Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (9): 1667-1675.doi: 10.3864/j.issn.0578-1752.2012.09.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Functional Marker Mapping and Association Analysis of Gene W16 in Common Wheat

 LEI  Meng-Lin, LI  Ang, CHANG  Xiao-Ping, XU  Zhao-Shi, MA  You-Zhi, LIU  Hui-Min, JING  Rui-Lian   

  1. 1.山西大学生物工程学院,太原 030006
    2.中国农业科学院作物科学研究所/农作物基因资源与基因改良国家重大科学工程,北京 100081
  • Received:2011-12-30 Online:2012-05-01 Published:2012-01-13

Abstract: 【Objective】 The objective of this study is to develop and map functional markers for W16, a gene of transcription factor DREB (dehydration responsive element binding) family, to analyze the relationship between haplotypes and phenotypic traits, and provide a basis for the genetic improvement by molecular markers in wheat (Triticum aestivum L.). 【Method】 The W16 was cloned from hexaploid wheat, and its diploid and tetraploid wild relative species. Molecular markers were developed according to sequence polymorphisms. Chromosomal location and genetic mapping of W16 were performed by Chinese Spring nulli-tetrasomic lines and a doubled haploid (DH) population (Hanxuan 10 × Lumai 14). The relevance between W16 haplotypes and phenotypic traits was analyzed by using a natural population consisted of 154 historical wheat accessions. 【Result】 The W16 was mapped in the interval between marker CWM517 and WMC20 on chromosome 1A in Chinese Spring nulli-tetrasomic lines and DH population, and the distances were 7.8 cM and 19.4 cM from the left and right flanking markers. In the natural populations, three haplotypes of W16 were detected which were associated with spike per plant, grain per spike, spikelet per spike and grain plumpness. 【Conclusion】 The present research mapped W16 on the chromosomes 1A. HapⅡ is considered as a potential superior haplotype for the improvement of spike per plant and grain plumpness, while HapⅢ is a potential superior haplotype for grain per spike. These functional markers and association analysis results provide important information for the molecular breeding of wheat.

Key words: common wheat, W16, functional marker, genetic mapping, association analysis

[1]Agarwal P K, Agarwal P, Reddy M K, Sopory S K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Report, 2006, 25: 1263-1274.

[2]Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 2009, 149: 88-95.

[3]Lin R C, Park H J, Wang H Y. Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance. Molecular Plant, 2008, 1: 42-57.

[4]Qin F, Sakuma Y, Li J, Liu Q, Li Y Q, Shinozaki K, Yamaguchi-Shinozaki K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L.. Plant Cell Physiology, 2004, 45(8): 1042-1052.

[5]Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. The Plant Cell, 1995, 7: 173-182.

[6]Chen J Q, Meng X P, Zhang Y, Xia M, Wang X P. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnology Letters, 2008, 30: 2191-2198.

[7]Khan M S. The role of DREB transcription factors in abiotic stress tolerance of plants. Biotechnology and Biotechnological Equipment, 2011, 25(3): 2433-2442.

[8]Chen M, Wang Q Y, Cheng X G, Xu Z S, Li L C, Ye X G, Xia L Q, Ma Y Z. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications, 2007, 353(2): 299-305.

[9]Liu Q, Kasuga M, Sakuma Y, Abe H, Kasuga M, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression respectively, in Arabidopsis. The Plant Cell, 1998, 10: 1391.

[10]Baker S S, Wilhelm K S, Thomashow M F. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Molecular Biology, 1994, 24: 701-713.

[11]White T C, Simmonds D, Donaldson P, Singh J. Regulation of BN115, a low-temperature- responsive gene from winter brassica napus. Plant Physiology, 1994, 106: 917-928.

[12]Agarwal P, Agarwal P K, Joshi A J, Sopory S K, Reddy M K, Sopory S K. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Molecular Biology Reports, 2010, 37: 1125-1135.

[13]Dubouzet J G, Sakuma Y, lto Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. The Plant Journal, 2003, 33: 751-763.

[14]张双喜, 徐兆师, 张改生, 李连城, 陈  孝, 陈  明, 马有志. 转W16小麦抗旱新品系的创制及抗旱生理机制分析. 中国农业科学, 2011, 44(24): 4971-4979.

Zhang S X, Xu Z S, Zhang G S, Li L C, Chen X, Chen M, Ma Y Z. Creation of drought-resistant variety and analysis of physiological mechanism of W16 transgenic wheat. Scientia Agricultura Sinica, 2011, 44(24): 4971-4979. (in Chinese)

[15]Wang Q Y, Guan Y C, Wu Y R, Chen H L, Chen F, Chu C C. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology, 2008, 67: 589-602.

[16]Hao Z F, Chang X P, Guo X J, Jing R L, Li R Z, Jia J Z. QTL mapping for drought tolerance at stages of germination and seedling in wheat (Triticum aestivum L.) using a DH population. Agricultural Sciences in China, 2003, 2(9): 943-949.

[17]Zhang J N, Hao C Y, Ren Q, Chang X P, Liu G R, Jing R L. Association mapping of dynamic developmental plant height in common wheat. Planta, 2011, 234: 891-902.

[18]徐兆师. 小麦抗逆相关DREB/ERF转录因子基因的克隆与鉴定[D]. 北京: 中国农业科学院, 2005.

Xu Z S. Isolation and characterization of transcription factor DREB/ERF genes related to stress tolerance in Triticum aestivum L.[D]. Beijing: Chinese Academy of Agricultural Sciences, 2005. (in Chinese)

[19]Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 2: 2633-2635.

[20]Wang D G, Fan J B, Siao C J, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris M S, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson T J, Lipshutz R, Chee M, Lander E S. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280: 1077-1082.

[21]Ganal M W, Altmann T, Röder M S. SNP identification in crop plants. Current Opinion in Plant Biology, 2009, 12: 211-217.

[22]Yang D L, Jing R L, Chang X P, Li W. Identi?cation of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics, 2007, 176(1): 571-584.

[23]Li H W, Tong Y P, Li B, Jing R L, Lu C M, Li Z S. Genetic analysis of tolerance to photo-oxidative stress induced by high light in winter wheat (Triticum aestivum L.). Journal of Genetics and Genomics, 2010, 37: 399-412.

[24]Su J Y, Zheng Q, Li H W, Li B, Tong Y P, Jing R L, Li Z S. Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Science, 2009, 176: 824-836.

[25]Wu X S, Chang X P, Jing R L. Genetic insight into yield-associated traits of wheat grown in multiple tainfed environments. PLoS ONE, 2012, 7(2): e31249.

[26]王  维, 蔡一霞, 张建华, 杨建昌, 朱庆森. 适度土壤干旱对贪青小麦茎贮藏碳水化合物向籽粒运转的调节. 作物学报, 2005, 31(3): 289-296.

Wang W, Cai Y X, Zhang J H, Yang J C, Zhu Q S. Regulation of controlled soil drying on remobilization of stem-stored carbohydrate to grain in wheat grown under under unfavorably-delayed senescence. Acta Agronomica Sinica, 2005, 31(3): 289-296. (in Chinese)

[27]李友军, 熊  瑛, 骆炳山. 不同类型小麦籽粒灌浆期碳水化合物代谢及相关酶活性研究. 西北农林科技大学学报: 自然科学版, 2006, 34(1): 13-18.

Li Y J, Xiong Y, Luo B S. Different types of wheat grain filling stage carbohydrate metabolism and related enzyme activities. Journal of Northwest Science-Technology University of Agricultural: Natural Science Edition, 2006, 34(1): 13-18. (in Chinese)

[28]王旭东, 于振文. 施磷对小麦产量和品质的影响. 山东农业科学, 2003, 6: 35-36.

Wang X D, Yu Z W. Application phosphate fertilizer affect the wheat yield and quality. Shandong Agricultural Sciences, 2003, 6: 35-36. (in Chinese)

[29]于海霞, 肖  静, 田纪春, 王  玮. 关联分析及其在植物中的应用. 基因组学和应用生物学, 2009, 28(1): 187-194.

Yu H X, Xiao J, Tian J C, Wang W. Association analys and its application in plant genetics. Genomics and Applied Biology, 2009, 28(1): 187-194. (in Chinese)

[30]赵  曦, 王荣焕, 于永涛, 王天宇, 黎  裕. 关联分析在玉米遗传学研究中的应用. 玉米科学, 2008, 16(1): 52-55.

Zhao X, Wang R H, Yu Y T, Wang T Y, Li Y. Application of association analysis in maize genetics. Joumal of Maize Sciences, 2008, 16(1): 52-55. (in Chinese)

[31]Eizenga G C, Agrama H A, Lee F N, Yan W, Jia Y. Identifying novel resistance genes in newly introduced blast resistant rice germplasm. Crop Science, 2006, 46: 1870-1878.

[32]Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Molecular Breeding, 2007, 19: 341-356.

[33]Roy J K, Bandopadhyay R, Rustgi S, Balyan H S, Gupta P K. Association analysis of agronomically important traits using SSR, SAMPL and AFLP markers in bread wheat. Current Science, 2006, 90: 683-689.

[34]Andersen J R, Lübberstedt T. Functional markers in plants. Trends in Plant Science, 2003, 8: 554-560.

[35]杨小红, 严建兵, 郑艳萍, 余建明, 李建生. 植物数量性状关联分析研究进展. 作物学报, 2007, 33(4): 523-530.

Yang X H, Yan J B, Zheng Y P, Yu J M, Li J S. Reviews of association analysis for quantitative traits in plants. Acta Agronomica Sinica, 2007, 33(4): 523-530. (in Chinese)

[36]赵  倩, 姜鸿明, 孙美芝, 李林志, 辛庆国. 山东省区试小麦产量与产量构成因素的相关和通径分析. 中国农学通报, 2011, 27(7): 42-45.

Zhao Q, Jiang H M, Sun M Z, Li L Z, Xin Q G. Correlation and path analysis of yield components of winter wheat varieties with high yield potential cultured in regional trials of shandong province. Chinese Agricultural Science Bulletin, 2011, 27(7): 42-45. (in Chinese)
[1] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[2] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[4] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[5] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[6] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
[7] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[8] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[9] LIU HaiYing,FENG BiDe,RU ZhenGang,CHEN XiangDong,HUANG PeiXin,XING ChenTao,PAN YinYin,ZHEN JunQi. Relationship Between Phytohormones and Male Sterility of BNS and BNS366 in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(1): 1-18.
[10] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[11] JianBo HE,FangDong LIU,WuBin WANG,GuangNan XING,RongZhan GUAN,JunYi GAI. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Its Applications to Genetic and Breeding Studies [J]. Scientia Agricultura Sinica, 2020, 53(9): 1704-1716.
[12] LiYuan PAN,JianBo HE,JinMing ZHAO,WuBin WANG,GuangNan XING,DeYue YU,XiaoYan ZHANG,ChunYan LI,ShouYi CHEN,JunYi GAI. Detection Power of RTM-GWAS Applied to 100-Seed Weight QTL Identification in a Recombinant Inbred Lines Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1730-1742.
[13] ShuGuang LI,YongCe CAO,JianBo HE,WuBin WANG,GuangNan XING,JiaYin YANG,TuanJie ZHAO,JunYi GAI. Genetic Dissection of Protein Content in a Nested Association Mapping Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1743-1755.
[14] Xiao ZHANG,Man LI,DaTong LIU,Wei JIANG,Yong ZHANG,DeRong GAO. Analysis of Quality Traits and Breeding Inspiration in Yangmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2020, 53(7): 1309-1321.
[15] LIU ChenXi,WANG BinBin,PU Guang,ZHANG Qian,CAO Yang,WANG Huan,GAO Chen,NIU PeiPei,LI PingHua,HUANG RuiHua. Polymorphism of Rs319699771 Locus of Anti-Diarrhea MUC13 Gene in Suhuai Pig Population and Their Association with Economic Traits [J]. Scientia Agricultura Sinica, 2019, 52(8): 1449-1457.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!