Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (17): 3646-3652.doi: 10.3864/j.issn.0578-1752.2012.17.023

• RESEARCH NOTES • Previous Articles     Next Articles

Differential Protein Analysis of Chinese Gooseberry Ovary After Fertilization by a 2D-DIGE Approach

 QI  Xiu-Juan, FANG  Jin-Bao, CHEN  Jin-Yong, GU  Hong, ZHANG  Shao-Ling   

  1. 1.南京农业大学梨工程技术研究中心,南京 210095
    2.中国农业科学院郑州果树研究所/果树生长发育与品质控制重点开放实验室,郑州 450009
  • Received:2012-03-01 Online:2012-09-01 Published:2012-05-29

Abstract: 【Objective】The changes of Chinese gooseberry (Actinidia arguta) ovary proteins and morphology before and 120 h after pollination were analyzed to provide valuable evidence for further elucidating the molecular mechanism of double fertilization.【Method】Fluorescence paraffin technique,differential in-gel electrophoresis (DIGE), Matrix-assisted laser-desorption/ionization Time of ?ight/Time of ?ight (MALDI-TOF/TOF) and bioinformatic technology were used in the experiment.【Result】The embryo sac in the ovary completed its double fertilization 120 h after pollination. About 1 500 protein points were detected by DeCyder 6.5 (Amersham Bioscience), and 55 proteins were differentially expressed at ovary before and 120 h after pollination. Thirteen protein spots (differential ratio>2.0) were identified with MALDI-TOF/TOF, of these proteins,8 belong to 6 kinds of proteins. Five of the six proteins are up-regulated while one is down-regulated.【Conclusion】According to the expression differences of the proteins at ovary before and after fertilization, several proteins identified might be related to the process of the double fertilization of Chinese gooseberry.

Key words: Chinese gooseberry, fertilization, ovary, proteome

[1]Harvey C F, Fraser L G, Pavis S E, Pavis S E, Considine J A. Floral biology of two species of Actinidia(Actinidiaceae).Ⅰ. The stigma, pollination and fertilization. Botanical Gazette, 1987, 148: 426-432.

[2]Harvey C F, Fraser L G. Floral biology of two species of Actinidia(Actinidiaceae).Ⅱ. Early embryology. Botanical Gazette, 1988, 149: 37-44.

[3]Harvey C F, Fraser L G, Kent J. Actinidia seed development in interspecific crosses. ISHS Acta Horticulturae, II International Symposium on Kiwifruit, 1991, 297: 71-78.

[4]Biasi R, Falasca G, Speranza A, De Stradis A, Scoccianti V, Franceschetti M, Bagni N, Altamura M M. Biochemical and ultrastructural features related to male sterility in the dioecious species Actinidia deliciosa. Plant Physiology and Biochemistry, 2001, 39(5): 395-406.

[5]齐秀娟, 张绍铃, 方金豹. 全红型软枣猕猴桃花器结构和开花授粉生物学特性. 西北植物学报, 2011, 31(5): 966-971.

Qi X J, Zhang S L, Fang J B. Flower structure and biological characteristics of all red Actinidia arguta. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(5): 966-971. (in Chinese)

[6]齐秀娟, 张绍铃, 方金豹. 猕猴桃花粉原位生长过程中Ca2+的超微细胞化学定位. 西北植物学报, 2010, 30(12): 2400-2405.

Qi X J, Zhang S L, Fang J B. Ultracytochemical localization of calcium in pollen situ growth of kiwifruit. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(12): 2400-2405. (in Chinese)

[7]Gonzalez M V, Coque M, Herrero M. pollen-pistil interaction in kiwifruit (Actinidia deliciosa Actinidiaceae). American Journal of Botany, 1996, 83(2): 148-154.

[8]梁铁兵, 母锡金. 美味猕猴桃和软枣猕猴桃种间杂交花粉管行为和早期胚胎发生的观察. 植物学报, 1995, 37(8): 607-612.

Liang T B, Mu X J. Observation of the pollen tube behavior and early embryogenesis following pollination following interspecific pollination between Actinidia deliciosa and A.arguta. Acta Botanica Sinica, 1995, 37(8): 607-612. (in Chinese)

[9]朱雨生, 汤佩松. 植物生理学专题讲座. 北京: 科学出版社, 1987: 5-23.

Zhu Y S, Tang P S. Plant Physiology Seminar. Beijing: Science Press,1987: 5-23. (in Chinese)

[10]Gygi S P, Rochon Y, Franza B R, Aebersold A. Correlation between protein and mRNA abundance in yeast. Molecular and Cellular Biology, 1999, 19: 1720-1730.

[11]曹晓艳, 冯建荣, 王大江, 白  茹, 刘月霞. 2D-DIGE技术研究自交不亲和杏品种‘新世纪’花柱表达蛋白. 中国农业科学, 2011, 44(4): 789-797.

Cao X Y, Feng J R, Wang D J, Bai R, Liu Y X. Reaserch of protein expression of style in self-incompatibility cultivar Prunus armeniaca L.cv. Xinshiji by 2D-DIGE Technique. Scientia Agricultura Sinica, 2011, 44(4): 789-797. (in Chinese)

[12]赵东旭, 刘  萍, 粟本文. 苹果授粉前后子房的生化变化. 河南师范大学学报:自然科学版, 1997, 25(4): 86-89.

Zhao X D, Liu P, Su B W. The biochemical changes of apple overy during pollening. Journal of Henan Normal University: Natural Science, 1997, 25(4): 86-89.(in Chinese)

[13]Dai S J, Li L, Chen T T, Chong K, Xue Y B, Wang T. Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics, 2006, 6(8): 2504-2529.

[14]Malhò R, Trewava A J. Loealized apical increase of cytosolic free control pollen tube orientation. Plant Cell, 1996, 8: 1935-1949.

[15]Kristóf Z, Tímár O, Imre K. Changes of calcium distribution in ovules of Torenia fournieri during pollination and fertilization. Protoplasma, 1999, 208: 149-155.

[16]Han Y Z, Huang B Q, Guo F L, Zee S Y, Gu H K. Sperm extract and triphosphate insitol(InsP3) induced cytoplasmic calcium increase in the central cell of Torenia fournieri. Sexual Plant Reproduction, 2002, 15: 187-193.

[17]Runft L L, Jaffe L A, Mehlmann L M. Egg activation at fertilization: where it all begins. Developmental Biology, 2002, 245(2): 237-254.

[18]Johnson M D, Sussex I M.1 L-myo-Inositol 1-Phosphate Synthase from Arabidopsis thaliana. Plant Physiology, 1995, 107(2): 613-619.

[19]Treml B S, Winderl S, Radykewicz R, Herz M, Schweizer G,  Hutzler P, Glawischnig E, Ruiz R A. The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development, 2005, 132(18): 4063-4074.

[20]Ronald E K, Cornelis E S, Joseph N M M. The chalcone synthase multigene family of Petunia hybrida: differential, light-regulated expression during flower development and UV light induction. Plant Molecular Biology, 1989, 12 :213-225.

[21]Nathalie N, Clarisse J, Isabelle D. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. The Plant Cell, 2001, 13: 2099-2114.

[22]Wang J, Weng Z X, Cheng C L, Liu H, Liang W Y, Jiang J M, Chen W. Identi?cation and analysis of differentially expressed proteins during cotyledon embryo stage in longan. Scientia Horticulturae, 2010, 126(4): 426-433.

[23]Larocca M, Rossano R, Riccio P. Analysis of green kiwi fruit (Actinidia deliciosa cv. Hayward) proteinases by two-dimensional zymography and direct identification of zymographic spots by mass spectrometry. Journal of the Science of Food and Agriculture, 2010, 90(14): 2411-2418.

[24]Takeuchi T, Kojima M, Nakajima K, Kondo S. jumonji gene is essential for the neurulation and cardiac development of mouse embryos with a C3H/He background. Mechanisms of Development, 1999, 86:29-38.

[25]Takahashi M, Kojima M, Nakajima K, SuzukiMigishima R, Takeuchi T. Functions of a jumonji-cyclin D1 pathway in the coordination of cell cycle exit and migration during neurogenesis in the mouse hindbrain. Developmental Biology, 2007, 303(2): 549-560.

[26]Sun F F, Zhang W S, Hu H Z, Li B, Wang Y N, Zhao Y K, Li K X, Liu M Y, Li X. Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis. Plant Physiology, 2008, 146: 178-188.
[1] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[2] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[3] WAN HuaQin,GU Xu,HE HongMei,TANG YiFan,SHEN JianHua,HAN JianGang,ZHU YongLi. Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry [J]. Scientia Agricultura Sinica, 2022, 55(22): 4445-4457.
[4] HAN DongMei,HUANG ShiLian,OUYANG SiYing,ZHANG Le,ZHUO Kan,WU ZhenXian,LI JianGuang,GUO DongLiang,WANG Jing. Optimizing Management Mode of Disease and Nutrient During the Entire Fruit Development for Improving Postharvest Storability of Longan Fruit [J]. Scientia Agricultura Sinica, 2022, 55(21): 4279-4293.
[5] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[6] LI LiYing,HE YingTing,ZHONG YuYi,ZHOU XiaoFeng,ZHANG Hao,YUAN XiaoLong,LI JiaQi,CHEN ZanMou. CTNNB1 Regulates the Function of Porcine Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(15): 3050-3061.
[7] WANG RongHua,MENG LiFeng,FENG Mao,FANG Yu,WEI QiaoHong,MA BeiBei,ZHONG WeiLai,LI JianKe. Proteome Analysis of the Salivary Gland of Nurse Bee from High Royal Jelly Producing Bees and Italian Bees [J]. Scientia Agricultura Sinica, 2022, 55(13): 2667-2684.
[8] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[9] WU TianQi,LI YaFei,SHI JiangLan,NING Peng,TIAN XiaoHong. Effects of Basal Nitrogen and Foliar Zinc Application at the Early Filling Stage on Zinc Enrichment and Protein Components Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2022, 55(10): 1971-1986.
[10] ZHANG Jing,ZHANG JiYue,YUE YongQi,ZHAO Dan,FAN YiLing,MA Yan,XIONG Yan,XIONG XianRong,ZI XiangDong,LI Jian,YANG LiXue. LKB1 Regulates Steroids Synthesis Related Genes Expression in Bovine Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(10): 2057-2066.
[11] WANG Cong,SUN HuiFeng,XU ChunHua,WANG ZhanFu,ZHANG JiNing,ZHANG XianXian,CHEN ChunHong,ZHOU Sheng. Effects of Fertilization Methods on Ammonia Volatilization from Vegetable Field Under Greenhouse Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(1): 123-133.
[12] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[13] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[14] LEI HaoJie,LI GuiChun,KE HuaDong,WEI Lai,DING WuHan,XU Chi,LI Hu. Analysis of Impacts and Regulation Differences on Soil N2O Emissions from Two Typical Crop Systems Under Drip Irrigation and Fertilization [J]. Scientia Agricultura Sinica, 2021, 54(4): 768-779.
[15] HOU ChengLi,HUANG CaiYan,ZHENG XiaoChun,LIU WeiHua,YANG Qi,ZHANG DeQuan. Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time [J]. Scientia Agricultura Sinica, 2021, 54(23): 5110-5124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!