Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (10): 2057-2066.doi: 10.3864/j.issn.0578-1752.2022.10.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

LKB1 Regulates Steroids Synthesis Related Genes Expression in Bovine Granulosa Cells

ZHANG Jing1,3(),ZHANG JiYue1,3,YUE YongQi1,3,ZHAO Dan1,3,FAN YiLing1,3,MA Yan1,3,XIONG Yan1,2,3(),XIONG XianRong1,2,3,ZI XiangDong1,2,3,LI Jian1,2,3,YANG LiXue1,2()   

  1. 1Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education,Chengdu 610041
    2Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041
    3Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041
  • Received:2021-04-07 Accepted:2022-03-29 Online:2022-05-16 Published:2022-06-02
  • Contact: Yan XIONG,LiXue YANG E-mail:zjing2513338252@163.com;xiongyan0910@126.com;yanglixue_79@163.com

Abstract:

【Background】 The Steroids synthesis capacity of ovarian granulosa cells plays the important roles in the development and maturation of follicles, however, the key regulators were involved in this process remains largely unknown. Our previously research reported that Liver kinase B1 (LKB1) influenced the cellular lipid metabolism, which is close associated with steroids synthesis. Further, another study showed that knockout of LKB1 caused premature ovarian failure in mice. 【Objective】 The aim of this study was to study the expression pattern of LKB1 in bovine follicle and its regulation on steroid synthesis related genes expression in granulosa cells (GCs),and provided a theoretical basis for the research of the reproductive physiological regulation in the cow.【Method】The expression pattern of LKB1 in follicle was detected by immunohistochemically assay. Then the primary follicular granulosa cells were isolated and identified by immunofluorescence staining incubated by follicle stimulating hormone receptor (FSHR) antibody. Next, these verified granulosa cells were used as the cell model. On one hand, LKB1 loss-of-function was mediated by siRNAs. qRT-PCR was performed to measure LKB1 regulation of steroid hormone synthesis related genes expression. On the other hand, LKB1 gain-of-function was mediated by adenovirus. qRT-PCR and ELISA analysis were carried out to confirm the changes of above detected genes influenced by LKB1 and estradiol (E2) secretion, respectively. 【Result】 The data showed that: 1) LKB1 protein expressed in all cell types of follicles and the positive signal in granulosa cells is significantly higher than that of theca cells, which is verified by quantitative analysis. 2) The morphology of isolated bovine follicular granulosa cells was shape of round, which were specifically labeled by follicle stimulating hormone receptor (FSHR) using immunofluorescence staining, with 95% of positive cells. 3) The interference efficiency of LKB1 treated by siRNA1 and siRNA2 was respectively 48% (P<0.05) and 52% (P<0.05) to that of control. Knockdown of LKB1 significantly down-regulated mRNA levels of STAR (P<0.01), CYP11A1 (P<0.01) and CYP19A1 (P<0.05), with the 60%, 80% and 50% decrease to those of the control. 4) The highly infected efficiency was observed infected by LKB1-OE and control adenovirus. In contrast, overexpression of LKB1 dramatically increased mRNA levels of STAR (P<0.01), CYP11A1 (P<0.01) and CYP19A1 (P<0.05), which was associated with elevation of E2 secretion. 【Conclusion】In summary, LKB1 was highly expressed in follicular granulosa cells, which promoted the expression of steroids synthesis related genes and E2 secretion. This result provides directly theoretical evidence for the LKB1 regulation of steroids hormone synthesis in bovine.

Key words: LKB1, bovine, granulosa cells, steroid hormone, ovary

Table 1

siRNA sequence targeting LKB1"

siRNA名称 siRNA name 序列(5'-3') Sequence(5'-3')
LKB1-siRNA-1 F: CCAAGCUCAUCGGAAAGUACCUGAU
R: AUCAGGUACUUUCCGAUGAGCUUGG
LKB1-siRNA-2 F: GACAUUGAGGACGACGUCAUCUACA
R: UGUAGAUGACGUCGUCCUCAAUGUC

Table 2

The primer sequence of detected genes by qPCR"

基因名称 Gene symbol 引物序(5’-3’) Primer sequence
LKB1 F: AAGCGGTTCTCCATACAGCA
R: CCTCCAGGTAGGGCATCACT
ACTIN F: CTTCAACACCCCTGCCAT
R: CTCGGCTGTGGTGGTGAAG
CYP11A1 F: CTACCAGGACCTGAGACGGA
R: CCTGCCAGCATCTCCGTAAT
CYP17A1 F: AACCATCAGTGACCGGAACC
R: GATGGCGAGATGAGTTGCGT
CYP19A1 F: TCCCCTTGGATGAAAGTGCC
R: TGTCTTCCAGCTTCTCTGCTG
STAR F: TGGAAGTCCCTCAAGGACCA
R: GCAAGTTGGCCTTCAACACC

Fig. 1

Immunohistochemistry of LKB1 protein in the bovine follicles A-D: The immunohistochemistry staining of LKB1 protein in antral follicle. A: The diameter of the follicle is 2 mm, B: the diameter of the follicle is 3 mm, C: the diameter of the follicle is 5 mm, and D: the diameter of the follicle is 7 mm. Blue arrows: bovine ovarian granulosa cells; Red arrows: theca cells. E: The morphology of different diameter follicle. F: The quantitatively analysis of LKB1 stained signal in bovine ovarian granulosa cells and theca cells. Error bars: S.E.M. ** P < 0.01, two-tailed Student’s t test. Scale bar of section: 500 µm"

Fig. 2

Identification of ovarian granulosa cells by immunofluorescence staining A: The morphology of primary granulosa cells; B: Green fluorescence labeled FSHR protein and DAPI labeled nucleus"

Fig. 3

The detection of knockdown efficiency for LKB1 gene Error bars: S.E.M, * P < 0.05, two-tailed Student’s t test"

Fig. 4

LKB1 regulation on steroidogenesis gene expression Two-tailed Student’s t test. The same as below"

Fig. 5

Overexpression of LKB1 in granulosa cells mediated by adenovirus A: The GFP expression in Control and LKB1 overexpressed (LKB1-OE) granulosa cells; B: The overexpression efficiency of LKB1"

Fig. 6

Overexpression of LKB1 regulation on steroidogenesis gene expression and E2 secretion"

[1] ALAM M H, MIYANO T. Interaction between growing oocytes and granulosa cells in vitro. Reproductive Medicine and Biology, 2019, 19(1): 13-23. doi: 10.1002/rmb2.12292.
doi: 10.1002/rmb2.12292
[2] EL-HAYEK S, YANG Q, ABBASSI L, FITZHARRIS G, CLARKE H J. Mammalian oocytes locally remodel follicular architecture to provide the foundation for germline-soma communication. Current Biology: CB, 2018, 28(7): 1124-1131.e3. doi: 10.1016/j.cub.2018.02.039.
doi: 10.1016/j.cub.2018.02.039
[3] SAADELDIN I M, ELSAYED A, KIM S J, MOON J H, LEE B C. A spatial model showing differences between juxtacrine and paracrine mutual oocyte-granulosa cells interactions. Indian Journal of Experimental Biology, 2015, 53(2): 75-81.
[4] FANG L L, YU Y P, ZHANG R Z, HE J Y, SUN Y P. Amphiregulin mediates hCG-induced StAR expression and progesterone production in human granulosa cells. Scientific Reports, 2016, 6: 24917. doi: 10.1038/srep24917.
doi: 10.1038/srep24917
[5] WU S G, SUN H X, ZHANG Q, JIANG Y, FANG T, CUI I, YAN G J, HU Y L. microRNA-132 promotes estradiol synthesis in ovarian granulosa cells via translational repression of Nurr1. Reproductive Biology and Endocrinology: RB&E, 2015, 13: 94. doi: 10.1186/s12958-015-0095-z.
doi: 10.1186/s12958-015-0095-z
[6] REDDY P, ZHENG W J, LIU K. Mechanisms maintaining the dormancy and survival of mammalian primordial follicles. Trends in Endocrinology and Metabolism: TEM, 2010, 21(2): 96-103. doi: 10.1016/j.tem.2009.10.001.
doi: 10.1016/j.tem.2009.10.001
[7] SHACKELFORD D B, SHAW R J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nature Reviews Cancer, 2009, 9(8): 563-575. doi: 10.1038/nrc2676.
doi: 10.1038/nrc2676
[8] LIANG X Y, WANG P L, GAO Q, TAO X H. Exogenous activation of LKB1/AMPK signaling induces G1 arrest in cells with endogenous LKB1 expression. Molecular Medicine Reports, 2014, 9(3): 1019-1024. doi: 10.3892/mmr.2014.1916.
doi: 10.3892/mmr.2014.1916
[9] LIU M L, CHEN J D, HUANG H F, ZENG Y, FENG X M, SHI M X. Lkb1 is an important regulator of Treg differentiation and proliferation of amniotic mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2020, 521(2): 434-440. doi: 10.1016/j.bbrc.2019.09.129.
doi: 10.1016/j.bbrc.2019.09.129
[10] SWISA A, GRANOT Z, TAMARINA N, SAYERS S, BARDEESY N, PHILIPSON L, HODSON D J, WIKSTROM J D, RUTTER G A, LEIBOWITZ G, GLASER B, DOR Y. Loss of liver kinase B1 (LKB1) in beta cells enhances glucose-stimulated insulin secretion despite profound mitochondrial defects. The Journal of Biological Chemistry, 2015, 290(34): 20934-20946. doi: 10.1074/jbc.M115.639237.
doi: 10.1074/jbc.M115.639237
[11] SHAN T Z, XIONG Y, ZHANG P P, LI Z G, JIANG Q Y, BI P P, YUE F, YANG G S, WANG Y Z, LIU X Q, KUANG S H. Lkb1 controls brown adipose tissue growth and thermogenesis by regulating the intracellular localization of CRTC3. Nature Communications, 2016, 7: 12205. doi: 10.1038/ncomms12205.
doi: 10.1038/ncomms12205
[12] TIMILSHINA M, YOU Z W, LACHER S M, ACHARYA S, JIANG L Y, KANG Y, KIM J A, CHANG H W, KIM K J, PARK B, SONG J H, KO H J, PARK Y Y, MA M J, NEPAL M R, JEONG T C, CHUNG Y, WAISMAN A, CHANG J H. Activation of mevalonate pathway via LKB1 is essential for stability of treg cells. Cell Reports, 2019, 27(10): 2948-2961.e7. doi: 10.1016/j.celrep.2019.05.020.
doi: 10.1016/j.celrep.2019.05.020
[13] 熊燕. Lkb1调控棕色脂肪组织的功能及机制研究[D]. 杨凌: 西北农林科技大学, 2017.
XIONG Y. Investigating the role and mechanism of LKb1 in brown adipose tissue[D]. Yangling: Northwest A & F University, 2017. (in Chinese)
[14] HEMMINKI A. The molecular basis and clinical aspects of Peutz- Jeghers syndrome. Cellular and Molecular Life Sciences: CMLS, 1999, 55(5): 735-750. doi: 10.1007/s000180050329.
doi: 10.1007/s000180050329
[15] ZHOU F, LV B J, DONG L F, WAN F, QIN J L, HUANG L L. Multiple genital tract tumors and mucinous adenocarcinoma of colon in a woman with Peutz-Jeghers syndrome: a case report and review of literatures. International Journal of Clinical and Experimental Pathology, 2014, 7(7): 4448-4453.
[16] LEGRO R S, BARNHART H X, SCHLAFF W D, CARR B R, DIAMOND M P, CARSON S A, STEINKAMPF M P, COUTIFARIS C, MCGOVERN P G, CATALDO N A, GOSMAN G G, NESTLER J E, GIUDICE L C, EWENS K G, SPIELMAN R S, LEPPERT P C, MYERS E R, NETWORK F T R M. Ovulatory response to treatment of polycystic ovary syndrome is associated with a polymorphism in the STK11 gene. The Journal of Clinical Endocrinology & Metabolism, 2008, 93(3): 792-800. doi: 10.1210/jc.2007-1736.
doi: 10.1210/jc.2007-1736
[17] XU Y, GAO Y X, HUANG Z F, ZHENG Y, TENG W J, ZHENG D Y, ZHENG X H. LKB1 suppresses androgen synthesis in a mouse model of hyperandrogenism via IGF-1 signaling. FEBS Open Bio, 2019, 9(10): 1817-1825. doi: 10.1002/2211-5463.12723.
doi: 10.1002/2211-5463.12723
[18] JIANG Z Z, HU M W, MA X S, SCHATTEN H, FAN H Y, WANG Z B, SUN Q Y. LKB1 acts as a critical gatekeeper of ovarian primordial follicle pool. Oncotarget, 2016, 7(5): 5738-5753. doi: 10.18632/oncotarget.6792.
doi: 10.18632/oncotarget.6792
[19] YAMOCHI T, HASHIMOTO S, MORIMOTO Y. Mural granulosa cells support to maintain the viability of growing porcine oocytes and its developmental competence after insemination. Journal of Assisted Reproduction and Genetics, 2021, 38(10): 2591-2599. doi: 10.1007/s10815-021-02212-2.
doi: 10.1007/s10815-021-02212-2
[20] CLARKE H J. Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7(1): e294. doi: 10.1002/wdev.294.
doi: 10.1002/wdev.294
[21] 张金璧, 姚望, 潘增祥, 刘红林. FSH处理对猪颗粒细胞中类固醇合成酶基因的表达及其调控区组蛋白H3修饰的影响. 中国农业科学, 2018, 51(18): 3582-3590. doi: 10.3864/j.issn.0578-1752.2018.18.014.
doi: 10.3864/j.issn.0578-1752.2018.18.014
ZHANG J B, YAO W, PAN Z X, LIU H L. Effects of FSH treatment on steroidogenic enzymes expression and histone H3 modification in pig granulosa cells. Scientia Agricultura Sinica, 2018, 51(18): 3582-3590. doi: 10.3864/j.issn.0578-1752.2018.18.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.18.014
[22] 李海军, 靳木子, 张睿彪, 杜晨光, 刘东军, 仓明. 卵丘细胞凋亡与增殖对牛卵母细胞体外发育的影响. 中国农业科学, 2011, 44(8): 1702-1709.
LI H J, JIN M Z, ZHANG R B, DU C G, LIU D J, CANG M. Effect of cumulus cell apoptosis and proliferation on bovine oocyte development in vitro. Scientia Agricultura Sinica, 2011, 44(8): 1702-1709. (in Chinese)
[23] YILMAZ B, VELLANKI P, ATA B, YILDIZ B O. Metabolic syndrome, hypertension, and hyperlipidemia in mothers, fathers, sisters, and brothers of women with polycystic ovary syndrome: a systematic review and meta-analysis. Fertility and Sterility, 2018, 109(2): 356-364.e32. doi: 10.1016/j.fertnstert.2017.10.018.
doi: 10.1016/j.fertnstert.2017.10.018
[24] LV S J, HOU S H, GAN L, SUN J. Establishment and mechanism study of a primary ovarian insufficiency mouse model using lipopolysaccharide. Analytical Cellular Pathology, 2021, 2021: 1781532. doi: 10.1155/2021/1781532.
doi: 10.1155/2021/1781532
[25] TANG Z R, ZHANG R, LIAN Z X, DENG S L, YU K. Estrogen-receptor expression and function in female reproductive disease. Cells, 2019, 8(10): 1123. doi: 10.3390/cells8101123.
doi: 10.3390/cells8101123
[26] BYEKOVA Y A, HERRMANN J L, XU J M, ELMETS C A, ATHAR M. Liver kinase B1 (LKB1) in the pathogenesis of UVB-induced murine basal cell carcinoma. Archives of Biochemistry and Biophysics, 2011, 508(2): 204-211. doi: 10.1016/j.abb.2011.01.006.
doi: 10.1016/j.abb.2011.01.006
[27] MARTELLI A M, CHIARINI F, EVANGELISTI C, OGNIBENE A, BRESSANIN D, BILLI A M, MANZOLI L, CAPPELLINI A, MCCUBREY J A. Targeting the liver kinase B1/AMP-activated protein kinase pathway as a therapeutic strategy for hematological malignancies. Expert Opinion on Therapeutic Targets, 2012, 16(7): 729-742. doi: 10.1517/14728222.2012.694869.
doi: 10.1517/14728222.2012.694869
[28] ALESSI D R, SAKAMOTO K, BAYASCAS J R. LKB1-dependent signaling pathways. Annual Review of Biochemistry, 2006, 75: 137-163. doi: 10.1146/annurev.biochem.75.103004.142702.
doi: 10.1146/annurev.biochem.75.103004.142702
[29] SPICER J, ASHWORTH A. LKB1 kinase: master and commander of metabolism and polarity. Current Biology, 2004, 14(10): R383-R385. doi: 10.1016/j.cub.2004.05.012.
doi: 10.1016/j.cub.2004.05.012
[30] LAI D M, CHEN Y F, WANG F Y, JIANG L Z, WEI C S. LKB1 controls the pluripotent state of human embryonic stem cells. Cellular Reprogramming, 2012, 14(2): 164-170. doi: 10.1089/cell.2011.0068.
doi: 10.1089/cell.2011.0068
[31] SHAN T Z, ZHANG P P, LIANG X R, BI P P, YUE F, KUANG S H. Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem Cells, 2014, 32(11): 2893-2907. doi: 10.1002/stem.1788.
doi: 10.1002/stem.1788
[32] LI Z, WANG C H, ZHU J, BAI Y, WANG W, ZHOU Y F, ZHANG S Z, LIU X X, ZHOU S, HUANG W T, BI Y Y, WANG H. The possible role of liver kinase B1 in hydroquinone-induced toxicity of murine fetal liver and bone marrow hematopoietic stem cells. Environmental Toxicology, 2016, 31(7): 830-841. doi: 10.1002/tox.22094.
doi: 10.1002/tox.22094
[33] NATH-SAIN S, MARIGNANI P A. LKB1 catalytic activity contributes to estrogen receptor alpha signaling. Molecular Biology of the Cell, 2009, 20(11): 2785-2795. doi: 10.1091/mbc.e08-11-1138.
doi: 10.1091/mbc.e08-11-1138
[34] STRICKER S A. Potential upstream regulators and downstream targets of AMP-activated kinase signaling during oocyte maturation in a marine worm. Reproduction (Cambridge, England), 2011, 142(1): 29-39. doi: 10.1530/REP-10-0509.
doi: 10.1530/REP-10-0509
[35] 凌英会, 朱露, 吴昊, 陈青, 权青, 刘勇, 李文雍, 张运海. 山羊FST慢病毒载体构建及其对卵巢卵泡颗粒细胞增殖的影响. 畜牧兽医学报, 2019, 50(9): 1888-1896. doi: 10.11843/j.issn.0366-6964.2019.09.017.
doi: 10.11843/j.issn.0366-6964.2019.09.017
LING Y H, ZHU L, WU H, CHEN Q, QUAN Q, LIU Y, LI W Y, ZHANG Y H. Construction of goat FST Lentivirus vectors and its effect on the proliferation of ovarian follicular granulosa cells. Acta Veterinaria et Zootechnica Sinica, 2019, 50(9): 1888-1896. doi: 10.11843/j.issn.0366-6964.2019.09.017. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2019.09.017
[36] 朱丽, 郭成志, 邓思君, 鲁银, 魏强, 袁慧. 猪卵巢颗粒细胞分离培养及鉴定. 中国兽医杂志, 2011, 47(4): 21-22, 98. doi: 10.3969/j.issn.0529-6005.2011.04.008.
doi: 10.3969/j.issn.0529-6005.2011.04.008
ZHU L, GUO C Z, DENG S J, LU Y, WEI Q, YUAN H. Isolation, culture and identification of porcine ovary granulose cells. Chinese Journal of Veterinary Medicine, 2011, 47(4): 21-22, 98. doi: 10.3969/j.issn.0529-6005.2011.04.008. (in Chinese)
doi: 10.3969/j.issn.0529-6005.2011.04.008
[37] TOSCA L, CHABROLLE C, UZBEKOVA S, DUPONT J. Effects of metformin on bovine granulosa cells steroidogenesis: possible involvement of adenosine 5' monophosphate-activated protein kinase (AMPK). Biology of Reproduction, 2007, 76(3): 368-378. doi: 10.1095/biolreprod.106.055749.
doi: 10.1095/biolreprod.106.055749
[38] TOSCA L, RAMÉ C, CHABROLLE C, TESSERAUD S, DUPONT J. Metformin decreases IGF1-induced cell proliferation and protein synthesis through AMP-activated protein kinase in cultured bovine granulosa cells. Reproduction (Cambridge, England), 2010, 139(2): 409-418. doi: 10.1530/REP-09-0351.
doi: 10.1530/REP-09-0351
[39] TOSCA L, SOLNAIS P, FERRÉ P, FOUFELLE F, DUPONT J. Metformin-induced stimulation of adenosine 5' monophosphate- activated protein kinase (PRKA) impairs progesterone secretion in rat granulosa Cells. Biology of Reproduction, 2006, 75(3): 342-351. doi: 10.1095/biolreprod.106.050831.
doi: 10.1095/biolreprod.106.050831
[1] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[2] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[3] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[4] LI LiYing,HE YingTing,ZHONG YuYi,ZHOU XiaoFeng,ZHANG Hao,YUAN XiaoLong,LI JiaQi,CHEN ZanMou. CTNNB1 Regulates the Function of Porcine Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(15): 3050-3061.
[5] JIANG ChunHui,SUN XuDong,TANG Yan,LUO ShengBin,XU Chuang,CHEN YuanYuan. Curcumin Alleviates H2O2-Induced Oxidative Stress in Bovine Mammary Epithelial Cells Via the Nrf2 Signaling Pathway [J]. Scientia Agricultura Sinica, 2021, 54(8): 1787-1794.
[6] WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
[7] DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342.
[8] Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912.
[9] ZhiWei ZHU,ShuNing HOU,QingLing HAO,JiongJie JING,LiHua LÜ,PengFei LI. Sequence Structure and Expression Characteristics Analysis of AGTR2 in Bovine Follicle [J]. Scientia Agricultura Sinica, 2020, 53(7): 1482-1490.
[10] ZHANG YuFei,CAO ManYuan,WANG LiYing,ZHAO WeiGang,LI XiaoXia,CHANG Tong,XU BaoZeng. Eukaryotic Expression, Purification and Biological Activity of Recombinant Cervus Nippon Activin A Protein [J]. Scientia Agricultura Sinica, 2020, 53(5): 1058-1070.
[11] LU SiYu,HE YingTing,ZHOU XiaoFeng,XIN XiaoPing,ZHANG AiLing,YUAN XiaoLong,ZHANG Zhe,LI JiaQi. Effect of KISS1 Interference on the Function of Porcine Granulosa Cells in Porcine Ovary [J]. Scientia Agricultura Sinica, 2020, 53(23): 4940-4949.
[12] LAI YuTing,ZHU FeiFei,WANG YiMin,GUO Hong,ZHANG LinLin,LI Xin,GUO YiWen,DING XiangBin. Effects of PSMB5 on the Proliferation and Myogenic Differentiation of Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2020, 53(20): 4287-4296.
[13] ZHAO YuanYuan,LI PengFei,XU QinZhi,AN QingMing,MENG JinZhu. Screening and Analysis of Follicular Development Related Genes in Goat [J]. Scientia Agricultura Sinica, 2020, 53(17): 3597-3605.
[14] XIN XiaoPing, WANG JiaYing, ZHANG AiLing, ZHONG YuYi, HE YingTing, CHEN ZanMou, ZHANG Zhe, ZHANG Hao, LI JiaQi, YUAN XiaoLong. CEBPα and p53 Regulate Kiss1 Gene Expression in Porcine Ovary Granulosa Cells [J]. Scientia Agricultura Sinica, 2019, 52(9): 1624-1634.
[15] ZHANG Chen, TAN XiuWen, WEI Chen, ZHANG XiangLun, JIN Qing, LIU GuiFen, LIU XiaoMu, WAN FaChun. Protective Effect of Astaxanthin on Inflammatory Injury of Endometrial Cells in Bovine [J]. Scientia Agricultura Sinica, 2019, 52(17): 3049-3058.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!