANG T Y, JIAN H J, WANG J, LI J N, LIU L Z . QTL Mapping for seedling dry weight and fresh weight under salt stress and candidate genes analysis in Brassica napus L. Acta Agronomica Sinica, 2017,43(2):179-189. (in Chinese)
[21] LIU W, BAI S, ZHAO N, JIA S, LI W, ZHANG L, WANG J . Non-target site-based resistance to tribenuron-methyl and essential involved genes in Myosoton aquaticum(L.). BMC Plant Biology, 2018,18(1):225.
[22] 吴学莉, 易丽聪, 侯凡, 吴江生, 姚璇, 刘克德 . 表达播娘蒿突变基因DsALS-108的抗苯磺隆甘蓝型油菜植株构建. 农业生物技术学报, 2016,24(4):469-477.
WU X L, YI L C, HOU F, WU J S, YAO X, LIU K D . Generation of tribenuron-methyl herbicide resistant rapeseed( Brasscia napus) plants expressing mutated gene Ds ALS-108 of flixweed (Descurainia sophia). Journal of Agricultural Biotechnology, 2016,24(4):469-477. (in Chinese)
[23] 胡茂龙, 浦惠明, 高建芹, 龙卫华, 戚存扣, 张洁夫, 陈松 . 油菜乙酰乳酸合成酶抑制剂类除草剂抗性突变体M9的遗传和基因克隆. 中国农业科学, 2012,45(20):4326-4334.
HU M L, PU H M, GAO J Q, LONG W H, QI C K, ZHANG J F, CHEN S . Inheritance and gene cloning of an ALS inhabiting herbicide resistant mutant line M9 in Brassica napus. Scientia Agricultura Sinica, 2012,45(20):4326-4334. (in Chinese)
[24] 周清元 . 甘蓝型油菜新种质资源创建及其株型性状遗传分析[D]. 重庆: 西南大学, 2013.
ZHOU Q Y . Study on germplasm creation of Brassica napus and genetic analysis of plant-type characters[D]. Chongqing: Southwest University, 2013. (in Chinese)
[25] 郜欢欢, 叶桑, 王倩, 王刘艳, 王瑞莉, 陈柳依, 唐章林, 李加纳, 周清元, 崔翠 . 甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选. 作物学报, 2019,45(9):1416-1430.
GAO H H, YE S, WANG Q, WANG L Y, WANG R L, CHEN L Y, TANG Z L, LI J N, ZHOU Q Y, CUI C . Screening and comprehensive evaluation of aluminum-toxicity tolerance during seed germination in Brassca napus. Acta Agronomica Sinica, 2019,45(9):1416-1430. (in Chinese)
[26] KOSAMBI D D . The estimation of map distances from recombination values. Annals of Eugenics, 1944,12:172-175.
[27] 任义英, 崔翠, 王倩, 唐章林, 徐新福, 林呐, 殷家明, 李加纳, 周清元 . 油菜主花序角果密度及其相关性状的全基因组关联分析. 中国农业科学, 2018,51(6):1020-1033.
REN Y Y, CUI C, WANG Q, TANG Z L, XU X F, LIN N, YIN J M, LI J N, ZHOU Q Y . Genome-wide association analysis of silique density on racemes and its component traits in Brassica napus L. Scientia Agricultura Sinica, 2018,51(6):1020-1033. (in Chinese)
[28] 阎志红, 刘文革, 赵胜杰, 何楠, 王俊良 . NaCl 胁迫对不同西瓜种质资源发芽的影响. 植物遗传资源学报, 2006(2):220-225.
YAN Z H, LIU W G, ZHAO S J, HE N, WANG J L . Effect of NaCl stress on germination of different watermelon varieties. Journal of Plant Genetic Resources, 2006(2):220-225. (in Chinese)
[29] 唐建明, 王勇, 方雅琴 . 油菜田常用除草剂药害及规避措施. 杂草科学, 2010(1):64-66.
TANG J M, WANG Y, FANG Y Q . Herbicide phytotoxicity and evasion measures in rape fields. Journal of Weeds, 2010(1):64-66. (in Chinese)
[30] 张宝娟, 赵惠贤, 胡胜武 . 苯磺隆对甘蓝型油菜中双 9 号的杀雄效果. 中国油料作物学报, 2010,32(4):467-471.
ZHANG B J, ZHAO H X, HU S W . Male sterile-inducing ability of tribenuron-methyl to rapeseed cultivar Zhongshuang 9. Chinese Journal of Oil Crop Sciences, 2010,32(4):467-471. (in Chinese)
[31] 付三雄, 周晓婴, 戚存扣 . 苯磺隆对甘蓝型油菜的杀雄效果及对其靶标 ALS 活性的影响. 江西农业学报, 2019,31(2):8-12.
FU S X, ZHOU X Y, QI C K . Male-sterile-inducing efficiency of tribenuron-methyl and its effect on activity of acetolactate synthase in Brassica napus. Acta Agriculturae Jiangxi, 2019,31(2):8-12. (in Chinese)
[32] 信晓阳, 曲高平, 张荣, 庞红喜, 吴强, 王发禄, 胡胜武 . 不同品种油菜对苯磺隆耐药性差异的鉴定. 西北农业学报, 2014,23(7):68-74.
XIN X Y, QU G P, ZHANG R, PANG H X, WU Q, WANG F L, HU S W . Identification of the tribenuron-methyl tolerance in different rapeseed genotypes. Acta Agriculturae Boreali-Occidentalis Sinica, 2014,23(7):68-74. (in Chinese)
[33] 缪颖, 伍炳华 . 植物抗逆性的获得与信息传导. 植物生理学通讯, 2001(1):71-76.
MIAO Y, WU B H . The acquirement of stress response characteristics and signal transduction in plants. Plant Physiology Communications, 2001(1):71-76. (in Chinese)
[34] NIU Y, FIGUEROA P, BROWSE J . Characterization of JAZ- interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. Journal of Experimental Botany, 2011,62(6):2143-2154.
[35] 吴平治, 李东屏 . 拟南芥中MATE基因家族的研究进展. 遗传, 2006,28(7):906-910.
WU P Z, LI D P . Advances in the study of MATE gene family in Arabidopsis. Genetic, 2006,28(7):906-910. (in Chinese)
[36] CHEN L, LIU Y, LIU H, KANG L, GENG J, GAI Y, LI Y . Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants. PLoS ONE, 2015,10(3):e0118578.
[37] SHITAN N, MINAMI S, MORITA M, HAYASHIDA M, ITO S, TAKANASHI K, OMOTE H, MORIYAMA Y, SUGIYAMA A, GOOSSENS A, MORIYASU M, YAZAKI K . Involvement of the Leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in Nicotiana tabacum. PLoS ONE, 2014,9(9):e108789.
[38] HE X . Think positively: The structural basis of cation-binding and coupling of the multidrug and toxic-compound extrusion (MATE) transporter family. University of California, San Diego, 2010.
[39] SHOJI T . ATP-binding cassette and multidrug and toxic compound extrusion transporters in plants: A common theme among diverse detoxification mechanisms. International Review of Cell & Molecular Biology, 2014,309:303.
[40] LU P, MAGWANGA R O, GUO X, KIRUNGU J N, LU H, CAI X, PENG R . Genome-wide analysis of multidrug and toxic compound extrusion (MATE) family in Gossypium raimondii and Gossypium arboreum and its expression analysis under salt, cadmium, and drought stress. Genes, Genomes, Genetics, 2018,8(7):2483-2500.
[41] WANG H, SEO J K, GAO S, CUI X, JIN H . Silencing of AtRAP, a target gene of a bacteria-induced small RNA, triggers antibacterial defense responses through activation of LSU2 and down-regulation of GLK1. New Phytologist, 2017,215(3):1144-1155.
[42] LI M, YU Q, HAN H, VILA-AIUB M, POWLES S B . ALS herbicide resistance mutations in Raphanus raphanistrum: Evaluation of pleiotropic effects on vegetative growth and ALS activity. Pest Management Science, 2013,69(6):689-695.
[43] XU X, LIU G, CHEN S, LI B, LIU X, WANG X, FAN C Q, WANG G Q, NI H . Mutation at residue 376 of ALS confers tribenuron-methyl resistance in flixweed ( Descurainia sophia) populations from Hebei province, China. Pesticide Biochemistry and Physiology, 2015,125:62-68.
[44] HAN H, YU Q, PURBA E, LI M, WALSH M, FRIESEN S, POWLES S B . A novel amino acid substitution Ala-122-Tyr in ALS confers high-level and broad resistance across ALS-inhibiting herbicides. Pest Management Science, 2012,68(8):1164-1170.
[45] SHIMIZU M, GOTO M, HANAI M, SHIMIZU T, IZAWA N, KANAMOTO H, TOMIZAWA K, YOKOTA A, KOBAYASHI H . Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco. Plant Physiology, 2008,147(4):1976-1983.
[46] SIMINSZKY B, CORBIN F T, WARD E R, FLEISCHMANN T J, DEWEY R E . Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proceedings of the National Academy of Sciences of the USA, 1999,96(4):1750-1755.
[47] BAI S, LIU W, WANG H, ZHAO N, JIA S, ZOU N, GUO W, WANG J . Enhanced herbicide metabolism and metabolic resistance genes identified in tribenuron-methyl resistant Myosoton aquaticum L. Journal of Agricultural and Food Chemistry, 2018,66(37):9850-9857.
[48] YU Q, POWLES S . Metabolism-based herbicide resistance and cross-resistance in crop weeds: A threat to herbicide sustainability and global crop production. Plant Physiology, 2014,166(3):1106-1118.
[49] IWAKAMI S, KAMIDATE Y, YAMAGUCHI T, ISHIZAKA M, ENDO M, SUDA H, NAGAI K, SUNOHARA Y, TOKI S, UCHINO A, TOMINAGA T . CYP 81A P450s are involved in concomitant cross-resistance to acetolactate synthase and acetyl-CoA carboxylase herbicides in Echinochloa phyllopogon. New Phytologist, 2019,221(4):2112-2122.
[50] NARUSAKA M, SEKI M, UMEZAWA T, ISHIDA J, NAKAJIMA M, ENJU A, SHINOZAKI K . Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Molecular Biology, 2004,55(3):327-342.
[51] ZIMMERLIN A, DURST F . Aryl hydroxylation of the herbicide diclofop by a wheat cytochrome P450 monooxygenase: substrate specificity and physiological activity. Plant Physiology, 1992,100(2):874-881.
[52] BAEK Y S, GOODRICH L V, BROWN P J, JAMES B T, MOOSE S P, LAMBERT K N, RIECHERS D E . Transcriptome profiling and genome-wide association studies reveal GSTs and other defense genes involved in multiple signaling pathways induced by herbicide safener in grain sorghum. Frontiers in Plant Science, 2019,10:192.
[53] GAINES T A, LORENTZ L, FIGGE A, HERRMANN J, MAIWALD F, OTT M C, HAN H, BUSI R, YU Q, POWLES S B, BEFFA R . RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. The Plant Journal, 2014,78(5):865-876.
[54] CUMMINS I, WORTLEY D J, SABBADIN F, HE Z, COXON C R, STRAKER H E, SELLARS J D, KNIGHT K, EDWARDS L, HUGHES D, KAUNDUN S S, HUTCHINGS S J, STEEL P G, EDWARDS R . Key role for a glutathione transferase in multiple- herbicide resistance in grass weeds. Proceedings of the National Academy of Sciences of the USA, 2013,110(15):5812-5817.
[55] OOSTERHUIS B, VUKMAN K, VÁGI E, GLAVINAS H, JABLONKAI I, KRAJCSI P . Specific interactions of chloroacetanilide herbicides with human ABC transporter proteins. Toxicology, 2008,248(1):45-51.
[56] MENG J J, QIN Z W, ZHOU X Y, XIN M . An ATP-binding cassette transporter gene from Cucumis Sativus L., Csabc19, is involved in propamocarb stress in Arabidopsis thaliana. Plant molecular Biology Reporter, 2016,34(5):947-960.
[57] MOREIRA L F, ZOMER S J, MARQUES S M . Modulation of the multixenobiotic resistance mechanism in Daniorerio hepatocyte culture (ZF-L) after exposure to glyphosate and Roundup®. Chemosphere, 2019,228:159-165.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[3] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[4] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[5] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[6] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[7] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[8] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[9] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[10] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[11] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[12] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[13] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[14] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[15] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!