Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (15): 3158-3167.doi: 10.3864/j.issn.0578-1752.2021.15.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality

ZHANG Yong1(),YAN Jun2,XIAO YongGui1,HAO YuanFeng1,ZHANG Yan1,XU KaiJie2,CAO ShuangHe1,TIAN YuBing1,LI SiMin1,YAN JunLiang2,ZHANG ZhaoXing2,CHEN XinMin1,WANG DeSen1,XIA XianChun1,HE ZhongHu1,3()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    2Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan
    3CIMMYT-China Office, Beijing 100081
  • Received:2020-12-21 Accepted:2021-03-01 Online:2021-08-01 Published:2021-08-10
  • Contact: ZhongHu HE E-mail:zhangyong05@caas.cn;zhhecaas@163.com

Abstract:

Characterization of leading cultivars will provide crucially important information for cultivar development. The objective of this research is to characterize high yield potential, broad adaptation, good disease resistance and stress tolerance, as well as good quality in wheat cultivar Zhongmai 895. The dataset of two populations of Zhongmai 871/Zhongmai 895 recombinant inbred lines and Yangmai 16/Zhongmai 895 doubled haploids, as well as regional yield and pilot trial related with Zhongmai 895 were used in this research. The high yield potential of Zhongmai 895 was largely due to the increased spike number which could easily reach 640/m2, guaranteed by erect plant type with small leaves, and short plant height around 75 cm related to the outstanding lodging resistance, on the basis of two QTL for tiller angle, five QTL for leaf angle, and combination of semi dwarfing genes Rht2 and Rht24. It was characterized with high and stable thousand grain weight (48 g) related to the fast grain filling rate which provided excellent tolerance to high temperature during grain filling period, contributing to the perfect performance in late sowing environment, together with the contribution from high water and fertilizer use efficiency, high activity of root system, and slow leaf senescence, on the basis of four QTL for high thousand grain weight and grain filling rate, five genes for drought tolerance with vernalization gene combination of vrn-A1x, Vrn-B1a, and vrn-D1w. The performance of the broad adaptability was further contributed by the good resistance to stripe rust, powdery mildew and Fusarium head blight in the production, due to the presence of one major QTL for stripe rust resistance, two QTL for slow powdery mildew, and one new QTL for Fusarium head blight resistance. Zhongmai 895 was one of the few cultivars performing good dual qualities for Chinese dry white noodles and steamed bread with stable medium gluten strength, bright and yellow flour colour across environments in the Yellow-Huai River Valleys Winter Wheat Region, with Glu-A3d, and performed high nutrition quality with stable and high phenolic acid concentration of 748 μg·g-1. This research provides very important information and experience for developing new cultivars with high yield potential and broad adaptability.

Key words: common wheat, Zhongmai 895, yield potential, broad adaptability, disease resistance

Table 1

Yield performance of Zhongmai 895 in the Southern part of the Yellow and Huai River Valleys Winter Wheat regional trials"

类型
Trial type
年份
Year
品种
Cultivar
株高
PH (cm)
穗数 SN (spikes/m2) 穗粒数
KNS
千粒重
TKW (g)
产量 GY (kg·hm-2) ±CK
(%)
增产点次
YIS
区域试验RYT
2010—2011 中麦895 Zhongmai 895 71b 678a 29.8b 47.1a 8820a 5.1 17 (19#)
周麦18 Zhoumai 18 (CK) 74a 603b 34.3a 44.7b 8392b
2011—2012 中麦895 Zhongmai 895 75b 651a 29.7b 45.8a 7590a 4.4 16 (17)
周麦18 Zhoumai 18 (CK) 79a 575b 32.3a 44.9b 7275b
生产试验RPT 2011—2012 中麦895 Zhongmai 895 75b 648a 29.3b 48.0a 7665a 4.3 14 (15)
周麦18 Zhoumai 18 (CK) 77a 569b 32.0a 44.9b 7350b
平均
Average
中麦895 Zhongmai 895 74.3b 641a 29.2b 48.3a 7973a 4.6
周麦18 Zhoumai 18 (CK) 78.0a 573b 32.5a 46.0b 7561b

Table 2

Yield performance of Zhongmai 895 in farmer fields in the Southern part of the Yellow and Huai River Valleys Winter Wheat Region"

地点
Location
年份
Year
面积
Area (hm2)
产量
Yield (kg·hm-2)
备注
Remarks
陕西省三原县Sanyuan, Shaanxi 2012 0.30 10562 实产,本省最高单产纪录Harvest yield, provincial record
陕西省三原县Sanyuan, Shaanxi 2014 0.20 10862 实产,本省最高单产纪录Harvest yield, provincial record
河南省滑县Huaxian, Henan 2015 0.20 11714 实产Harvest yield
河南省新乡县Xinxiang, Henan 2016 0.34 11730 实产Harvest yield

Table 3

Yield and yield components of representative cultivars in the southern part of the Yellow and Huai River Valleys Winter Wheat Region"

品种
Cultivar
株高
PH (cm)
生物量
Biomass (kg·hm-2)
花期叶面积指数
LAI
穗数
SN (spikes/m2)
穗粒数
KNS
千粒重
TKW (g)
产量
GY (kg·hm-2)
收获指数
HI
豫麦13 Yumai 13 84.6a 15302bc 4.92b 757a 37b 41.6c 7806bc 0.38ab
豫麦49号 Yumai 49 77.7bc 15281bc 4.59cd 645bc 36bc 48.0b 8390b 0.39a
周麦16 Zhoumai 16 73.5c 15765b 4.35d 574c 40a 54.1a 8433b 0.38ab
周麦18 Zhoumai 18 79.2b 14572c 4.74bc 602bc 34c 45.7bc 8546b 0.35c
百农AK58 Bainong AK58 69.3d 15290bc 4.83bc 630bc 36bc 46.8bc 7563c 0.38a
中麦895 Zhongmai 895 77.9bc 17367a 5.27a 586c 37b 56.0a 8906a 0.37b

Fig. 1

Grain filling rate curves of representative leading cultivars in the Yellow and Huai River Valleys Winter Wheat Region"

Table 4

TKW and average grain-filling rate of Zhongmai 895 and check under normal and heat stress environments"

品种
Cultivar
大田Normal 热处理Heat stress
千粒重 TKW (g) 平均灌浆速率 Va (g·1000-kernel-1·d-1) 千粒重 TKW (g) 平均灌浆速率 Va (g·1000-kernel-1·d-1)
中麦895 Zhongmai 895 51.0a 1.27a 46.7a 1.15a
京冬8 Jingdong 8 50.0a 1.26a 48.7a 1.21a
衡4399 Heng 4399 44.0b 1.05b 38.5b 0.97b

Table 5

Effect of irrigation times on yield and water use efficiency related traits of Zhongmai 895 and Bainong AK58"

灌溉处理
Irrigation
穗数
SN (spikes/m2)
穗粒数
KNS
千粒重
TKW (g)
产量
Yield (kg·hm-2)
水分利用效率
WUE (kg·mm-1)
W1 410c#/382c$ 26.7c/28.7c 45.9c/44.5c 4365c/4775c 14.7c/16.1a
W2 460b/433b 30.1b/29.9bc 49.5b/45.8bc 5806b/5666b 16.2b/15.9ab
W3 541a/519a 33.0a/31.4ab 51.6ab/47.1ab 7115a/6565a 17.1a/15.7ab
W4 565a/566a 33.2a/32.3a 52.1a/48.5a 7481a/6995a 15.7bc/14.7b

Table 6

Effect of N fertilizer levels on yield and nitrogen use efficiency related traits of Zhongmai 895 and Bainong AK58"

氮肥处理
Nitrogen
平米穗数
SN (spikes/m2)
穗粒数
KNS
千粒重
TKW (g)
产量
Yield (kg·hm-2)
氮肥农学效率
NAE (kg·kg-1)
氮肥吸收效率
NUE (%)
氮肥利用效率
NUtE (kg·kg-1)
T1 558a/512a 29.9a/33.9a 45.3b/43.7b 6220c/6008b 0/0 0/0 0/0
T2 574a/522a 28.8ab/31.3ab 53.1a/48.4a 6536b/6062b 5.4/4.9 0.24/0.21 27.2/24.4
T3 552a/482b 27.4bc/30.3bc 54.1a/49.6a 6918a/6186ab 3.8/3.2 0.17/0.15 19.2/16.6
T4 496b/471b 26.0c/26.0c 51.3a/49.4a 6634b/6370a 2.8/2.6 0.14/0.12 13.8/13.2

Table 7

Comparison of dry white Chinese noodle and steamed bread qualities of Zhongmai 895 and the Check"

类型
Type
特性
Trait
中麦895
Zhongmai 895
周麦16
Zhoumai 16
郑麦366
Zhengmai 366
雪花粉
Xuehua
面条
Noodle
色泽Color(15) 9.2 9.0 9.6 10.5
表面状况Appearance(10) 6.3 6.5 6.8 7.0
软硬度Firmness(20) 14.3 12.5 13.8 14.0
粘弹性Viscoelasticity(30) 21.4 18.4 21.4 21.0
光滑性Smoothness(15) 11.4 9.2 9.8 10.5
食味Flavor(10) 8.3 7.8 7.8 7.0
总分Total score(100) 70.8 63.3 68.9 70.0
馒头
Steamed bread
比容Specific volume(20) 18 11.8 16.3 15.0
外形Shape(10) 6.0 4.3 6.8 8.0
表面光滑Smoothness(10) 7.5 5.0 7.3 8.0
表面色泽Skin color(10) 4.5 4.0 6.8 10.0
压缩张弛性Stress relaxation(35) 29.0 21.5 29.0 35.0
结构Structure(15) 11.8 7.9 12.4 12.0
总分Total score(100) 76.8 54.4 78.4 88.0
[1] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003.
ZHUANG Q S. Chinese Wheat Breeding and Pedigree Analysis. Beijing: China Agriculture Press, 2003. (in Chinese)
[2] 何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018, 8(1):99-106.
HE Z H, ZHUANG Q S, CHENG S H, YU Z W, ZHAO Z D, LIU X. Wheat production and technology improvement in China. Journal of Agriculture, 2018, 8(1):99-106. (in Chinese)
[3] GAO F M, MA D Y, YIN G H, RASHIEED A, DONG Y, XIAO Y G, XIA X C, WU X X, HE Z H. Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of southern Yellow and Huai Valley Winter Wheat Zone since 1950. Crop Science, 2017, 57:760-773.
doi: 10.2135/cropsci2016.05.0362
[4] TIAN X, WEN W, XIE L, FU L, XU D, FU C, WANG D, CHEN X, XIA X, CHEN Q, HE Z, CAO S. Molecular mapping of reduced plant height gene Rht24 in bread wheat. Frontiers in Plant Sciences, 2017, 8:1379.
[5] ZHAO D H, YANG L, XU K J, CAO S H, TIAN Y B, YAN J, HE Z H, XIA X C, SONG X Y, ZHANG Y. Identification and validation of genetic loci for tiller angle in bread wheat. Theoretical and Applied Genetics, 2020, 133:3037-3047.
doi: 10.1007/s00122-020-03653-6
[6] XU K J, ZHANG Y, TIAN Y B, YAN J L, ZHANG Z X, XIAO Y G, XIA X C, HE Z H, YAN J. QTL mapping for flag leaf angle in common wheat. Euphytica, 2021. (in Press)
[7] 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系. 作物学报, 2018, 44(2):252-259.
MIAO Y J, YAN J, ZHAO D H, TIAN Y B, YAN J L, XIA X C, ZHANG Y, HE Z H. Relationship between grain filling parameters and grain weight in leading wheat cultivars in the Yellow and Huai Rivers Valley. Acta Agronomic Sinica, 2018, 44(2):252-259. (in Chinese)
[8] 韩利明, 张勇, 彭惠茹, 乔文臣, 何明琦, 王洪刚, 曲延英, 何中虎. 从产量和品质性状的变化分析北方冬麦区小麦品种抗热性. 作物学报, 2010, 36(9):1538-1546.
HAN L M, ZHANG Y, PENG H R, QIAO W C, HE M Q, WANG H G, QU Y Y, HE Z H. Analysis of heat resistance for cultivars from North China Winter Wheat Region by yield and quality traits. Acta Agronomic Sinica, 2010, 36(9):1538-1546. (in Chinese)
[9] 苗永杰. 高温胁迫对小麦籽粒灌浆特性及主要品质性状的影响[D]. 北京: 中国农业科学院, 2016.
MIAO Y J. Effect of heat stress on grain filling and major quality traits of common wheat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[10] YANG L, ZHAO D H, MENG Z L, XU K J, YAN J, XIA X C, CAO S H, TIAN Y B, HE Z H, ZHANG Y. Rapid QTL mapping for grain yield-related traits in bread wheat via SNP-based selective genotyping. Theoretical and Applied Genetics, 2020, 133:857-872.
doi: 10.1007/s00122-019-03511-0
[11] YANG M, HASSAN M A, XU K, ZHENG C, RASHEED A, ZHANG Y, JIN X, XIA X, XIAO Y, HE Z. Assessment of water and nitrogen use efficiencies trough UAV-based multispectral phenotyping in winter wheat. Frontiers in Plant Science, 2020, 11:927.
doi: 10.3389/fpls.2020.00927
[12] 杨梦娇. 冬小麦中麦895节水抗旱相关生理机制及遗传特性研究[D]. 北京: 中国农业科学院, 2019.
YANG M J. Study on water saving and drought resistance related physiology mechanisms and genetic research of winter wheat Zhongmai 895[D]. Beijing: Xinjiang Agricultural University, 2019. (in Chinese)
[13] 朱展望. 利用全基因组连锁分析和关联分析定位小麦赤霉病抗性基因及分子标记开发[D]. 北京: 中国农业科学院, 2020.
ZHU Z W. Genome-wide linkage and association mapping of resistance genes to fusarium head blight and development of molecular markers in wheat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
[14] XU X T, ZHU Z W, JIA O L, WANG F J, WANG J P, ZHANG Y L, FU C, FU L P, BAI G H, XIA X C, HAO Y F, HE Z H. Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica, 2020, 216:3.
doi: 10.1007/s10681-019-2537-8
[15] ZHU Z, XU X, FU L, WANG F, DONG Y, FANG Z, WANG W, CHEN Y, GAO C, HE Z, XIA X, HAO Y. Molecular mapping of QTL for Fusarium head blight resistance in a doubled haploid population of Chinese bread wheat. Plant Disease, 2021. (in Press)
[16] 孔欣欣, 张艳, 赵德辉, 夏先春, 王春平, 何中虎. 北方冬麦区新育成优质小麦品种面条品质相关性状分析. 作物学报, 2016, 42(8):1143-1159.
KONG X X, ZHANG Y, ZHAO D H, XIA X C, WANG C P, HE Z H. Noodle quality evaluation of new wheat cultivars from northern China winter wheat regions. Acta Agronomic Sinica, 2016, 42(8):1143-1159. (in Chinese)
[17] 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状. 作物学报, 2018, 44(5):697-705.
ZHAO D H, ZHANG Y, WANG D S, HUANG L, CHEN X M, XIAO Y G, YAN J, ZHANG Y, HE Z H. Pan bread and steamed bread qualities of novel-released cultivars in Northern Winter Wheat Region of China. Acta Agronomic Sinica, 2018, 44(5):697-705. (in Chinese)
[18] JACOBS D R, MEYER K A, KUSHI L H, FOLSOM A R. Whole grain intake may reduce risk of coronary heart disease death in postmenopausal women: The Iowa Women’s Health Study. American Journal of Clinical Nutrition, 1998, 68:248-257.
doi: 10.1093/ajcn/68.2.248
[19] MEYER K A, KUSHI L H, JACOB D J, SLAVIN J, SELLERS T A, FOLSOM A R. Carbohydrates, dietary fiber, incident type 2 diabetes mellitus in older women. American Journal of Clinical Nutrition, 2000, 71:921-930.
doi: 10.1093/ajcn/71.4.921
[20] ZHANG Y, WANG L, YAO Y, YAN J, HE Z H. Phenolic acid profiles of Chinese wheat cultivars. Journal of Cereal Science, 2012, 56:629-635.
doi: 10.1016/j.jcs.2012.07.006
[21] ZHOU Y, HE Z H, SUI X X, XIA X C, ZHANG X K, ZHANG G S. Genetic improvement of grain yield and associated traits in the Northern China Winter Wheat Region from 1960 to 2000. Crop Science, 2007, 47:245-253.
doi: 10.2135/cropsci2006.03.0175
[22] ZHENG T C, ZHANG X K, YIN G H. WANG L N, HAN Y L, CHEN L, HUANG F, TANG J W, XIA X C, HE Z H. Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Field Crops Research, 2011, 122:225-233.
doi: 10.1016/j.fcr.2011.03.015
[23] LIU Y N, HE Z H, APPES R, XIA X C. Functional markers in wheat: Current status and future prospects. Theoretical and Applied Genetics, 2012, 125:1-10.
doi: 10.1007/s00122-012-1829-3
[24] CUI Y R, LI R D, LI G W, ZHANG F, ZHU T T, ZHANG Q F, ALI J, LI Z K, XU S Z. Hybrid breeding of rice via genomic selection. Plant Biotechnology Journal, 2020, 18:57-67.
doi: 10.1111/pbi.v18.1
[1] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[2] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[3] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[4] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[5] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[6] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[7] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[8] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[9] ZHAO ZiQi,ZHAO YaQi,LIN ChangPeng,ZHAO YongZe,YU YuXiao,MENG QingLi,ZENG GuangYing,XUE JiQuan,YANG Qin. Precise Evaluation of 48 Maize Inbred Lines to Major Diseases [J]. Scientia Agricultura Sinica, 2021, 54(12): 2510-2522.
[10] LIU HaiYing,FENG BiDe,RU ZhenGang,CHEN XiangDong,HUANG PeiXin,XING ChenTao,PAN YinYin,ZHEN JunQi. Relationship Between Phytohormones and Male Sterility of BNS and BNS366 in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(1): 1-18.
[11] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[12] Cheng LIU,Ran HAN,XiaoLu WANG,WenPing GONG,DunGong CHENG,XinYou CAO,AiFeng LIU,HaoSheng LI,JianJun LIU. Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization [J]. Scientia Agricultura Sinica, 2020, 53(7): 1287-1308.
[13] Xiao ZHANG,Man LI,DaTong LIU,Wei JIANG,Yong ZHANG,DeRong GAO. Analysis of Quality Traits and Breeding Inspiration in Yangmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2020, 53(7): 1309-1321.
[14] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[15] YaRu CHAI,YiJuan DING,SiYu ZHOU,WenJing YANG,BaoQin YAN,JunHu YUAN,Wei QIAN. Identification of the Resistance to Sclerotinia Stem Rot in HIGS-SsCCS Transgenic Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2020, 53(4): 761-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!