Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (1): 1-18.doi: 10.3864/j.issn.0578-1752.2021.01.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Relationship Between Phytohormones and Male Sterility of BNS and BNS366 in Wheat

LIU HaiYing1(),FENG BiDe1,RU ZhenGang2(),CHEN XiangDong2,HUANG PeiXin1,XING ChenTao1,PAN YinYin1,ZHEN JunQi1   

  1. 1College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan
    2Center of Wheat Research, Henan Institute of Science and Technology, Xinxiang 453003, Henan
  • Received:2020-04-17 Accepted:2020-07-16 Online:2021-01-01 Published:2021-01-13
  • Contact: ZhenGang RU E-mail:2217861000@qq.com;rzgh58@163.com

Abstract:

【Objective】 In order to provide more information about pollen fertility regulation in thermo-photo-sensitive genic male sterile (TGMS) wheat BNS and BNS366, the relationship between male sterility and the changes of endogenous hormones during microsporogenesis was analyzed.【Method】BNS and BNS366 were used as experimental materials, and Aikang58 and Zhengmai366 (Near-isogenic line of BNS366) were used as controls, respectively. Four different types of wheats were sowed at October 10th (normal sowing) and December 2nd (late sowing). I2-KI method was used to measure the frequency of fertile pollen grains. National and international methods were used to determine self-seeds rate. Indirect enzyme-linked immunosorbent assays (ELISA) method was used to detect 6 kinds of endogenous hormone contents in leaves from the pistil and stamen differentiation stage to the trinuclear stage, young panicles from the pistil and stamen differentiation stage to the tetrad stage and anthers from the uninucleate stage with small-vacuole to the trinuclear stage.【Result】Under normal sowing conditions, the frequency of fertile pollen grains, the national and international rate of self-seeds in both BNS and BNS366 wheats were zero that were completely male sterility, while under late sowing conditions, the three indexes were 34.74%, 43.12% and 48.48% in BNS that was partial male sterility, as well as 92.63%, 55.37 % and 67.94% in BNS366 that was normal fertility. However, the three indexes in Aikang58 and Zhengmai366 wheats under normal and late sowing conditions were 82.56%-94.00%, 73.90%-82.31% and 96.54%-139.26%, respectively, that were normal fertility and no significant difference were found between the two sowing conditions. Moreover, the increased frequency of fertile pollen grains-∆ [(frequency under normal conditions-frequency under late sowing conditions)×100%/ frequency under late sowing conditions] in BNS and BNS366 were lower than those in Aikang58 and Zhengmai366. Multiple comparisons of the hormone’s levels were carried out in the two experiment groups, respectively. We found that the increased hormones levels [(hormones levels under normal conditions - hormones levels under late sowing conditions)×100%/hormones levels under late sowing conditions] differed in all four different varieties. The correlation analytic method was carried on the statistical analysis to the endogenous hormone content and the frequency of fertile pollen grains, and to the endogenous hormone content-∆ and the frequency of fertile pollen grains-∆. For both of BNS and BNS366, there were common characters in dynamic changes of endogenous hormone contents during developmental stages of wheat young panicles in sterile lines. The IAA (indole-3-acetic acid) contents were insufficient in the leaves of the tetrad (BNS) and the pistil primordia differentiation stage (BNS366), and insufficient in the anthers of the uninucleate stage with small-vacuole (BNS) and the uninucleate stage with big-vacuole (BNS366), too, but sufficient in the anthers of the binucleate stage. The gibberellic acid (GA) contents were insufficient in young panicles of the tetrad stage and in anthers of the uninucleate stage with small-vacuole. There were no differences of the zeatin riboside (ZR) contents among the materials. The abscisic acid (ABA) contents tilted towards short supply (BNS) and that was inadequate really (BNS366) in young panicles of the tetrad stage. There were also no differences among the materials in the brassinosteroid (BR) contents. The methyl jasmonate (MeJA) contents were generally insufficient in leaves of the pistil and stamen differentiation stage, the tetrad stage, the uninucleate stage with small-vacuole or the uninucleate stage with big-vacuole, and the trinucleate stage, and in young panicles at the pistil and stamen differentiation stage (BNS) or at the tetrad stage (BNS366), respectively, and in anthers at the uninucleate stage with big-vacuole.【Conclusion】Under normal sowing conditions,the lack of IAA, GA, ABA, especially MeJA before the uninucleate stage with big-vacuole in BNS and BNS366 might promote the occurrence of male-sterility.

Key words: common wheat (Triticum aestivum L.), thermo-photo-sensitive genic male sterile (TGMS), endogenous hormones

Table 1

The exact sampling dates of different materials in different development stages (month/day)"

材料 Material 播种期 Sowing date
1 10/10 3/6 3/17 3/29 3/30 4/3 4/6 4/9
12/2 3/21 3/27 4/6 4/8 4/12 4/15 4/18
2 10/10 3/5 3/16 3/28 3/29 4/2 4/5 4/8
12/2 3/20 3/27 4/5 4/6 4/10 4/13 4/16
3 10/10 3/6 3/18 3/29 3/31 4/2 4/5 4/8
12/2 3/21 3/28 4/7 4/9 4/12 4/15 4/18
4 10/10 3/5 3/17 3/28 3/29 4/1 4/4 4/7
12/2 3/20 3/27 4/5 4/6 4/10 4/13 4/16

Fig. 1

The daily temperature of different materials during the sampling stage"

Fig. 2

I2-KI Staining results of wheat pollens 1: Aikang58; 2: BNS; 3: Zhengmai366; 4: BNS366"

Table 2

Fertility performance of wheat"

材料
Material
播种期
Sowing date
(month/day)
可育花粉率
Frequency of fertile pollen grains (%)
可育花粉率-?
Frequency of fertile pollen grains-? (%)
自交结实率(国内法,%)
Self-seeds rate
(National, %)
自交结实率(国际法,%)
Self-seeds rate
(International, %)
1-F1(可育Fertile) 10/10 82.56 -12.17 73.90 101.31
1-F2 (可育Fertile) 12/2 94.00 74.68 96.54
2-S(不育Sterile) 10/10 0.00** -100.00** 0.00** 0.00**
2-F(可育Fertile) 12/2 34.74 43.12 48.48
3-F1 (可育Fertile) 10/10 90.50 -3.21 80.91 139.26
3-F2(可育Fertile) 12/2 93.50 82.31 124.00
4-S(不育Sterile) 10/10 0.00** -100.00** 0.00** 0.00**
4-F(可育Fertile) 12/2 92.63 55.37 67.94

Table 3

Dynamic changes of IAA content during developmental stages of wheat young panicle (ng·g-1 FW)"

材料
Material
叶片 Leave 幼穗Young panicle 花药Anther
1-F1(可育Fertile) 53.6b 49.8a 62.9a 52.5a 40.6ab 53.6a 82.4a 43.6b 41.0a 40.9a 45.9a 50.3ab 123.3b 183.6a
1-F2(可育Fertile) 44.4c 36.1b 43.3b 50.4a 37.3b 37.3b 48.2c 23.9d 36.2b 22.8c 33.8b 40.1c 169.4a 184.4a
2-S(不育Sterile) 68.3a 53.9a 32.1c 52.6a 27.13c 58.5a 58.2b 97.9a 38.4ab 28.4b 35.6b 56.3a 113.5b 109.2c
2-F(可育Fertile) 49.6bc 43.1ab 42.8b 58.3a 45.4a 50.5a 51.5bc 28.0c 29.9c 19.4c 39.7b 45.5bc 46.79c 131.5b
1-?(%) 20.9 39.0 45.6 5.7 9.0 43.9 70.8 82.5 13.4 81.3 37.1 26.7 -27.1 -0.3
2-?(%) 39.0 26.8 -25.2* -9.4 -40.1* 16.1 13.1* 250.8* 29.4 47.0 -10.0* 25.2 143.1* -16.7*
3-F1(可育Fertile) 72.1a 52.3a 32.9a 45.9b 38.4b 56.1b 53.4b 55.7a 52.8a 28.7a 40.6a 44.1a 104.2b 206.4a
3-F2(可育Fertile) 28.2c 30.5b 37.5a 45.8b 50.5a 40.6c 43.9c 23.6c 20.6b 23.6b 43.9a 35.3b 124.5a 148.8b
4-S(不育Sterile) 67.0a 53.8a 38.6a 54.5a 39.7b 68.4a 69.5a 30.8b 47.0a 28.0a 44.6a 36.9b 60.3c 108.9c
4-F(可育Fertile) 49.3b 31.5b 36.7a 42.1b 41.1b 40.9c 54.6b 25.6c 17.2b 30.3a 46.1a 35.9b 42.1d 88.9d
3-?(%) 155.3 72.8 -12.3 0.3 -23.5 39.9 21.8 135.9 163.2 22.9 -7.2 24.7 -16.1 38.7
4-?(%) 37.8* 71.1 6.8 29.4* -3.1* 68.0 27.7 20.4* 184.6 -7.5 -2.7 2.7* 43.7* 22.8
R1 -0.54 -0.64 0.24 -0.69 0.46 -0.77* -0.28 -0.48 -0.31 0.14 0.18 -0.40 0.37 0.56
R2 0.52 0.21 0.43 -0.25 0.34 -0.01 0.53 -0.14 -0.07 0.45 0.50 0.59 -0.85 0.42

Table 4

Dynamic changes of GA content during developmental stages of wheat young panicle (ng·g-1 FW)"

材料
Material
叶片Leave 幼穗Young panicle 花药Anther
1-F1(可育Fertile) 14.7a 17.4a 21.7b 17.1b 26.6a 21.2b 17.6b 12.7a 20.4a 8.6a 14.0b 15.8a 20.1a 15.0b
1-F2(可育Fertile) 12.3b 12.7b 17.6c 20.3a 17.5c 23.8a 22.4a 7.9c 10.7c 6.9b 12.4b 17.2a 19.6a 16.5b
2-S(不育Sterile) 13.3ab 19.6a 29.6a 21.9a 17.8c 19.7b 18.9b 10.3b 14.2b 7.7a 13.5b 18.4a 19.7a 19.4a
2-F(可育Fertile) 11.7b 13.1b 21.3b 16.0b 20.8b 20.5b 19.7b 12.2a 11.6c 8.6a 21.9a 15.9a 20.1a 19.3a
1-?(%) 19.9 37.2 24.3 -14.9 52.9 -10.4 -21.6 59.8 90.2 46.3 16.6 -7.6 3.3 -8.7
2-?(%) 14.4 50.2 39.7 37.1* -14.0* -3.5 -3.6 * -15.2* 24.3* -10.6* -38.4* 16.2 -1.7 0.9
3-F1(可育Fertile) 18.5a 26.5a 35.6a 34.9a 26.2b 26.1a 27.0a 32.8a 23.9a 11.7ab 16.9b 15.6b 17.6c 18.9a
3-F2(可育Fertile) 11.8c 14.6b 22.7b 27.8b 24.3b 26.2a 26.7a 12.2b 10.3b 7.0c 15.6b 17.1b 22.0a 20.1a
4-S(不育Sterile) 15.1b 28.7a 36.0a 24.5b 33.1 a 26.7a 24.7a 32.7a 24.5a 13.2a 12.6c 19.7a 17.3c 18.1a
4-F(可育Fertile) 15.8b 13.6c 15.6c 19.3c 18.9c 22.8a 26.8a 10.7c 8.7b 10.3b 22.1a 16.8b 19.8b 18.5a
3-?(%) 60.2 82.1 56.8 26.0 8.4 -0.4 1.9 169.2 140.0 69.4 9.2 -8.5 -20.1 -5.7
4-?(%) -4.1* 111.4 131.8* 26.8 76.0* 18.0 -7.8 205.8* 183.5 28.5* -42.6* 17.4 -12.7 -1.3
R1 0.15 -0.43 -0.53 0.18 -0.21 0.27 0.39 -0.23 -0.29 -0.30 0.22 -0.68 0.35 -0.25
R2 0.78 -0.33 -0.53 -0.61 -0.04 -0.58 -0.17 0.14 0.12 0.85 0.99* -1.00* -0.13 -0.92

Table 5

Dynamic changes of ZR content during developmental stages of wheat young panicle (ng·g-1 FW)"

材料
Material
叶片Leave 幼穗Young panicle 花药Anther
1-F1(可育Fertile) 10.5b 9.5b 11.8a 9.3b 11.2a 8.6b 11.9b 6.5a 5.8c 6.5a 7.0a 8.4a 11.6a 11.6a
1-F2(可育Fertile) 12.7a 11.2a 10.3b 11.5a 8.9b 9.7b 10.3bc 5.7c 6.8b 5.6a 6.1ab 7.7a 9.3b 10.2a
2-S(不育Sterile) 10.8b 9.2b 10.6b 10.3ab 8.2b 11.2a 13.7a 6.0b 5.4c 4.5b 6.2ab 7.8a 10.6a 11.3a
2-F(可育Fertile) 12.5a 10.1ab 9.14c 9.3b 12.3a 9.2b 9.2c 5.3d 8.7a 5.7a 5.4b 6.1b 6.9c 6.7b
1-?(%) -17.7 -15.3 14.3 -19.3 26.5 -11.2 15.9 15.0 -14.9 17.6 15.4 8.6 25.1 13.2
2-?(%) -14.1 -8.9 16.6 10.0* -33.4* 22.3* 50.3 13.7 -38.1* -21.0* 15.6 28.8 54.2* 68.5*
3-F1(可育Fertile) 11.9b 9.9a 9.1a 10.0a 9.5b 11.4a 20.5a 8.1a 5.5b 4.9a 7.1a 7.2ab 8.7a 8.7a
3-F2(可育Fertile) 15.2a 10.5a 9.8a 9.5a 10.3b 11.4a 9.7c 6.5b 6.8a 5.3a 7.1a 7.6a 8.1b 7.3b
4-S(不育Sterile) 10.3b 10.8a 9.3a 10.2a 9.5b 9.8ab 12.5b 5.7c 5.4b 4.9a 6.8a 6.2b 6.4d 9.2a
4-F(可育Fertile) 11.2b 9.0b 7.9a 9.1a 12.7a 8.9b 10.8c 6.4b 5.8b 4.2a 5.2a 6.3b 7.1c 6.8b
3-?(%) -21.85 -5.3 -2.8 6.9 -7.3 -0.1 111.6 25.9 -19.0 -7.7 0.2 -4.0 8.1 19.0
4-?(%) -6.92 20.2* 18.5 12.0 -24.3 10.7 15.7* -10.4* -6.6* 17.6 32.2* -0.8 -10.3* 37.8
R1 0.470 0.04 -0.12 -0.07 0.31 -0.09 0.02 0.48 0.10 0.24 0.12 0.32 0.16 -0.23
R2 -0.861 -0.57 -0.74 -0.63 0.80 -0.87 0.45 0.73 0.23 0.16 -0.74 -0.48 -0.13 -0.85

Table 6

Dynamic changes of ABA content during developmental stages of wheat young panicle (ng·g-1 FW)"

材料
Material
叶片Leave 幼穗Young panicle 花药Anther
1-F1(可育Fertile) 67.5b 67.1b 97.5b 62.0b 76.5a 70.9a 100.9a 63.8a 47.0a 58.3a 67.7b 94.2a 85.9b 87.7b
1-F2(可育Fertile) 60.4b 100.5a 68.4c 75.9a 75.1a 69.5a 64.5b 32.2c 45.1a 28.9b 26.9d 44.0c 82.1b 53.4c
2-S(不育Sterile) 60.3b 60.4b 91.5b 52.0c 64.9b 78.6a 89.9a 55.0b 40.8a 56.4a 85.7a 70.1b 109.7a 161.7a
2-F(可育Fertile) 75.8a 73.7b 147.0a 57.4bc 53.6c 78.2a 71.5b 29.3d 48.2a 49.4a 46.7c 49.7c 58.3c 68.6c
1-?(%) 11.9 -33.0 42.7 -18.4 2.2 2.3 56.7 97.9 4.6 109.7 156.5 116.2 5.3 64.4
2-?(%) -20.1* -17.9 -37.6* -9.0 21.3 1.4 27.2 88.5 -14.9 15.7 83.8 42.2* 88.5* 136.4*
3-F1(可育Fertile) 66.8c 76.5a 63.2b 65.8c 61.9b 79.6a 64.8b 72.2b 41.1a 67.6a 70.6a 59.9a 94.1a 89.6a
3-F2(可育Fertile) 59.0c 59.6b 90.7a 62.9c 74.9a 74.1a 59.5b 25.6d 29.0b 32.7c 49.9b 43.1c 75.4b 41.2b
4-S(不育Sterile) 95.6a 70.2a 87.4a 77.1b 65.5b 82.6a 80.9a 99.9a 32.5b 43.9b 73.5a 52.7ab 77.0b 88.8a
4-F(可育Fertile) 79.4b 44.5c 91.6a 93.5a 51.4c 48.8b 67.1b 30.18c 30.7b 62.9a 35.6c 47.3bc 60.4c 47.7b
3-?(%) 13.4 28.6 -28.7 4.6 -17.2 7.9 9.9 181.8 46.9 108.3 42.4 39.9 25.3 120.5
4-?(%) 22.0* 57.9 -4.6 -16.8 27.6* 70.7* 21.1 231.3* 6.1 -29.4* 106.2* 12.1 29.2 86.3
R1 -0.44 0.10 -0.36 0.36 0.23 -0.56 -0.47 -0.49 -0.05 -0.04 -0.62 -0.17 -0.24 -0.70
R2 0.37 -0.26 0.39 0.39 -0.94 -0.53 0.20 -0.13 0.71 0.96* -0.01 0.61 -0.68 -0.29

Table 7

Dynamic changes of BR content during developmental stages of wheat young panicle (ng·g-1 FW)"

材料
Material
叶片Leave 幼穗Young panicle 花药Anther
1-F1(可育Fertile) 6.2bc 5.3b 5.0b 6.5a 5.2ab 4.9b 5.0a 7.3a 5.2a 3.5a 4.5b 11.6a 7.4b 7.4b
1-F2(可育Fertile) 5.8c 6.1a 5.3b 6.1a 4.8bc 3.8c 4.1a 4.2b 5.8a 4.2a 6.3a 5.7c 6.6b 8.3b
2-S(不育Sterile) 8.6a 3.5c 3.9c 5.1b 5.8a 5.6a 4.5a 7.0a 5.2a 3.3a 3.1c 9.1b 9.1a 10.3a
2-F(可育Fertile) 7.3b 6.5a 6.2a 3.7c 4.2c 5.8a 4.8a 3.9c 5.2a 4.2a 3.3c 5.9c 7.2b 5.8c
1-?(%) 7.7 -13.5 -5.3 5.8 8.8 28.2 26.6 71.8 -10.3 -14.4 -28.3 105.9 12.8 -11.3
2-?(%) 18.5 -45.8* -37.6 * 37.6* 39.7 -3.6 * -7.1 80.2 1.0 -22.8 -7.4* 55.7* 27.3 78.3*
3-F1(可育Fertile) 6.3b 3.8c 3.1c 6.6b 4.7a 4.3a 3.4b 10.4a 4.8b 3.5a 4.1ab 6.7b 7.3a 7.2a
3-F2(可育Fertile) 6.1b 4.9b 4.3b 5.5b 5.9a 4.2a 4.9a 4.4c 3.8c 3.8a 3.8ab 7.0b 7.4a 4.0b
4-S(不育Sterile) 9.7a 4.4bc 4.5b 8.4a 5.1a 4.4a 5.1a 8.5b 5.9a 3.4a 3.6b 8.1a 7.2a 7.0a
4-F(可育Fertile) 6.4b 5.8a 6.7a 5.5b 5.6a 3.8a 5.3a 4.2c 5.0b 3.5a 4.3a 6.1b 5.9b 4.5b
3-?(%) 4.1 -23.6 -26.2 21.5 -18.3 1.0 -29.4 137.7 30.4 -7.2 9.5 -3.0 -0.8 78.0
4-?(%) 52.6* -22.4 -31.7 54.9 -7.8 16.0 -2.9* 102.7* 19.1 -1.9 -16.8* 33.5* 22.8* 58.1
R1 -0.95* 0.36 0.15 -0.09 0.01 -0.64 -0.22 -0.24 -0.46 0.30 0.64 -0.25 -0.61 -0.48
R2 -0.78 0.63 0.73 -0.87 -0.50 0.28 0.02 0.32 0.06 0.12 0.16 0.02 -0.91 -0.41

Table 8

Dynamic changes of MeJA content during developmental stages of wheat young panicle (ng·g-1 FW)"

材料
Material
叶片Leave 幼穗Young panicle 花药Anther
1-F1(可育Fertile) 15.5a 15.1a 18.8a 13.0a 12.4a 11.9b 11.7c 7.6a 7.4c 19.1ab 21.6b 32.4a 32.5b 20.4d
1-F2(可育Fertile) 7.6c 13.3a 14.1b 12.2b 9.3a 13.3b 14.3b 5.2b 8.8b 20.7a 22.9b 27.2b 28.6c 22.7c
2-S(不育Sterile) 15.9a 10.8b 11.4c 11.2c 11.3a 13.2b 9.4d 7.4a 8.8b 18.4ab 18.4c 29.1b 34.8ab 36.7a
2-F(可育Fertile) 12.2b 14.8a 13.2b 11.8b 12.0a 16.1a 16.0a 7.8a 10.6a 16.8b 32.1a 33.6a 36.3a 29.8b
1-?(%) 104.7 14.3 33.7 6.9 33.8 -10.3 -18.0 47.8 -15.3 -6.7 -5.6 19.1 14.0 -10.3
2-?(%) 30.2* -26.5* -12.9* -5.6 -5.6* -17.4 -41.7* -3.9* -16.8 9.6 -42.3* -13.2* -4.1* 23.5*
3-F1(可育Fertile) 16.0a 14.5a 12.6c 12.7b 10.6c 12.4c 9.2b 11.8a 9.5a 15.4c 26.8b 32.4a 34.0a 22.4b
3-F2(可育Fertile) 10.7c 14.1a 12.9c 13.1b 13.1b 16.7a 18.5a 9.3c 6.3c 18.8b 31.1a 25.1b 29.8b 28.3a
4-S(不育Sterile) 13.7b 12.2b 14.3b 13.9b 14.8a 13.0c 7.1c 9.7b 9.8a 14.0c 25.1b 26.1b 35.0a 30.6a
4-F(可育Fertile) 11.0c 10.6c 17.7a 16.6a 13.5b 14.3b 18.7a 7.4d 8.1b 25.1a 23.0b 27.9b 33.0a 31.6a
3-?(%) 50.9 3.5 -2.2 -3.0 -19.4 -25.9 -50.1 27.2 56.1 -17.8 -13.8 29.4 14.1 -20.6
4-?(%) 24.5* 14.3 -19.2* -18.8* 10.4* -9.3* -61.9* 31.0 21.2 -44.1* 8.9* -5.8* 6.1 -3.0
R1 -0.42 0.38 0.41 0.41 -0.32 0.07 0.58 -0.05 -0.54 0.54 0.18 -0.00 -0.70 -0.68
R2 0.75 0.43 0.73 0.74 0.06 -0.42 0.50 0.61 0.36 0.11 0.18 0.98* 0.87 -0.80
[1] 李罗江, 茹振刚, 高庆荣, 姜辉, 郭凤芝, 吴世文, 孙哲. BNS小麦的雄性不育性及其温光特性. 中国农业科学, 2009,42(9):3019-3027.
LI L J, RU Z G, GAO Q R, JIANG H, GUO F Z, WU S W, SUN Z. Male sterility and its temperature and light characteristics of BNS wheat. Scientia Agricultura Sinica, 2009,42(9):3019-3027. (in Chinese)
[2] 张自阳, 胡铁柱, 冯素伟, 李笑慧, 李淦, 茹振钢. 温敏核雄性不育小麦BNS的育性转换规律初探. 河南农业科学, 2010,39(7):5-9.
ZHANG Z Y, HU T Z, FENG S W, LI X H, LI G, RU Z G. A preliminary study on the law of fertility conversion of temperature- sensitive nuclear male sterile wheat BNS. Journal of Henan Agricultural Sciences, 2010,39(7):5-9. (in Chinese)
[3] 周美兰, 扬庚武, 孔得群, 宋雪薇, 朱潇, 贺晓敏, 茹振刚. 小麦温敏不育系BNS366育性研究. 麦类作物学报, 2014,34(10):1303-1311.
ZHOU M L, YANG K W, KONG D Q, SONG X W, ZHU X, HE X M, RU Z G. Study on fertility of wheat temperature-sensitive sterile line BNS366. Journal of Triticeae Crops, 2014,34(10):1303-1311. (in Chinese)
[4] 宁江权, 茹振刚, 郑炜君, 柴守诚. BNS小麦雄性不育性表现及其恢复性的研究. 麦类作物学报, 2011,31(4):642-647.
NING J Q, RU Z G, ZHENG W J, CHAI S C. Study on the performance and restoration of male sterility of BNS wheat. Journal of Triticeae Crops, 2011,31(4):642-647. (in Chinese)
[5] 丁位华, 冯素伟, 姜小苓, 王丹, 杨艳艳, 李婷婷, 茹振钢. 播期、密度和行距对BNS型杂交小麦光合及产量的影响. 麦类作物学报, 2017,37(3):366-375.
DING W H, FENG S W, JIANG X L, WANG D, YANG Y Y, LI T T, RU Z G. Effects of sowing date and density and row spacing on photosynthesis and yield of BNS hybrid wheat. Journal of Triticeae Crops, 2017,37(3):366-375. (in Chinese)
[6] 王茂婷, 高庆荣, 孙正娟, 袁凯, 于松, 张宝雷, 李楠楠, 茹振钢. BNS小麦穗分化进程与其雄性不育性的表现. 分子植物育种, 2011,9(3):294-301.
WANG M T, GAO Q R, SUN Z J, YUAN K, YU S, ZHANG B L, LI N N, RU Z G. BNS wheat ear differentiation process and its male sterility performance. Molecular Plant Breeding, 2011,9(3):294-301. (in Chinese)
[7] 张自阳. 小麦温敏核雄性不育系BNS育性转换规律及其恢复性研究[D]. 新乡: 河南科技学院, 2010.
ZHANG Z Y. Study on fertility conversion law and restorability of wheat temperature-sensitive nuclear male sterile line BNS[D]. Xinxiang: Henan Institute of Science and Technology, 2010. (in Chinese)
[8] 周美兰, 宋雪薇, 朱潇, 杨庚武, 孔得群, 贺晓敏, 茹振刚. 小麦温敏不育系BNS366育性转换的敏感期研究. 麦类作物学报, 2015,35(1):7-15.
ZHOU M L, SONG X W, ZHU X, YANG G W, KONG D Q, HE X M, RU Z G. Study on the sensitive period of fertility conversion of wheat thermosensitive sterile line BNS366. Journal of Triticeae Crops, 2015,35(1):7-15. (in Chinese)
[9] 贺晓敏, 周美兰, 余传启, 蒋敏明, 茹振刚. 温敏雄性不育小麦BNS366花粉败育的细胞学观察. 麦类作物学报, 2014,34(4):460-466.
HE X M, ZHOU M L, YU C Q, JIANG M M, RU Z G. Cytological observation of pollen abortion of temperature-sensitive male sterile wheat BNS366. Journal of Triticeae Crops, 2014,34(4):460-466. (in Chinese)
[10] 刘海英, 甄俊琦, 胡铁柱, 茹振钢, 李珍, 胡雪寒, 邢晨涛, 高远. 小麦温敏雄性不育系BNS366小孢子发育和花粉育性检测方法研究. 麦类作物学报, 2018,38(4):379-385.
LIU H Y, ZHEN J Q, HU T Z, RU Z G, LI Z, HU X H, XING C T, GAO Y. Study on the detection method of microspore development and pollen fertility in wheat temperature-sensitive male sterile line BNS366. Journal of Triticeae Crops, 2018,38(4):379-385. (in Chinese)
[11] SHUKIA A, SAWHENY V K. Abscisic acid: One of the factors affecting male sterility in Brassica napus. Physiologia Plantarum, 1994,91(3):522-528.
[12] 李英贤, 张爱民, 梁振兴. 小麦雄性不育的发生与花药组织内激素平衡的关系. 农业生物技术学报, 1998,6(1):71-75.
LI Y X, ZHANG A M, LIANG Z X. Relationship between the occurrence of male sterility in wheat and hormone balance in anther tissue. Chinese Journal of Agricultural Biotechnology, 1998,6(1):71-75. (in Chinese)
[13] 柏斌, 吴俊, 盛文涛, 庄文, 李莺歌, 邓启云. 育性敏感期低温胁迫对水稻光温敏不育系叶片内源激素的影响. 杂交水稻, 2016,31(1):57-61.
BAI B, WU J, SHENG W T, ZHUANG W, LI Y G, DENG Q Y. Effects of low temperature stress on the leaf endogenous hormones in photoperiod-sensitive male sterile lines in the fertility-sensitive period. Hybrid Rice, 2016,31(1):57-61. (in Chinese)
[14] 汤继华, 赫忠友, 陈伟程, 谭树义, 谢惠玲, 李永亮. 玉米温敏核雄性不育育性转换与内源激素的关系. 作物学报, 2003,29(3):336-338.
TANG J H, HE Z Y, CHEN W C, TAN S Y, XIE H L, LI Y L. The relationship between the conversion of temperature-sensitive nuclear male sterility and endogenous hormones in maize. Acta Agronomica Sinica, 2003,29(3):336-338. (in Chinese)
[15] 杨海燕. 温光敏核不育小麦育性转换与激素间关系的研究[D]. 重庆: 西南大学, 2006.
YANG H Y. Study on the relationship between fertility conversion of thermo-photosensitive nuclear sterile wheat and hormone[D]. Chongqing: Southwest University, 2006. (in Chinese)
[16] ZHANG J K, ZONG X F, YU G D, LI J N, ZHANG W. Relationship between phytohormones and male sterility in thermo-photo-sensitive genic male sterile (TGMS) wheat. Euphytica, 2006,150:241-248.
[17] 张自刚, 马小飞, 张红霞, 王震, 张思妮, 郭冬, 张永鹏, 马翎健. 小麦光温敏雄性不育系BNS育性转换与内源激素的关系研究. 植物遗传资源学报, 2016,17(5):913-919.
ZHANG Z G, MA X F, ZHANG H Z, WANG Z, ZHANG S N, GUO D, ZHANG Y P, MA L J. Study on the relationship between fertility conversion and endogenous hormone of wheat light and temperature sensitive male sterility line BNS. Journal of Plant Genetic Resources, 2016,17(5):913-919. (in Chinese)
[18] 张艳玉, 张卫东, 高庆荣, 张保雷, 李楠楠, 高建华, 王慧娜, 赵兰飞. 温光敏雄性不育小麦BNS幼穗发育中的内源激素变化. 西北植物学报, 2013,33(6):1165-1170.
ZHANG Y Y, ZHANG W D, GAO Q R, ZHANG B L, LI N N, GAO J H, WANG H N, ZHAO L F. Changes of endogenous hormones in the development of BNS young ears of temperature-sensitive male sterile wheat. Acta Botanica Boreali-Occidentalia Sinica, 2013,33(6):1165-1170. (in Chinese)
[19] 陈佳娜, 周美兰, 茹振刚, 陈静, 杨文平. 两系小麦BNS花粉育性与气象因子的关系. 作物研究, 2012,26(4):344-349.
CHEN J N, ZHOU U M L, RU Z G, CHEN J, YANG W P. Relationship between BNS pollen fertility and meteorological factors of two-line wheat. Crop Research, 2012,26(4):344-349. (in Chinese)
[20] 宋喜悦, 何蓓如, 马翎健, 胡银岗, 李宏斌. 小麦温敏不育系A3314温敏不育性的遗传研究. 中国农业科学, 2005,38(6):1095-1099.
SONG X Y, HE B R, MA L J, HU Y G, LI H B. Heredity study on temperature-sensitive sterility of wheat A3314. Scientia Agricultura Sinica, 2005,38(6):1095-1099. (in Chinese)
[21] 于振文. 作物栽培学各论(北方本). 北京: 中国农业出版社, 2003: 37-40.
YU Z W. Crop Cultivation Monographs (Northern Edition) Beijing: China Agricultural Press, 2003: 37-40. (in Chinese)
[22] 崔金梅, 吉凌芬. 冬小麦幼穗分化不同时期形态特征的图解. 植物学通报, 1985,3(4):60-64.
CUI J M, JI L F. Graphical analysis of morphological characteristics of different stages of winter wheat young spike differentiation. Chinese Bulletin of Botany, 1985,3(4):60-64. (in Chinese)
[23] 张爱民, 李英贤, 黄铁城. T型不育系、恢复系和杂种F1花药组织内源激素水平比较. 农业生物技术学报, 1997,5(3):32-36.
ZHANG A M, LI Y X, HUANG T C. Comparison of endogenous hormone levels in anther tissues of T-type sterile lines, restorer lines and hybrid F1. Chinese Journal of Agricultural Biotechnology, 1997,5(3):32-36. (in Chinese)
[24] 陈竹君, 张明方, 汪炳良, 董伟敏, 黄素青. 榨菜胞质雄性不育及其农艺性状的研究. 园艺学报, 1995,22(1):40-46.
CHEN Z J, ZHANG M F, WANG B L, DONG W M, HUANG S Q. Study on cytoplasmic male sterility and agronomic characters of mustard. Acta Horticulturae Sinica, 1995,22(1):40-46. (in Chinese)
[25] 彭妙, 朱列书, 陈建国, 李安, 杨超才, 昌洪涛, 胡日生, 鲁柯佚. 烟草胞质雄性不育系与其保持系内源激素的平衡关系. 烟草科技, 2016,49(9):15-21.
PENG M, ZHU L S, CHEN J G, LI A, YANG C C, CHANG H T, HU R S, LU K Y. Equilibrium relationship of endogenous hormone between bobacco cytoplasmic male-sterile lines and maintainer lines. Totacco Science & Technologys, 2016,49(9):15-21. (in Chinese)
[26] 王永琦, 杨小振, 莫言玲, 郑俊骞, 张勇, 马建祥, 李好, 张显. 西瓜雄性不育系‘Se18’抗氧化酶活性和内源激素含量变化分析. 园艺学报, 2016,43(11):2161-2172.
WANG Y Q, YANG X Z, MO Y L, ZHENG J J, ZHANG Y, MA J X, LI H, ZHANG X. Analysis of the changes in antioxidant enzymes activities and endogenous hormones contents in watermelon male sterile line Se18 during bud development. Acta Horticulturae Sinica, 2016,43(11):2161-2172. (in Chinese)
[27] DUCA M, PORT A, OROZCO C M, LOVATT C. Gibberellin- induced gene expression associated with cytoplasmic male sterility in sunflower. Biotechnology & Biotechnological Equipment, 2008,22(2):691-700.
[28] TANG R S, ZHENG J C, JIN Z Q, ZHANG D D, HUANG Y H, CHEN L G. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Plant Growth Regulation, 2008,54:37-43.
[29] 史公军, 侯喜林, 胡巍. 细胞质雄性不育白菜败育过程中激素和多胺含量的变化. 西北植物学报, 2004,24(11):2109-2112.
SHI G J, HOU X L, HU W. Changes of hormones and polyamines content during cytoplasmic male sterile cabbage abortion. Acta Botanica Boreali-Occidentalia Sinica, 2004,24(11):2109-2112. (in Chinese)
[30] 夏涛, 刘纪麟. 生长素和玉米素与玉米细胞质雄性不育性关系的研究. 作物学报, 1994,20(1):26-32.
XIA T, LIU J L. Study on the relationship between auxin and zeatin and maize cytoplasmic male sterility. Acta Agronomica Sinica, 1994,20(1):26-32. (in Chinese)
[31] 赵玉锦, 童哲, 陈华君, 金幼菊. 内源植物激素与光敏核不育水稻农垦58S育性的关系. 植物学报, 1996,38(12):936-941.
ZHAO Y J, TONG Z, CHEN H J, JIN Y J. Relationship between endogenous plant hormones and fertility of photosensitive nuclear sterile rice Nongken 58S. Chinese Bulletin of Botany, 1996,38(12):936-941. (in Chinese)
[32] 郑洁, 王磊. 油菜素内酯在植物生长发育中的作用机制研究进展. 中国农业科技导报, 2014,16(1):52-58.
ZHENG J, WANG L. Research progress on the action mechanism of brassinolide in plant growth and development. Journal of Agricultural Science and Technology, 2014,16(1):52-58. (in Chinese)
[33] YE Q Q, ZHU W J, LI L, ZHANG S S, YIN Y H, MA H, WANG X L. Brassinosteroids control male fertility by regulating the expression of key genes involvedin arabidopsis anther and pollen development. Proceedings of the National Academy of Sciences of the United of America, 2010,107:6100-6105.
[34] DELKER C, STENZEL I, HAUSE B, MIERSCH O, FEUSSNER I, WASTERNACK C. Jasmonate biosynthesis in Arabidopsis thaliana- enzymes, products, regulation. Plant Biology, 2006,8(3):297-306.
doi: 10.1055/s-2006-923935 pmid: 16807821
[35] 樊晓培, 邢津浦, 魏铁锁, 李欣洋, 苍晶, 徐庆华, 张达. 外源MeJA对低温胁迫下冬小麦冷响应基因表达的影响. 麦类作物学报, 2020,40(3):292-299.
FAN X P, XING J P, WEI T S, LI X Y, CANG J, XU Q H, ZHANG D. Effect of exogenous MeJA on the expression of cold response genes in winter wheat under low temperature stress. Journal of Triticeae Crops, 2020,40(3):292-299. (in Chinese)
[36] 李清清, 李大鹏, 李德全. 茉莉酸和茉莉酸甲酯生物合成及其调控机制. 生物技术通报, 2010,26(1):53-57, 62.
LI Q Q, LI D P, LI D Q. Biosynthesis of jasmonic acid and methyl jasmonate and its regulation mechanism. Biotechnology Bulletin, 2010,26(1):53-57, 62. (in Chinese)
[37] MANGDAOKAR A, THINES B, SHIN B, LANGE B M, CHOI G, KOO Y J, YOO Y D, CHOI G, BROWSE J. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. The Plant Journal, 2006,46(6):984-1008.
pmid: 16805732
[1] SHA YueXia, HUANG ZeYang, MA Rui. Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice [J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328.
[2] WANG JunJie,TIAN Xiang,QIN HuiBin,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,QIAO ZhiJun. Regulation Effects of Photoperiod on Growth and Leaf Endogenous Hormones in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2021, 54(2): 286-295.
[3] LI YanLin,SHAHID Iqbal,SHI Ting,SONG Juan,NI ZhaoJun,GAO ZhiHong. Isolation of PmARF17 and Its Regulation Pattern of Endogenous Hormones During Flower Development in Prunus mume [J]. Scientia Agricultura Sinica, 2021, 54(13): 2843-2857.
[4] GUO YunHui, YU YuanYuan, WEN LiZhu, SUN CuiHui, SUN XianZhi, WANG WenLi, SUN Xia, ZHENG ChengShu. Molecular Basis of the Effects of Nitrate Signal on Root Morphological Structure Changes of Chrysanthemum [J]. Scientia Agricultura Sinica, 2017, 50(9): 1684-1693.
[5] LI Xiu, GONG Biao, XU Kun. Effect of Exogenous Spermidine on Levels of Endogenous Hormones and Chloroplast Ultrastructure of Ginger Leaves Under Heat Stress [J]. Scientia Agricultura Sinica, 2015, 48(1): 120-129.
[6] WANG Hai-bo, ZHAO Jun-quan, WANG Xiao-di, SHI Xiang-bin, WANG Bao-liang, ZHENG Xiao-cui, LIU Feng-zhi. The Influence of Changes of Endogenous Hormones in Shoot on the Grapes Flower Bud Differentiation in Greenhouse [J]. Scientia Agricultura Sinica, 2014, 47(23): 4695-4705.
[7] YANG Dong-Qing-1, WANG Zhen-Lin-1, NI Ying-Li-1, 2 , YIN Yan-Ping-1, CAI Tie-1, YANG Wei-Bing-1, PENG Dian-Liang-1, CUI Zheng-Yong-1, JIANG Wen-Wen-1. Effect of High Temperature Stress and Spraying Exogenous ABA Post-Anthesis on Grain Filling and Grain Yield in Different Types of Stay-Green Wheat [J]. Scientia Agricultura Sinica, 2014, 47(11): 2109-2125.
[8] WANG Ru-Fang, ZHANG Ji-Wang, LU Peng , DONG Shu-Ting, LIU Peng, ZHAO Bin. Effects of Endogenous Hormones on Tiller Development Process of Different Maize Varieties [J]. Scientia Agricultura Sinica, 2012, 45(5): 840-847.
[9] . Difference of Endogenous Hormones in Young Spike Between Main Stem and Tillers and Its Effects Under Different Densities in Lankao Aizao 8
[J]. Scientia Agricultura Sinica, 2011, 44(6): 1283-1291 .
[10] FENG Feng,YANG Ji-shuang. Relationship Between Floral Bud Differentiation and Endogenous Hormones in Autumn-Cutting Chrysanthemum morifolium ‘Jinba’
[J]. Scientia Agricultura Sinica, 2011, 44(3): 552-561 .
[11] YANG Wei-Bing, WANG Zhen-Lin, YIN Yan-Ping, LI Wen-Yang, LI Yong, CHEN Xiao-Guang, WANG Ping, CHEN 二Ying, GUO Jun-Xiang, CAI Tie, NI Ying-Li. Effects of Spraying Exogenous ABA or GA on the Endogenous Hormones Concentration and Filling of Wheat Grains [J]. Scientia Agricultura Sinica, 2011, 44(13): 2673-2682 .
[12] WANG Lei,JIANG Yuan-mao,PENG Fu-tian,WEI Shao-chong,GE Shun-feng,FANG Xiang-ji
. Effects of Branch Bending on Growth of New Shoots and the Dynamic Changes of Endogenous Hormones in Apple
[J]. Scientia Agricultura Sinica, 2010, 43(22): 4761-4764 .
[13] ,. Physiological Mechanism of Metabolism of Carbohydrate, Phenols, Free Amino Acid and Endogenous Hormones in Middle Scales of Lilium davidii var. unicolor Bulbs Stored at Low Temperature for Dormancy Release [J]. Scientia Agricultura Sinica, 2005, 38(02): 376-382 .
[14] ,. Physiological Mechanism of Metabolism of Carbohydrate, Phenols, Free Amino Acid and Endogenous Hormones in Middle Scales of Lilium davidii var. unicolor Bulbs Stored at Low Temperature for Dormancy Release [J]. Scientia Agricultura Sinica, 2004, 37(11): 1777-1782 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!