Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (19): 3909-3920.doi: 10.3864/j.issn.0578-1752.2012.19.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of QTLs for Major Isoflavone Components mong Multiple Environments in Soybean Seeds

 ZHANG  Jing-Ying, GE  Yi-Nan, SUN  Jun-Ming, HAN  Fen-Xia, YU  Fu-Kuan, YAN  Shu-Rong, YANG  Hua   

  1. 1.中国农业科学院作物科学研究所/农业部北京大豆生物学重点实验室 北京 100081
  • Received:2012-06-11 Online:2012-10-01 Published:2012-07-31

Abstract: 【Objective】The QTLs for major isoflavone components were identified among multiple environments by different QTL mapping methods in soybean seeds, in order to provide a theoretical basis for soybean isoflavone marker-assisted selection. 【Method】 In this study, a recombinant inbreed line population (RIL, F5∶7-8) was developed by using the cross between the isoflavone contrasting cv. LHD2 with high-isoflavone concentration (3 697.24 μg•g-1) and cv. NHZ with low-isoflavone concentration (1 816.67 μg•g-1). The polymorphism of SSR markers among the RIL population was analyzed and the major isoflavone components were determined by HPLC. 【Result】The results showed that a soybean linkage map with a total distance of 3 546.54 cM was constructed using 161 polymorphism SSR molecular markers in the RIL population. A total of 14 QTLs associated with the major isoflavone components were found by ICIM, IM, and SMA methods in the ICIMapping 3.2 software under the four environments. 【Conclusion】The three QTLs flanked by the marker interval Sat_003-Satt306, Satt070-Satt122 and Satt571-Satt270 were detected among multiple environments in more than two methods.

Key words: soybean (Glycine max L. Merrill), isoflavone component, SSR, QTL

[1]Weidenborner M, Hindorf H, Jha H C, Tsotsonos P, Egge H. Antifungal activity of isoflavonoids in different reduced stages on Rhizoctonia solani and Sclerotium rolfsii. Phytochemistry, 1990, 29: 801-803.

[2]Messins M, Barnes S. The role of soy products in reducing risk of cancer. Journal of the National Cancer Institute, 1991, 83: 541-546.

[3]Coward L, Barnes N C, Setchell K D R. Genistein, daidzein, and their-glycoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets. Journal of Agricultural and Food Chemistry, 1993, 41: 1961-1967.

[4]Munro I C, Harwood M, Hlywka J J, Stephen A M, Doull J, Flamm W G, Adlercreutz H. Soy isoflavones: A safety review. Nutrition Reviews, 2003, 61(1): 1-33.

[5]Howes L G, Howes J B, Knight D C. Isoflavone therapy for menopausal flushes: A systematic review and meta-analysis. Maturitas, 2006, 55(3): 203-211.

[6]Ma D F, Qin L Q, Wang P Y, Katoh R. Soy isoflavone intake increases bone mineral density in the spine of menopausal women: Meta- analysis of randomized controlled trials. Clinical Nutrition, 2008, 27(1): 57-64.

[7]Nagata C. Factors to consider in the association between soy isoflavone intake and breat cancer risk. Journal of Epidemiology, 2010, 20(2): 83-89.

[8]Kudou S, Fleury Y, Welti D, Magnolato D, Uchida T, Kitamura K, Okubo K. Malonyl isoflavone glycosides in soybean seeds (Glycine max L. Merrill). Agricultural and Biological Chemistry, 1991, 55(9): 2227-2233.

[9]孙君明, 韩粉霞, 丁安林. 高效液相色谱(HPLC)技术鉴定中国南方大豆品种异黄酮主要组分. 植物遗传资源学报, 2004, 5(3): 222-226. 

Sun J M, Han F X, Ding A L. Determination of major isoflavone components based on HPLC technology in southern soybean varieties in China. Journal of Plant Genetic Resources, 2004, 5(3): 222-226. (in Chinese)

[10]Wang H J, Murphy P A. Isoflavone composition of American     and Japanese soybeans in Iowa: Effects of variety, crop year and location. Journal of Agricultural and Food Chemistry, 1994, 42: 1674-1677.

[11]林  红, 来永才, 齐  宁, 李  辉, 张晓波, 杨雪峰. 黑龙江省野生大豆、栽培大豆高异黄酮种质资源筛选. 植物遗传资源学报, 2005, 6(1): 53-55.

Lin H, Lai Y C, Qi N, Li H, Zhang X B, Yang X F. Screening of germplasm with high content of isoflavones in wild and cultivated soybean in Heilongjiang. Journal of Plant Genetic Resources, 2005, 6(1): 53-55. (in Chinese)

[12]Ryder T B, Hedrick S A, Bell J N. Elicitor rapidly induces chalcone synthase mRNA in Phaseolus vulgaris cells at the onset of the phytoalexin defense response. Molecular and General Genetics, 1987, 210: 219-233.

[13]沈黎明, 孙君明, 丁安林. 不同光照条件下大豆体内异黄酮的含量与分布. 中国油料作物学报, 1999, 21(2): 36-40.

Shen L M, Sun J M, Ding A L. Contents and distribution of isoflavones in soybean under different light conditions. Chinese Journal of Oil Crop Sciences, 1999, 21(2): 36-40. (in Chinese)

[14]Bennett J O, Yu O, Heatherly L G, Krishnan H B. Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation. Journal of Agricultural and Food Chemistry, 2004, 52: 7574-7579.

[15]孙君明, 丁安林. 大豆籽粒中异黄酮含量的质量-数量性状的遗传分析初探. 大豆科学, 1998, 17: 305-310.

Sun J M, Ding A L. Qualitative-quantitative analysis for inheritance of isoflavone content in soybean seeds. Soybean Science, 1998, 17: 305-310. (in Chinese)

[16]Sun J M, Ding A L, Chang R Z. Genetic analysis on isoflavone content in soybean seeds. Agricultural Sciences in China, 2002, 1(3): 274-279.

[17]Chiari L, Naoe L K, Piovesan N D, JoséI C, Cruz C D, Moreira M A, Barros E G. Genetic parameters relating isoflavone and protein content in soybean seeds. Euphytica, 2004, 138: 55-60.

[18]梁慧珍, 李卫东, 方宣钧, 曹颖妮, 王  辉. 大豆异黄酮及其组分含量的配合力和杂种优势. 中国农业科学, 2005, 38(10): 2147-2152.

Liang H Z, Li W D, Fang X J, Cao Y N, Wang H. Genetic analysis of combining abilities and heterosis in contents of soybean isoflavone and its components among the soybean varieties [Glycine max (L.) Merr.]. Scientia Agricultura Sinica, 2005, 38(10): 2147-2152. (in Chinese)

[19]宁海龙, 李文霞, 李文滨, 卢双勇. 大豆籽粒异黄酮含量的遗传效应分析. 中国油料作物学报, 2006, 28(3): 272-275.

Ning H L, Li W X, Li W B, Lu S Y. Genetic analysis of isoflavone content in soybean [Glycine max (L.) Merr.]. Chinese Journal of Oil Crop Sciences, 2006, 28(3): 272-275. (in Chinese)

[20]Meksem K, Njiti V N, Banz W J, Iqbal M J, Kassem M M, Hyten D L, Yuang J, Winters T A, Lightfoot D A. Genomic regions that underlie soybean seed isoflavone content. Journal of Biomedicine and Biotechnology, 2001, 1: 38-44.

[21]Kassem M A, Meksem K, Iqbal M J, Njiti V N, Banz W J, Winters T A, Wood A, Lightfoot D A. Definition of soybean genomic regions that control seed phytoestrogen amounts. Journal of Biomedicine and Biotechnology, 2004, 1: 52-60.

[22]Kassem M A, Shultz J, Meksem K, Cho Y, Wood A J, Iqbal M J, Lightfoot D A. An updated ‘Essex’ by ‘Forrest’ linkage map and first composite interval map of QTL underlying six soybean traits. Theoretical and Applied Genetics, 2006, 113: 1015-1026.

[23]Primomo V S, Poysa V, Ablett G R, Jackson C J, Gijzen M, Rajcan I. Mapping QTL for individual and total isoflavone content in soybean seeds. Crop Science, 2005, 45(6): 2545-2464.

[24]Gutierrez-Gonzale J J, Wu X L, Zhang J, Lee J D, Ellersieck M, Shannon J G, Yu O, Nguyen T H, Sleper A D. Genetic control of soybean seed isoflavone content: Importance of statistical model and epistasis in complex traits. Theoretical and Applied Genetics, 2009, 119: 1069-1083.

[25]Gutierrez-Gonzale J J, Vuong D T, Zhong R, Yu O, Lee J, Shannon G, Ellersieck M, Nguyen T H, Sleper A D. Major locus and other novel additive and epistatic loci involved in modulation of isoflavone concentration in soybean seeds. Theoretical and Applied Genetics, 2011, 123: 1375-1385.

[26]Yang K, Moon J K, Jeong N, Chun H K, Kang S T, Back K, Jeong S C. Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes and Genomics, 2011, 33: 685-692.

[27]王春娥. 我国大豆资源豆腐豆乳得率和异黄酮含量的遗传变异及两类性状的QTL分析[D]. 南京: 南京农业大学, 2008.

Wang C E. Genetic variability of toftu and soymilk output and isoflavone content in soybean germplasm from China and QTL mapping of the two kinds of traits[D]. Nanjing: Nanjing Agricultural University, 2008. (in Chinese)

[28]梁慧珍, 王树峰, 余永亮, 练  云, 王庭峰, 位艳丽, 巩鹏涛, 刘学义, 方宣钧. 大豆异黄酮与脂肪、蛋白质含量基因定位分析. 中国农业科学, 2009, 42(8) :2652-2660.

Liang H Z, Wang S F, Yu Y L, Lian Y, Wang T F, Wei Y L, Gong P T, Liu X Y, Fang X J. QTL Mapping of isoflavone, oil and protein content in soybean. Scientia Agricultura Sinica, 2009, 42(8): 2652-2660. (in Chinese)

[29]Zeng G, Li D, Han Y, Teng W, Wang J, Qiu L, Li W. Identification of QTL underlying isoflavone contents in soybean seeds among multiple environments. Theoretical and Applied Genetics, 2009, 118: 1455-1463.

[30]葛一楠. 大豆异黄酮主要组分的种质鉴定与QTLs标记定位[D]. 北京: 中国农业科学院, 2010.

Ge Y N. Mapping QTLs and screening germplasm for the major isoflavone components in soybean seeds[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese)

[31]王  英. 大豆生育期结构性状的遗传分析及相关基因的分子标记[D]. 北京: 中国农业科学院, 2008.

Wang Y. Genetic analysis for growth period structure traits and QTL mapping of relative genes in soybean[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. (in Chinese)

[32]Sun J M, Sun B L, Han F X, Yan S R, Yang H, Akio K. Rapid HPLC method for determination of 12 isoflavone components in soybean seeds. Agricultural Sciences in China, 2011, 10(1): 70-77.

[33]盖钧镒, 章元明, 王建康. QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析. 作物学报, 2000, 26(4): 385-391.

Gai J Y, Zhang Y M, Wang J K. A joint analysis of multiple generations for QTL models extended to mixed two major genes plus polygene. Acta Agronomica Sinica, 2000, 26(4): 385-391. (in Chinese)

[34]翟虎渠, 王建康. 应用数量遗传: 第二版. 北京: 中国农业科学技术出版社, 2007.

Zhai H Q, Wang J K. Applied Quantitative Genetics: The second edition. Beijing: China Agricultural Science and Technology Press, 2007. (in Chinese)

[35]王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35(2): 239-245.

Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agronomica Sinica, 2009, 35(2): 239-245. (in Chinese)

[36]李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36(6): 918-931.

Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agronomica Sinica, 2010, 36(6): 918-931. (in Chinese)

[37]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Science, 1999, 39(6): 1642-1651.

[38]Reinprecht Y, Poysa V W, Yu K F, Rajcan I, Ablett G R, Pauls K P. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome, 2006, 49(12): 1510-1527.

[39]Hoeck J A, Fehr W R, Shoemarer R C, Welke G A, Johnson S L. Molecular marker analysis of seed size in soybean. Crop Science, 2003, 43(1): 68-74.  

[40]Qi Z M, Wu Q, Han X, Sun Y N, Du X Y, Liu C Y, Jiang H W, Hu G H, Chen Q S. Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes. Euphytica, 2011, 179: 499-514.

[41]Rieseberg L H, Sinervo B, Linder C R. Role of gene interactions in hybrid speciation: Evidence from ancient and experimental hybrids. Science, 1996, 272: 741-745.

[42]Gutierrez-Gonzale J J, Wu X L, Gillman D J, Lee J D, Zhong R, Yu O, Shannon J G, Ellersieck M, Nguyen T H, Sleper A D. Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds. BMC Plant Biology, 2010, 10: 105.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[4] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[5] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[6] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[7] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[8] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[9] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[10] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[11] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[12] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[13] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[14] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[15] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!