Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (23): 4902-4910.doi: 10.3864/j.issn.0578-1752.2011.23.017

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Sequence Analysis of mtDNA COⅢ of Tibetan Yaks

 ZHAO  Shang-Juan, CHEN  Zhi-Hua, JI  Qiu-Mei, CHAI  Zhi-Xin, ZHANG  Cheng-Fu, XIN  Jin-Wei, ZHONG  Jin-Cheng   

  1. 1.西南民族大学动物遗传育种学国家民委/教育部重点实验室,成都 610041
    2.西藏自治区农牧科学院畜牧兽医研究所,拉萨 850000
  • Received:2010-11-17 Online:2011-12-01 Published:2011-03-16

Abstract: 【Objective】The objective of this study was to analyze the genetic diversity and the phylogenetic relationship of different groups of Tibetan Yaks to provide a theoretical basis for protecting genetic diversity of Tibetan Yak and utilization of resources in Tibetan Yak.【Method】The mtDNA sequence of 111 individuals′ COIII from 11 groups of Tibetan Yak was determined by using the Gel Extraction Kit recycling, then the genetic diversity of Tibetan Yak, the affiliation of 11 groups of Tibetan Yak were analyzed. 【Result】 The length of 11 Tibetan Yak groups′ COIII complete sequences were all 781 bp. There were no introns between genes. These genes could encode 260 amino acids. As a start codon, AUG (ATG) had a free base. The average ratios of four nucleotides (T, C, A, G) were 29.2%, 29.4%, 26.1% and 15.2%, respectively. It showed that the base had a bias. It was found that Tibetan Yak’s mtDNA COIII showed 18 haplotypes, the index of haplotype diversity was from 0.378 to 0.844. It showed that Tibetan Yak has rich genetic diversity in mtDNA COIII. These amino acids encoded by COIII, the highest average content is Leu (11.92%), and the lowest one is Lys and Cys (0.77%). The contents of basic amino acid, acidic amino acid, hydrophilic amino acid and hydrophobic amino acid were 11.15%, 4.62%, 29.61% and 54.61%. By phyletic evdution analysis, Tibetan Yak could be divided into three categories, which are Pali (PL) line, Baqing (BQ) line and Sibu (SB) line.【Conclusion】Through cluster analysis,the Tibetan Yak has rich genetic diversity and it could be divided into three major categories. This result supports the theory that Tibetan Yak belongs to a separate genus of bovinae.

Key words: Tibetan Yak, mtDNA COⅢ , genetic diversity

[1]钟金城, 赵素君, 陈智华, 马志杰. 牦牛品种的遗传多样性及其分类研究. 中国农业科学, 2006, 39(2): 389-397.

Zhong J C, Zhao S J, Chen Z H, Ma Z J. Study on genetic diversity and classification of the yak. Scientia Agricultura Sinica, 2006, 39(2): 389-397. (in Chinese)

[2]Shao B, Long R, Ding Y, Wang J, Ding L, Wang H. Morphological adaptations of yak(Bos grunniens) tongue to the foraging environment of the Qinghai-Tibetan Plateau. Journal of Animal Science, 2010, 88: 2594-2603.

[3]陈秋生, 冯  霞, 姜生成. 牦牛肺脏高原适应性的结构研究. 中国农业科学, 2006, 39(10): 2107-2113.

Chen Q S, Feng X, Jiang S C. Structural study on plateau adaptability of yak lung. Scientia Agricultura Sinica 2006, 39(10): 2107-2113. (in Chinese)

[4]Jr Leslie D M, Schaller G B. Bos grunniens and Bos mutus (Artiodactyla: Bovidae). BioOne Mammalogy Species, 2009, 26: 1-17.

[5]Seabury C M, Seabury P M, Decker J E, Schnabel R D, Taylor J F, Womack J E. Diversity and evolution of 11 innate immune genes in Bos taurus taurus and Bos taurus indicus cattle. Proceedings of the National Academy of Sciences of the USA, 2010, 107(1): 151-156.

[6]Pruvost M, Schwarz R, Correia V B, Champlot S, Braguier S, Morel N, Fernandez-Jalvo Y, Grange T, Geigl E M. Freshly excavated fossil bones are best for amplication of ancient DNA. Proceedings of the National Academy of Sciences of the USA, 2007, 104(3): 739-744.

[7]Beja-pereira A, Caramelli D, Lalueza-Fox C, Vernesi C, Ferrand N, Casoli A, Goyache F, Royo L J, Conti S, Lari M, Martini A, Ouragh L, Magid A, Atash A, Zsolnai A, Boscato P, Triantaphylidis C, Ploumi K, Sineo L, Mallegni F, Taberlet P, Erhardt G, Sampietro L, Bertranpetit J, Barbujani G, Luikart G, Bertorelle G. The origin of European cattle: Evidence from modern and ancient DNA. Proceedings of the National Academy of Sciences of the USA, 2006, 103(21): 8113-8118.

[8]郑玉才, 钟光辉, 王  永, 彭先文, 毛永江, 邹思湘, 陈伟华, 陈  杰. 半奶牦牛泌乳生理生化特点的研究. 中国农业科学, 2002, 35(4): 421-425.

Zheng Y C, Zhong G H, Wang Y, Peng X W, Mao Y J, Zou S X, Chen W H, Chen J. Physiological and biochemical characteristics of lactation in half-lactating yak. Scientia Agricultura Sinica, 2002, 35(4): 421-425. (in Chinese)

[9]肖玉萍, 钟金城, 金  双. 4个牦牛品种的RAPD遗传多样性研究. 中国牛业科学, 2007, 33(6): 5-10.

Xiao Y P, Zhong J C, Jin S. Study on genetic variation in yak breeds by RAPD technique. China Cattle Science, 2007, 33(6): 5-10. (in Chinese)

[10]江明锋, 姜  权. AFLP分子标记在牦牛遗传分析中的初探. 四川畜牧兽医, 2003, 30(11): 20-21.

Jiang M F, Jiang Q. AFLP analysis of genetic diversity in MaiWa Bos Grunnines. Sichuan Animal Veterinary Sciences, 2003, 30(11): 20-21. (in Chinese)

[11]Ma Z J, Zhong J C, Chen Z H, Liu L, Chang H P, Luo X L. Sequence variation and molecular evolution of hormone-sensitive lipase genes in speicies of bovidae. Journal of Genetics and Genomics, 2007, 34(1): 26-34. (in Chinese)

[12]廖信军, 常  洪, 张桂香, 王冬蕾, 宋卫涛, 韩  旭, 张自富. 中国5个地方牦牛品种遗传多样性的微卫星分析. 生物多样性, 2008, 16(2): 156-165.

Liao X J, Chang H, Zhang G X, Wang D L, Song W T, Han X, Zhang Z F. Genetic diversity of five native Chinese yak breeds based on microsatellite DNA markers. Biodiversity Science, 2008, 16(2): 156-165. (in Chinese)

[13]蔡  立. 中国牦牛. 北京: 中国农业出版社, 1992.

Cai L. China Yak. Beijing: China Agriculture Press, 1992. (in Chinese)

[14]郭松长, 祁得林, 陈桂华, 徐世晓, 赵新全. 家牦牛线粒体DNA (mtDNA)遗传多样性及其分类.生态学报, 2008, 28(9): 4286-4294.

Guo S C, Qi D L, Chen G H, Xu S X, Zhao X Q. Genetic diversity and classification of domestic yaks inferred from mitochondrial DNA sequences. Acta Ecologica Sinica, 2008, 28(9): 4286-4294. (in Chinese)

[15]Gorbikova E A, Belevich I, Wikström M, Verkhovsky M I. The proton donor for O-O bond scission by cytochrome c oxidase. Proceedings of the National Academy of Sciences of the USA, 2008, 105(31): 10733-10737.

[16]Salomonsson L, Faxén K, Ädelroth P, Brzezinski P. The timing of proton migration in membrane-reconstituted cytochrome c oxidase. Proceedings of the National Academy of Sciences of the USA, 2005, 102(49): 17624-17629.

[17]Zíková A, Panigrahi A K, Uboldi A D, Dalley R A, Handman E, Stuart K. Structural and functional association of Trypanosoma brucei MIX protein with cytochrome c oxidase complex. Eukaryotic Cell, 2008, 7(11): 1994-2003.

[18]Olkhova E, Helms V, Michel H. Titration behavior of residues at the entrance of the D-pathway of cytochrome c oxidase from Paracoccus denitrificans investigated by continuum electrostatic calculations. Biophysical Journal, 2005, 89: 2324-2331.

[19]魏兆军, 赵巧玲, 张志芳, 肖庆利, 王章娥, 何家禄. 蓖麻蚕线粒体基因组细胞色素氧化酶亚基Ⅲ的序列及其分子进化分析. 昆虫学报, 2002, 45(2): 193-197.

Wei Z J, Zhao Q L, Zhang Z F, Xiao Q L, Wang Z E, He J L. Characterization of the cytochrome oxidase subunit Ⅲ gene of mitochondrial DNA from the eri silkworm, Samia cynthia ricini. Acta Entomologica Sinica, 2002, 45(2): 193-197. (in Chinese)

[20]Garesse R. Drosophila melanogaster mitochondrial DNA: gene organization and evolutionary considerations genetics. Genetics, 1998, 118: 649-663.

[21]Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Research, 1997, 25(24): 4876-4882.

[22]Kumar S, Koichiro T, Dudley J, Nei M. Molecular Evolutionary Genetics Analysis: version 4.0. USA: Arizona State University, 2001.

[23]Nei M, Kumar S. Molecular Eveolution and Phylogenetics. Newyork: Oxford University Press, 2000.

[24]赖松家, 王  玲, 刘益平, 李学伟.中国部分牦牛品种线粒体DNA遗传多态性研究. 遗传学报, 2005, 32(5): 463-470.

Lai S J, Wang L, Liu Y P, Li X W. Study on mitochondrial DNA genetic polymorphism of some yak breeds in China. Acta Genetica Sinica, 2005, 32(5): 463-470. (in Chinese)

[25]Guo S C, Savolainen P, Su J P, Zhang Q, Qi D L, Zhou J, Zhong Y, Zhao X Q, Liu J Q. Origin of mitochondrial DNA diversity of domestic yaks. BMC Evolutionary Biology, 2006, 6: 73-86.

[26]Helling S, Vogt S, Rhiel A, Ramzan R, Wen L, Marcus K, Kadenbach B. Phosphorylation and kinetics of mammalian cytochrome c oxidase. Molecular and Cellular Proteomics, 2008, 7: 1714-1724.

[27]李齐发, 李艳华, 赵兴波, 李学斌, 潘增祥, 谢   庄, 李  宁. 牛亚科MHC-DRB3基因exon2的序列变异分析. 农业生物技术学报, 2005, 13(4): 441-446.

Li Q F, Li Y H, Zhao X B, Li X B, Pan Z X, Xie Z, Li N. Sequence variation at exon 2 of MHC DRB3 locus in bovinae. Journal of Agricultural Biotechnology, 2005, 13(4): 441−446. (in Chinese)

[28]耿荣庆, 常  洪, 李永红, 冀德君, 常春芳, 王兰萍, 常国斌. 中国牛亚科家畜GH基因编码区序列的遗传变异研究. 畜牧兽医学报, 2008, 39(12): 1779-1784.

Geng R Q, Chang H, Li Y H, Ji D J, Chang C F, Wang L P, Chang G B. Variation of complete coding sequence of GH gene in Chinese bovinae species. Acta Veterinaria et Zootechnica Sinica, 2008, 39(12): 1779-1784. (in Chinese)

[29]杨万远, 陈雪梅, 钟金城, 陈生梅, 郭承恩, 孟  丽, 武甫德. 野牦牛mtDNA Cytb 基因全序列测定及系统进化关系. 中国草食动物, 2009, 29: 8-12.

Yang W Y, Chen X M, Zhong J C, Chen S M, Guo C E, Meng L, Wu F D. Sequence analysis and evolution relatinship of Cytb gene in Bovidae. China Herbivores, 2009, 29: 8-12. (in Chinese)

 

[30]冀德君, 常春芳, 常  洪, 耿荣庆, 李永红. 中国牛亚科6个物种MSTN 基因外显子2多态性及分化研究. 中国畜牧杂志, 2009, 45(1): 1-4.

Ji D J, Chang C F, Chang H, Geng R Q, Li Y H. Polymorphism and phylogenetic relationship of myostatin gene exon 2 in 6 Bovidae species in China. Cinese Journal of Animal Science, 2009, 45(1): 1-4. (in Chinese)
[1] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[7] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[8] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[9] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[10] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[11] CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582.
[12] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[13] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[14] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,ZHANG CaiXia,LI LianWen,PIAO JiCheng. Genetic Diversity and Phylogenetics of Malus baccata (L.) Borkh Revealed by Chloroplast DNA Variation [J]. Scientia Agricultura Sinica, 2020, 53(3): 600-611.
[15] WANG BaoBao,GUO Cheng,SUN SuLi,XIA YuSheng,ZHU ZhenDong,DUAN CanXing. The Genetic Diversity, Pathogenicity, and Toxigenic Chemotypes of Fusarium graminearum Species Complex Causing Maize Ear Rot [J]. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!