Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (22): 4678-4686.doi: 10.3864/j.issn.0578-1752.2011.22.015

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Effect of Nitrogen Levels of Diets on Ruminal Fermentation Characters and Nitrogen Fractions in Yak

 MI  Jian-Dui, GUO  Xu-Sheng, ZHOU  Jian-Wei, XIN  Guo-Sheng, ZHANG  Ying, ZHU  Yu-Huan, LONG  Rui-Jun   

  1. 1..兰州大学草地农业科技学院,兰州730000
    2..兰州大学干旱与草地生态教育部重点实验室,兰州730000
    3..兰州大学青藏高原草地生态管理国际中心,兰州730000
  • Received:2010-10-31 Online:2011-11-15 Published:2011-03-15

Abstract: 【Objective】 The objective of this study is to evaluate the effect of different N levels of diets on the ruminal fermentation and nitrogen fractions in yak. 【Method】 Four castrated yaks at (148.5±9.2) kg and 3-year-old of age were used in a partially replicated 4×4 Latin square with 4 different N levels of diets treatments (A(35.92 g•d-1), B(49.44 g•d-1), C(61.28 g•d-1), D (72.48 g•d-1)) and 4 20-day periods. pH, FAA-N (free amino acid nitrogen), NH3-N (NH3 nitrogen), PAA-N (peptide amino acid nitrogen), soluble protein N (nitrogen) and VFA (volatile fatty acid) were studied in different times before (07:30) and after feeding (10:00, 12:00, 14:00, 16:00) at last day. 【Result】 Ruminal pH was not affected by diets (P>0.05). PAA-N, soluble protein N, FAA-N, total VFA and NH3-N were significantly differed among yaks with different diets (P<0.05). NH3-N was also affected by diet×time interaction (P<0.05). Acetate/propionate was not affected by different diets (P>0.05). 【Conclusion】 Under the rations of the present study, when N of diet greater than 1.97%, most nitrogen fractions in yak do not response to the nitrogen level of the experimental diets. At 2.90% nitrogen of diet, acetate/propionate is the minimum and total VFA is the maximum.

Key words: yak, N level, rumen, N fraction

[1]Tajima K, Aminov R I, Nagamin T, Matsui H, Nakamura M, Benno Y. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Applied and Environmental Microbiology, 2001, 67(6): 2766-2774.

[2]Sylvester J T, Karnati S K, Dehority B A, Morrison M, Smith G L, St-Pierre N R, Firkins J L. Rumen ciliated protozoa decrease generation time and adjust 18S ribosomal DNA copies to adapt to decreased transfer interval, starvation, and monensin. Journal of Dairy Science, 2009, 92(1): 256-269.

[3]刁其玉. 动物氨基酸营养与饲料. 北京: 化学工业出版社, 2007.

Diao Q Y. Amino Acid Nutrition and Forage of Animal. Beijing: Chemistry Industry Press, 2007. (in Chinese)

[4]Wang M P, Zhao C Z, Long R J, Yang Y H. Rangeland governance in China: overview, impacts no Sunan county in Gansu province and future options. The Rangeland Journal, 2010, 32: 155-163.

[5]王文娟, 汪水平, 谭支良. 反刍动物瘤胃氮代谢研究进展. 华中农业大学学报, 2007, 26: 747-754.

Wang W J, Wang S P, Tan Z L. Research advance on nitrogen metabolism in the rumen of ruminants. Journal of Huazhong Agricultural University, 2007, 26: 747-754. (in Chinese)

[6]冯仰廉. 反刍动物营养学. 北京: 科学出版社, 2004.

Feng Y L. Animal Nutrition of Ruminant. Beijing: Science Press, 2004. (in Chinese)     

[7]董世魁, 龙瑞军, 胡自治. 不同采食水平下舍饲干奶牦牛能量转化、氮、钙、磷代谢的研究. 草业学报, 2000, 2: 32-37.

Dong S K, Long R J, Hu Z Z. A study on conversion of energy and metabolism of protein, calcium and phosphorus in dry yaks. Acta Prataculturae Sinica, 2000, 2: 32-37. (in Chinese)

[8]韩兴泰, 胡令浩, 谢敖云. 粗饲条件下生长牦牛能量代谢的估测. 青海畜牧兽医杂志, 1992, 2: 21-22.

Han X T, Hu L H, Xie A Y. Evaluation of energy metabolism for growing yak under roughage condition. Chinese Qinghai Journal of Animal and Veterinary, 1992, 2: 21-22. (in Chinese)

[9]胡令浩, 谢敖云, 韩兴泰. 生长牦牛与生长黄牛体表面积的研究. 中国畜牧杂志, 1994, 6: 9-10.

Hu L H, Xie A Y, Han X T. Study on the surface areas of growing yak and cattle. Chinese Journal of Animal Science, 1994, 6: 9-10. (in Chinese)

[10]薛  白, 韩兴泰. 日粮精料水平对牦牛和黑白花牛营养物质利用率的影响. 中国草食动物, 2001, 3: 3-8.

Xue B, Han X T. The influence of dietary concentrate level on nutrients utilization of Holstein, yak. China Herbivores, 2001, 3: 3-8. (in Chinese)

[11]吕秉林, 扎西卓玛. 牦牛与黑白花牛的氮平衡比较研究. 黄牛杂志, 2002, 28: 17-18.

Lü B L, Zhaxi Z M. Comparison of nitrogen balance in yak and Holstein. Journal of Yellow Cattle Science, 2002, 28: 17-18. (in Chinese)

[12]龙瑞军, 董世魁, 胡自治. 同一日粮下泌乳牦牛与干奶牦牛消化代谢能力的比较研究. 草业学报, 1998, 7: 51-55.

Long R J, Dong S K, Hu Z Z, Nutrient digestion and metabolism in lactating and dry yak cows. Acta Prataculturae Sinica, 1998, 7: 51-55. (in Chinese)

[13]Long R J, Dong S K, Chen X B, Orskov, Hu Z Z. Preliminary studies on urinary excretion of purine derivatives and creatinine in yaks. The Journal of Agricultural Science, 1999, 133: 427-431.

[14]Long R J, Dong S K, Hu Z Z, Shi J J, Dong Q M, Han X T. Digestibility, nutrient balance and urinary purine derivative excretion in dry yak cows fed oat hay at different levels of intake. Livestock Production Science, 2004, 88: 27-32.

[15]Long R J, Dong S K, Wei X H, Pu X P. The effect of supplementary feeds on the bodyweight of yaks in cold season. Livestock Production Science, 2005, 129: 133-137.

[16]Wang H C, Long R J, Zhou W, Li X P, Zhou J W, Guo X S. A comparative study on urinary purine derivative excretion for yak(Bos grunniens), indigenous cattle(Bos taurus) and crossbred(Bos grunniens × Bos taurus) in Qing-hai Tibetan Plateau, China. Journal of Animal Science, 2009, 87: 2355-2362.

[17]谢敖云, 刘书杰, 韩兴泰, 胡令浩. 不同营养水平对牦牛瘤胃内VFA的影响. 青海畜牧兽医杂志, 1992, 22: 5-7.

Xie A Y, Liu S J, Han X T, Hu L H. Effect of different nutritive levels on rumen VFA for Chinese Yak. Chinese Qinghai Journal of Animal and Veterinary, 1992, 22: 5-7. (in Chinese)

[18]胡令浩. 中国牦牛营养研究进展(二)-生长期牦牛的氮代谢. 青海科技, 2001, 6: 37-39.

Hu L H. Nutrition of yak in China progress(second)-nitrogen metabolism of growing yak. Qinghai Technology, 2001, 6: 37-39. (in Chinese)

[19]胡令浩. 谢敖云, 刘书杰. 生长期牦牛的氮代谢及补氮技术研究. 动物营养学报, 1999, 11: 208-216.

Hu L H, Xie A Y, Liu S J. Study on nitrogen metabolism and nitrogen supplementary techniques in growing yaks. Acta Zoonutrometa Sinica, 1999, 11: 208-216. (in Chinese)

[20]薛  白, 韩兴泰. 牦牛瘤胃内饲料蛋白质降解率的研究. 动物营养学报, 1998, 10: 35-39.

Xue B, Han X T. Protein degradation of feedstuffs in the rumen of yaks. Acta Zoonutrometa Sinica, 1998, 10: 35-39. (in Chinese)

[21]胡令浩, 中国牦牛营养研究进展(一)-瘤胃消化代谢与能量代谢. 青海科技, 2001, 5: 40-42.

Hu L H. Nutrition of yak in China progress(first)-digestion and energy metabolism in rumen. Qinghai Technology, 2001, 5: 40-42. (in Chinese)

[22]Chizzotti M L, Valadares S C, Tedeschi L O, Chizzotti F H M, Carstens G E. Energy and protein requirements for growth and maintenance of F1 Nellore×Red Angus Bulls, steers, and heifers. Journal of Animal Science, 2007, 85: 1971-1981.

[23]Broderick G A, Kang J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 1980, 63(1): 64-75.

[24]Fu C J, Felton E E, Lehmkuhler J W, Kerley M S. Ruminal peptide concentration required to optimize microbial growth and efficiency. Journal of Animal Science, 2001, 79(5): 1305-1312.

[25]张丽英. 饲料分析及饲料质量检测技术. 第二版. 北京: 中国农业出版社, 2003.

Zhang L Y. Feed Analysis and Determining Technique. 2 ed. Beijing: Chinese Agricultural University Press, 2003. (in Chinese)

[26]杨  胜. 饲料分析及饲料质量检测技术. 北京: 中国农业大学出版社, 1993.

Yang S. Feed Analysis and Determining Technique. Beijing: China Agricultural University Press, 1993. (in Chinese)

[27]Erwin E S, Marco G J, Emery E M. Volatile fatty acid analyses of food and rumen fluid by gas chromatography. Journal of Dairy Science, 1961, 44: 1768-1771.

[28]Licitra G, Hernandez T M, van Soest P J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science Technology, 1996, 57: 347-358.

[29]Chen X B, Gomes M J. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives-an overview of the technical detail. Bucksburn Aberdeen: International Feed Resources Unit, 1992.

[30]Lyle R R, Johnson R R, Wilhite J V, Backus W R. Ruminal characteristics in steers as affected by adaptation from forage to all-concentrate diets. Journal of Animal Science, 1981, 53: 1383-1390.

[31]Towne G, Nagaraja T G, Brandt R T, Kemp K E. Dynamics of ruminal ciliated protozoa in feedlot cattle. Applied and Environmental Microbiology, 1990, 56: 3174-3178.

[32]Slyter L L, Oltjen R R, Kern D L, Blank F C. In?uence of type and level of grain and diethylstilbestrol on the rumen microbial populations of steers fed all-concentrate diets. Journal of Animal Science, 1970, 31: 996-1002.

[33]Towne G, Nagaraja T G, Brandt R T, Kemp K E. Ruminal ciliated protozoa in cattle fed ?nishing diets with or without supplemental fat. Journal of Animal Science, 1990, 68: 2150-2155.

[34]Franzolin R, Dehority B A. Effect of prolonged high-concentrate feeding on ruminal protozoa concentrations. Journal of Animal Science, 1996, 74: 2803-2809.

[35]Reynal S M, Ipharraguerre I R, Liñeiro M, Brito A F, Broderick G A, Clark J H. Omasal flow of soluble proteins, peptides, and free amino acids in dairy cows fed diets supplemented with proteins of varying ruminal degradabilities. Journal of Dairy Science, 2007, 90(4): 1887-1903.

[36]Hristov A N, Ivan M, Rode L M, McAllister T A. Fermentation characteristics and ruminal ciliate protozoal populations in cattle fed medium- or high-concentrate barley-based diets. Journal of Animal Science, 2001, 79(2): 515-524.

[37]韩兴泰, 陈  杰, 韩正康. 饲喂不同蛋白质水平日粮的牦牛六位氮代谢与十二指肠各氮组分流量. 动物营养学报, 1998, 10(1): 34-43.

Han X T, Chen J, Han Z K. Ruminal nitrogen metabolism and the flows of nitrogen fractions reaching the duodenum of growing yaks fed diets containing different level of crude protein. Acta Zoonutrometa Sinica, 1998, 10(1): 34-43. (in Chinese) 

[38]Patra A K. Effects of supplementing low-quality roughages with tree foliages on digestibility, nitrogen utilization and rumen characteristics in sheep: a meta-analysis. Journal of Animal Physiology and Animal Nutrition, 2010, 94(3): 338-353.

[39]Fox D G, Tedeschi L O, Tylutki T P, Russell J B, van Amburgh M E, Chase L E, Pell A N, Overton T R. The Cornell net carbohydrate and protein system model for evaluating herd nutrition and nutrient excretion. Animal Feed Science and Technology, 2004, 112: 29-78.

[40]Russell J B, Connor J D, Fox D G, Van Soest P J, Sniffen C J. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science, 1992, 70(11): 3551-3561.

[41]Sniffen C J, Connor J D, Van Soest P J, Fox D G, Russell J B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, 1992, 70(11): 3562-3577.

[42]Licitra G, Hernandez T M, van Soest P J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 1996, 57(4): 347-358.

[43]Preston T R, Leng K A. Matching ruminant production system with available resources in the tropics and sub-tropics. Armidale, NSW: Penambul Books, 1987.

[44]Chen G, Sniffen C J, Russell J B. Concentration and estimated flow of peptides from the rumen of dairy cattle: effects of protein quantity protein solubility and feeding frequency. Journal of Dairy Science, 1987, 70: 983-992.

[45]Kim H D, Kim S W, Kim W Y, Ko Y K, Itabashi H. Effects of popped soybean on concentration of ruminal peptide and blood amino acids in Holstein calves. Asian-Australasian Journal of Animal Sciences, 1998, 11(2): 155-161.
[1] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[2] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[3] KONG FanLin,LI Yuan,FU Tong,DIAO QiYu,TU Yan. Effects of 2-Hydroxy-4-(Methylthio)-Butanoic Acid on Rumen Fermentation and Microbiota in Holstein Female Calves [J]. Scientia Agricultura Sinica, 2022, 55(4): 796-806.
[4] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[5] BiJiao MA,ZhiWen GOU,Wen YIN,AiZhong YU,ZhiLong FAN,FaLong HU,Cai ZHAO,Qiang CHAI. Effects of Multiple Cropping Green Manure After Wheat Harvest and Nitrogen Application Levels on Wheat Photosynthetic Performance and Yield in Arid Irrigated Areas [J]. Scientia Agricultura Sinica, 2022, 55(18): 3501-3515.
[6] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[7] RAN HongBiao,ZHAO LiLing,WANG Hui,CHAI ZhiXin,WANG JiKun,WANG JiaBo,WU ZhiJuan,ZHONG JinCheng. Effects of lncFAM200B on the Lipid Deposition in Intramuscular Preadipocytes of Yak [J]. Scientia Agricultura Sinica, 2022, 55(13): 2654-2666.
[8] WANG JinFei,YANG GuoYi,FAN ZiHan,LIU Qi,ZHANG PengCheng,REN YouShe,YANG ChunHe,ZHANG ChunXiang. Effects of Whole Plant Corn Silage Ratio in Diet on Growth Performance, Rumen Fermentation, Nutrient Digestibility and Serological Parameters of Dorper×Hu Crossbred Female Lambs [J]. Scientia Agricultura Sinica, 2021, 54(4): 831-844.
[9] YANG YunYan,WANG QiYan,PENG DiWei,PAN YiFan,GAO XiaoMei,XUAN ZeYi,CHEN ShaoMei,ZOU CaiXia,CAO YanHong,LIN Bo. Effects of Cinnamaldehyde on Growth Performance,Health Status, Rumen Fermentation and Microflora of Dairy Calves [J]. Scientia Agricultura Sinica, 2021, 54(10): 2229-2238.
[10] HAO XiaoYan,MU ChunTang,QIAO Dong,ZHANG XuanZi,YANG WenJun,ZHAO JunXing,ZHANG ChunXiang,ZHANG JianXin. Effects of High-Concentrate Diet Supplemented with Grape Seed Proanthocyanidins on Rumen fermentation, Inflammatory and Antioxidant Indicators of Rumen and Serum in Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2239-2248.
[11] LI XueRu,SHI XiXiong,WANG JianZhong,ZHANG PanGao,TIAN Zhu,HAN Ling. Effect of Nitric Oxide Synthetase Inhibitor on Yak Meat Quality During Post-Mortem Aging [J]. Scientia Agricultura Sinica, 2020, 53(8): 1617-1626.
[12] ZHANG DeYin,ZHANG XiaoXue,LI FaDi,LI Chong,LI GuoZe,ZHANG YuKun,LI XiaoLong,SONG QiZhi,ZHAO Yuan,LIU XiaoQing,MA LiangQiang,WANG WeiMin. Association of Rumen Histomorphology of Sheep with Different Feed Efficiencies [J]. Scientia Agricultura Sinica, 2020, 53(24): 5115-5124.
[13] MIAO JianJun,PENG ZhongLi,GAO YanHua,BAI Xue,XIE XinTing. Effects of Dietary Small Peptides on Production Performance and Expression of PepT1 mRNA in Digestive Tract of Fattening Yaks [J]. Scientia Agricultura Sinica, 2020, 53(23): 4950-4960.
[14] GAO YingBo,ZHANG Hui,LIU KaiChang,ZHANG HuaBin,LI YuanFang,FU XiQiang,XUE YanFang,QIAN Xin,DAI HongCui,LI ZongXin. The Coordination of Nitrogen Optimization with Matched Variety Could Enhance Maize Grain Yield and Nitrogen Use Efficiency of Summer Maize in Saline Land [J]. Scientia Agricultura Sinica, 2020, 53(21): 4388-4398.
[15] ZHANG Ji,LI JunJie,WAN LianJie,YANG JiangBo,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Potassium Application Levels on Nutrient, Yield and Quality of Newhall Navel Orange [J]. Scientia Agricultura Sinica, 2020, 53(20): 4271-4286.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!