Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (20): 4271-4286.doi: 10.3864/j.issn.0578-1752.2020.20.015

• HORTICULTURE • Previous Articles     Next Articles

Effects of Potassium Application Levels on Nutrient, Yield and Quality of Newhall Navel Orange

ZHANG Ji1(),LI JunJie1,WAN LianJie1,YANG JiangBo2,ZHENG YongQiang1,LÜ Qiang1,XIE RangJin1,MA YanYan1,DENG Lie1,YI ShiLai1()   

  1. 1Citrus Research Institute, Southwest University/Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing 400712
    2Guangdong Agribusiness Research Institute of Tropical Agriculture Co., Ltd, Guangzhou 510000
  • Received:2020-03-18 Accepted:2020-07-15 Online:2020-10-16 Published:2020-10-26
  • Contact: ShiLai YI E-mail:1432743534@qq.com;yishilai@swu.edu.cn

Abstract:

【Objective】This study investigated the effects of different potassium application levels on nutrient absorption, fruit yield and quality and determined the appropriate amount of potassium application, which provided a theoretical basis for the scientific application of potassium fertilizer for Newhall navel orange.【Method】Six different potassium application levels, including K0 (0 K2O), K1 (0.38 kg/plant), K2 (0.64 kg/plant), K3 (0.89 kg/plant), K4 (1.28 kg/plant) and K5 (1.40 kg/plant), were performed to study its effects on nutrient absorption of branches, leaves and fruit, fruit quality and yield by using 7-year-old Newhall navel orange grafted on Poncirus trifoliata (L.) .【Result】The dry matter accumulation of leaves and branches of Newhall navel orange in different periods were similar among different groups, while spring shoots were higher than autumn shoots as well as leaves higher than branches. Dry matter quality of leaves and branches were increased first and then decreased with the increased potassium level. The nitrogen fertilizer enhanced the nutrient absorption of nitrogen, phosphorus and potassium in spring shoots with a peak level under K2 treatment, and it also similarly increased the absorption of nitrogen, phosphorus and potassium in autumn shoot with lower level in K5 group than that in K0 group. Potassium had no significant effect on nitrogen, phosphorus and potassium content of fruit. Maximum nitrogen removal was found under K3 treatment, and then phosphorus and potassium were found under K2 treatment. The amount of fruit nutrient removal was nitrogen ≈ potassium > phosphorus. Potassium application first enhanced the yield and single fruit weight, and then decreased, and the highest level of yield under K2 treatment was higher than that under K0 treatment. Potassium application made the fruit redder with the best effect under K3 treatment. Potassium application first thinned the pericarp and then thickened with the thinnest level under K2 treatment. Potassium application first enhanced the vitamin C content, and then decreased with the highest level under K3 treatment. The maximum soluble sugar content was found under K3 treatment, and the minimum titratable acid content was found under K2 treatment. Potassium application first enhanced the soil organic matter and available N, and then decreased at the highest level under K1 and K3 treatment, respectively. Potassium application first decreased the soil available P, and then enhanced at the highest level under K4 treatment, and then decreased. Potassium application under K4 treatment could maximize the content of available potassium in the soil, and the most of the available potassium was distributed in the surface soil (0-20 cm) and tended to accumulate in the deep soil (60—80 cm). Correlation analysis showed that the potassium content in spring leaves was significantly positively corrected with the total nitrogen and potassium content of fruit and was significantly negatively correlated with fruit firmness. The potassium content in autumn shoots was significantly positively correlated with yield and TSS content, and the potassium content in autumn twigs was significantly negatively correlated with the thickness of peel. The soil available K content was significantly negatively correlated with the total nitrogen and potassium content of fruit, and was significantly negatively correlated with fruit hardness.【Conclusion】These results indicated that the pure potassium oxide application rate was 0.64 to 0.89 kg/plant to ensure high level of yield and fruit quality, and to facilitate nutrient absorption and utilization of Newhall navel orange tree while maintaining high soil fertility. At the same time, the risk of soil potassium accumulation and pollution was reduced.

Key words: Newhall navel orange, potassium application level, nutrition, fruit yield, fruit quality

Fig. 1

Effects of potassium application on dry matter accumulation of Newhall navel orange leaves Different lowercase letters indicate significant differences (P<0.05). The same as below"

Fig. 2

Effects of potassium application on dry matter accumulation of Newhall navel orange twigs"

Table 1

Effects of potassium application on nutrient uptake of Newhall navel orange shoots"

枝梢类型
Shoot type
处理
Treatment
叶片 Leave (g/plant) 枝条 Twig (g/plant)
N P2O5 K2O N P2O5 K2O
春梢
Spring shoot
K0 12.69±2.43e 1.41±0.28d 8.19±1.50d 1.70±0.34c 0.40±0.08d 0.75±0.14c
K1 16.47±1.68d 1.74±0.17c 12.75±1.07c 2.44±0.29b 0.68±0.05c 1.08±0.08b
K2 26.32±1.30a 2.76±0.12a 18.18±0.66a 3.75±0.15a 1.00±0.02a 1.68±0.03a
K3 24.32±1.40ab 2.29±0.13b 15.99±0.77b 3.82±0.10a 0.95±0.05a 1.62±0.23a
K4 19.69±0.60c 2.02±0.05bc 15.06±0.12b 2.82±0.22b 0.79±0.09b 1.30±0.24b
K5 22.50±0.23b 2.09±0.17b 15.81±1.60b 2.55±0.16b 0.68±0.04c 1.10±0.08b
秋梢
Autumn shoot
K0 12.48±0.23c 2.33±0.04c 5.35±0.16c 1.33±0.04c 0.31±0.00d 0.57±0.01d
K1 14.36±1.47bc 2.58±0.14bc 6.91±0.09b 1.87±0.06b 0.41±0.01c 0.76±0.02c
K2 20.31±1.46a 3.86±0.23a 10.43±0.81a 2.37±0.12a 0.56±0.03a 1.14±0.06a
K3 16.34±1.85b 2.86±0.28b 7.25±0.34b 2.19±0.16a 0.48±0.04b 0.87±0.10b
K4 12.59±0.91c 2.32±0.11c 7.07±0.72b 1.81±0.19b 0.38±0.05c 0.78±0.06bc
K5 9.64±1.12d 1.70±0.13d 4.71±0.71c 1.34±0.12c 0.28±0.03d 0.54±0.06d

Table 2

Effects of potassium application on fruit size of Newhall navel orange"

处理 Treatment 纵径 Vertical diameter (mm) 横径 Transverse diameter (mm) 果形指数 Shape index
K0 72.01±3.89a 69.10±2.34a 1.04±0.03a
K1 70.11±2.87a 70.52±1.55a 0.99±0.05b
K2 70.33±2.62a 70.55±2.21a 1.00±0.04ab
K3 70.46±3.78a 69.02±2.90a 1.02±0.02ab
K4 70.55±4.05a 68.03±4.33a 1.04±0.02ab
K5 70.80±2.74a 70.38±2.13a 1.01±0.03ab

Fig. 3

Effects of potassium application on single fruit weight and plant yield of Newhall navel orange fruit"

Fig. 4

Effects of potassium application on nitrogen content of Newhall navel orange fruit"

Fig. 5

Effects of potassium application on P2O5 content of Newhall navel orange fruit"

Fig. 6

Effects of potassium application on K2O content of Newhall navel orange fruit"

Fig. 7

Effects of potassium application on nutrient removal amount of Newhall navel orange fruit"

Table 3

Mathematical relationship between potassium application and fruit N, P2O5 and K2O removal amount"

养分
Nutrient
方程
Equation
顶点Peak point R2
施肥量 Fertilizer application 养分量 Nutrient amount
N y=-36.1x2+54.6x+26.7 0.76 47.42 0.89
P2O? y=-8.8x2+14.0x+6.3 0.79 11.92 0.98
K2O y=-38.6x2+61.4x+22.6 0.80 47.03 0.96

Table 4

Effects of potassium application on fruit color of Newhall navel orange fruit"

处理Treatment L a b a/b
K0 76.22±0.85b 28.64±3.12a 43.29±1.26b 0.66±0.08a
K1 77.52±2.19b 24.16±7.78ab 45.12±2.71b 0.54±0.20ab
K2 80.17±2.44a 18.71±8.59b 48.34±3.03a 0.39±0.19b
K3 76.09±1.34b 29.36±3.62a 44.80±1.30b 0.66±0.09a
K4 77.1±1.00b 25.12±1.83ab 44.71±1.06b 0.56±0.05a
K5 75.37±0.36b 29.07±2.33a 43.54±0.37b 0.67±0.06a

Fig. 8

Effects of potassium application on pericarp thickness of Newhall navel orange fruit"

Table 5

Effects of potassium application on fruit quality of Newhall navel orange fruit"

处理
Treatment
果皮厚度
Pericarp thickness (mm)
果实硬度
Fruit firmness (N)
可食率
Edible rate (%)
出汁率
Juice productivity (%)
K0 4.13±0.33a 25.01±1.75b 69.74±1.64a 50.42±4.09bc
K1 4.01±0.24a 27.65±4.10b 71.59±1.42a 54.74±1.50a
K2 4.06±0.11a 35.32±3.97a 71.80±1.60a 51.66±2.13abc
K3 4.09±0.50a 25.08±3.19b 69.32±2.03a 47.77±3.27c
K4 4.17±0.34a 26.00±1.96b 69.64±2.04a 47.66±4.40c
K5 4.48±0.17a 24.58±1.63b 70.36±1.64a 53.03±1.59ab

Table 6

Effects of potassium application on fruit intrinsic quality of Newhall navel orange fruit"

处理
Treatment
可溶性糖
TSS (%)
可滴定酸
TA (%)
固酸比
TSS/TA
可溶性糖
Soluble sugar (%)
维生素C
Vitamin C (mg?L-1)
K0 11.68±0.50ab 1.07±0.10ab 10.91±0.63bc 5.81±0.30a 553.19±29.67a
K1 11.95±0.33ab 0.91±0.09c 12.59±1.88a 5.61±0.32a 568.87±16.12a
K2 11.43±0.39b 1.05±0.05ab 10.52±1.07bc 5.46±1.00a 574.77±32.61a
K3 12.14±0.42a 1.11±0.08ab 10.99±0.44bc 5.68±0.16a 582.52±20.74a
K4 11.46±0.21b 1.14±0.05a 10.06±0.45c 5.78±0.51a 543.58±62.83a
K5 11.90±0.49ab 1.01±0.10bc 11.89±0.83ab 6.00±0.28a 533.47±54.31a

Fig. 9

Effects of potassium application on soluble sugar and vitamin C content of Newhall navel orange fruit"

Table 7

Effects of different potassium levels on soil physicochemical properties of orange orchard"

处理
Treatment
pH 容重
Bulk density
(g?cm-3)
含水量
Water content
(%)
有机质
Organic matter
(g?kg-1)
碱解氮
Available N
(mg?kg-1)
有效磷
Available P
(mg?kg-1)
速效钾
Available K
(mg?kg-1)
K0 5.75±0.25a 1.87±0.03a 3.36±0.29a 20.03±4.32ab 129.08±15.28a 140.41±55.55ab 176.27±30.85c
K1 5.58±0.33a 1.92±0.05a 3.26±0.21ab 21.99±2.79a 128.6±11.40a 96.11±39.36b 252.03±49.36bc
K2 5.46±0.28a 1.88±0.07a 2.97±0.29bc 20.02±2.40ab 132.66±20.09a 141.49±60.3ab 423.71±133.09a
K3 5.73±0.16a 1.85±0.04a 2.76±0.17cd 20.16±1.56ab 135.49±15.74a 163.56±47.25ab 385.40±151.37ab
K4 5.93±0.46a 1.85±0.03a 2.93±0.35cd 19.59±5.87ab 125.82±27.88a 183.8±45.17a 527.98±79.66a
K5 5.57±0.35a 1.82±0.05a 2.62±0.08d 14.88±3.74b 127.76±45.96a 125.28±71.84ab 485.20±151.56a

Fig. 10

Effects of different potassium levels on available K in different soil layers"

Table 8

Correlation between potassium content in leaves or twigs or soil and fruit nutrients"

成分
Parameter
果实养分含量 Nutrient content in fruit 果实带走养分量 Nutrient removal amount of fruit
N P2O5 K2O N P2O5 K2O
春梢叶片钾含量 Potassium content in spring leaves 0.205 0.394 0.561* 0.821** 0.566* 0.888**
春梢枝条钾含量 Potassium content in spring twigs -0.025 0.397 0.263 0.580* 0.418 0.691**
秋梢叶片钾含量
Potassium content in autumn leaves
0.030 0.170 -0.146 0.253 -0.014 0.462
秋梢枝条钾含量 Potassium content in autumn twigs 0.068 0.156 -0.056 0.356 0.079 0.540*
土壤速效钾含量 Soil available potassium content -0.043 -0.081 -0.524* -0.739** -0.373 -0.745**

Table 9

Correlation between potassium content in leaves or twigs or soil and fruit yield and quality"

成分
Parameter
产量
Yield
单果重
SFW
TSS TA TSS/TA Vc 果皮厚度Thickness 硬度Firmness
春梢叶片钾含量 Potassium content in spring leaves 0.449 0.641* 0.228 0.210 -0.015 -0.175 -0.033 0.493*
春梢枝条钾含量 Potassium content in spring twigs 0.630* 0.815** 0.458 0.144 0.012 0.090 -0.368 0.292
秋梢叶片钾含量 Potassium content in autumn leaves 0.648** 0.631* 0.598** -0.011 0.250 0.373 -0.455 -0.048
秋梢枝条钾含量 Potassium content in autumn twigs 0.743** 0.693** 0.641** 0.100 0.216 0.382 -0.489* -0.048
土壤速效钾含量 Soil available potassium content 0.059 -0.189 0.002 -0.415 0.099 0.417 -0.199 -0.693**
[1] 梁珊珊. 我国柑橘主产区氮磷钾肥施用现状及减施潜力研究[D]. 武汉: 华中农业大学, 2017.
LIANG S S. Studies on NPK fertilization status and the potential of reducing application rate in major citrus planting regions of China[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese)
[2] 孔佑涵, 苑平, 吴娟娟. 柑橘的钾营养研究进展. 湖南师范大学自然科学学报, 2017,40(3):37-41.
KONG Y H, YUAN P, WU J J. Advances on the potassium nutrition in citrus. Journal of Natural Science of Hunan Normal University, 2017,40(3):37-41. (in Chinese)
[3] AULAR J, CASARES M, NATALE W. Factors affecting citrus fruit quality: Emphasis on mineral nutrition. Cientifica, 2017,45(1):64-72.
[4] HAMMAMI A, SALAH R, HELLALI R. Leaf nitrogen and potassium concentrations for optimum fruit production, quality and biomass tree growth in Clementine mandarin under Mediterranean climate. Journal of Horticulture and Forestry, 2010,2(7):161-170.
[5] KHAN A S, NASEER M, MALIK A U, BASRA S M A, KHALID M S, KHALID S, AMIN M, SALEEM B A, RAJWANA I A, MOEEN-UD-DIN . Location, soil and tree nutrient status influence the quality of ‘Kinnow’ mandarin. International Journal of Agriculture and Biology, 2011,13:498-504.
[6] 刘冬碧, 陈防, 鲁剑巍, 万运帆, 余常兵. 施钾水平与钾肥品种对幼年早熟温州蜜柑挂果数及产量的影响. 中国南方果树, 2002,31(3):13-15.
LIU D B, CHEN F, LU J W, WAN Y F, YU C B. Effect of potassium level and different potash on the fruit-setting and productivity of young early-mature satsumav. South China Fruits, 2002,31(3):13-15. (in Chinese)
[7] 鲁剑巍, 陈防, 王运华, 刘冬碧, 万运帆, 余常兵. 氮磷钾肥对红壤地区幼龄柑橘生长发育和果实产量及品质的影响. 植物营养与肥料学报, 2004,10(4):413-418.
LU J W, CHEN F, WANG Y H, LIU D B, WAN Y F, YU C B. Effect of N, P, K fertilization on young citrus tree growth, fruit yield and quality in area of red soil. Plant Nutrition and Fertilizer Science, 2004,10(4):413-418. (in Chinese)
[8] 鲁剑巍, 陈防, 刘冬碧, 万运帆, 余常兵, 王运华. 柑桔施用硫酸钾和氯化钾效果研究I对树体生长、产量和品质的影响. 土壤肥料, 2002(4):30-34.
LU J W, CHEN F, LIU D B, WAN Y F, YU C B, WANG Y H. Study of SOP and MOP application on citrus I effect of SOP and MOP on citrus tree growth, yield and quality.Soils and Fertilizers, 2002(4):30-34. (in Chinese)
[9] ALI A, SUMMERS L L, KLEIN G J, LOVATT C J. Albedo breakdown in Califormia. Proceedings of the International Society of Citriculture, 2000,2:1090-1093.
[10] 李娟, 罗伟金, 陈杰忠, 姚青, 万继锋, 黄战威. 磷酸二氢钾对脐橙陷痕果发生及果皮细胞壁代谢的影响. 园艺学报, 2011,38(7):1235-1242.
LI J, LUO W J, CHEN J Z, YAO Q, WAN J F, HUANG Z W. Effects of spraying KH2PO4 on cell-wall metalbolism of pericarp and pitting fruit rate in Navel Orange. Acta Horticulturae Sinica, 2011,38(7):1235-1242. (in Chinese)
[11] 林咸永, 章永松, 蔡妙珍, 张英鹏, 李刚, 杨肖娥. 磷、钾营养对柑桔果实产量、品质和贮藏性的影响. 植物营养与肥料学报, 2006,12(1):82-88.
LIN X Y, ZHANG Y S, CAI M Z, ZHANG Y P, LI G, YANG X E. Effects of phosphorus and potassium application on yield, quality, and storability of citrus fruits. Plant Nutrition and Fertilizer Science, 2006,12(1):82-88. (in Chinese)
[12] 余倩倩, 邓烈, 何绍兰, 郑永强, 谢让金, 吕强, 姚珍珍, 韦献果, 易时来. 施钾对锦橙幼树生长及钾吸收利用的影响. 中国南方果树, 2015,44(5):1-4.
YU Q Q, DENG L, HE S L, ZHENG Y Q, XIE R J, LU Q, YAO Z Z, WEI X G, YI S L. Effects of K fertilization on growth, potassium uptake and utilization of young Jincheng sweet orange tree (Citrus sinensis). South China fruits, 2015,44(5):1-4. (in Chinese)
[13] EMBLETON T W, JONES WW, PALLARES C, PLATT R G. Effects of fertilization of citrus on fruit quality and ground water nitrate-pollution potential. Proceedings of the International Society of Citriculture, 1980, ( 1):280-285.
[14] 陈杰忠, 吕雪娟, 叶自行, 姚青, 伍玲. 柑桔皱皮果与果皮及其细胞壁矿质元素关系的研究. 植物营养与肥料学报, 2002,8(3):367-371.
CHEN J Z, LÜ X J, YE Z X, YAO Q, WU L. Study on the relation between mineral nutrition levels and creasing peel in mature orange. Plant Nutrition and Fertilizer Science, 2002,8(3):367-371. (in Chinese)
[15] 许修柱, 林瑞坤, 苏达, 许锐能, 杨文浩, 张世昌, 吴良泉. 集约化果园钾肥施用现状及钾素表观平衡状况研究—以福建省平和县琯溪蜜柚为例. 南方农业学报, 2019,50(3):533-539.
XU X Z, LIN R K, SU D, XU R N, YANG W H, ZHANG S C, WU L Q. Current potassium fertilizer management practice and potassium apparent balance status of intensive orchards-A case study in Guanxi honey pomelo in Pinghe County, Fujian Province. Journal of Southern Agriculture, 2019,50(3):533-539. (in Chinese)
[16] 杨水芝, 杨安生, 陈旭, 罗赛男. 湖南泸溪椪柑配方施肥技术研究. 湖南农业科学, 2011(23):65-67.
YANG S Z, YANG A S, CHEN X, LUO S N. Technology of formulated fertilization for Ponkan in Luxi County of Hunan Province.Hunan Agricultural Sciences, 2011(23):65-67. (in Chinese)
[17] 鲁剑巍, 陈防, 万运帆, 刘冬碧, 余常兵, 王耀群, 宋发安, 王运华, Rolf Hardier. 钾肥施用量对脐橙产量和品质的影响. 果树学报, 2001,18(5):272-275.
LU J W, CHEN F, WAN Y F, LIU D B, YU C B, WANG Y Q, SONG F A, WANG Y H. Effect of application of potassium on yield and quality of Navel orange. Journal of Fruit Science, 2001,18(5):272-275. (in Chinese)
[18] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000: 263-270.
BAO S D. Soil and Agricultural Chemistry Analysis (3rd ed). Beijing: China Agriculture Press, 2000: 263-270. (in Chinese)
[19] WANG Y, WU W H. Potassium transport and signaling in higher plants. Annual Review of Plant Biology, 2013,64(4):451-476.
[20] 沈兆敏, 刘焕东. 柑橘营养与施肥. 北京: 中国农业出版社, 2012.
SHEN Z M, LIU H D. Citrus nutrition and fertilization. Beijing: China Agriculture Press, 2012. (in Chinese)
[21] ZHANG F S, NIU J F, ZHANG W F, CHEN X P, LI C J, YUAN L X, XIE J C. Potassium nutrition of crops under varied regimes of nitrogen supply. Plant and Soil, 2010,335(1/2):21-34.
[22] 陈小琴. 铵钾在土壤中的交互作用及其对生物有效性的影响[D]. 南京: 中国科学院南京土壤研究所, 2007.
CHEN X Q. Interaction of ammonium and potassium in soil and its effect on bioavailability [D]. Nanjing: Institute of Soil Science, Chinese Academy of Sciences, 2007. (in Chinese)
[23] 董艳红, 王火焰, 周健民, 任正文. 不同土壤钾素淋溶特性的初步研究. 土壤, 2014,46(2):225-231.
DONG Y H, WANG H Y, ZHOU J M, REN Z W. Preliminary study on potassium leaching characteristics of different soils. Soils, 2014,46(2):225-231. (in Chinese)
[24] 杜建军, 苟春林, 崔英德, 曲东. 保水剂对氮肥氨挥发和氮磷钾养分淋溶损失的影响. 农业环境科学学报, 2007,26(4):1296-1301.
DU J J, GOU C L, CUI Y D, QU D. Effects of water retaining agent on ammonia volatilization and nutrient leaching loss from N, P and K fertilizers. Journal of Agro-Environment Science, 2007,26(4):1296-1301. (in Chinese)
[25] 张庆玉, 雷建容, 张冀, 杨玉敏, 阳路芳, 罗付香, 庞良玉, 涂仕华, 陈春秀, 张奇, 林超文. 钾在四川省4种典型土壤中的淋失特征. 西南农业学报, 2015,28(6):2616-2623.
ZHANG Q Y, LEI J R, ZHANG Y, YANG Y M, YANG L F, LUO F X, PANG L Y, TU S H, CHEN C X, ZHANG Q, LIN C W. Leaching characteristic of potassium on four typical soil types in Sichuan Province. Southwest China Journal of Agricultural Sciences, 2015,28(6):2616-2623. (in Chinese)
[26] 刘飞, 张民, 诸葛玉平, 李倩, 刘东雪, 王建. 马铃薯玉米套作下控释肥对土壤养分垂直分布及养分利用率的影响. 植物营养与肥料学报, 2011,17(6):1351-1358.
LIU F, ZHANG M, ZHUGE Y P, LI Q, LIU D X, WANG J. Effects of controlled-release fertilizer on vertical distribution of soil nutrients and nutrient use efficiencies under potato and maize relay cropping system. Plant Nutrition and Fertilizer Science, 2011,17(6):1351-1358. (in Chinese)
[27] 温明霞, 聂振朋, 林媚, 冯先桔, 平新亮, 蔡文, 王燕斌. 柑橘的节钾施肥技术初探. 中国果菜, 2008(5):38-39.
WEN M X, LIE Z M, LIN M, FENG X J, PING X L, CAI W, WANG Y B. A preliminary study on the technology of potassium saving and fertilization in Citrus.China Fruit and Vegetable, 2008(5):38-39. (in Chinese)
[28] 徐新翔, 侯昕, 贾志航, 王芬, 葛顺峰, 姜远茂. 适量稳定供钾促进苹果矮化砧M9T337幼苗生长和氮素吸收利用. 植物营养与肥料学报, 2020,26(3):552-560.
XU X X, HOU X, JIA Z H, WANG F, GE S F, JIANG Y M. Continuous and constant supply of potassium in suitable level stimulates the growth and absorption and utilization of nitrogen in M9T337 dwarf rootstocks seedlings. Plant Nutrition and Fertilizer Science, 2020,26(3):552-560. (in Chinese)
[29] 李文涛, 杨江波, 余倩倩, 田旺海, 普金安, 陈磊, 邓烈, 何绍兰, 易时来. 柑橘施肥养分推荐方法研究进展. 安徽农业科学, 2017,45(28):7-10.
LI W T, YANG J B, YU Q Q, TIAN W H, PU J A, CHEN L, DENG L, HE S L, YI S L. Research progress on methods of nutrient recommendation for fertilization in citrus. Journal of Anhui Agricultural Sciences, 2017,45(28):7-10. (in Chinese)
[30] 肖依玲, 王胜男. 钾对果树品质影响研究进展. 种子科技, 2019,37(10):129-130.
XIAO Y L, WANG S N. Research progress on the effect of potassium on fruit quality. Seed Science and Technology, 2019,37(10):129-130. (in Chinese)
[31] QUAGGIO J A, JUNIOR D M, BOARETTO R M. Sources and rates of potassium for sweet orange production. Scientia Agricola, 2011,68(3):369-375.
[32] HAMZA A, BAMOUH A, GUILLI M E, BOUABID R. Response of clementine citrus var. Cadoux to foliar potassium fertilization: Effects on fruit production and quality. International Potash Institute, 2012,31:8-15.
[33] QUAGGIO J A, MATTOS JUNIOR D, CANTARELLA H. Fruit yield and quality of sweet oranges affected by nitrogen, phosphorus and potassium fertilization in tropical soils. Fruits, 2006,61(5):293-302.
[34] MOHAPATRA P K, OHKURA K, KANAI S, ADU-GYAMFI J J, SANEOKA H, NGUYEN N T, FUJITA K. Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. Journal of Experimental Botany, 2007,58(11):2917-2928.
[35] 沙建川, 陈倩, 王芬, 徐新翔, 朱占玲, 葛顺峰, 姜远茂. 钾水平对富士苹果果实膨大期13C同化物向果实转运的影响 . 应用生态学报, 2020,31(6):1859-1866.
SHA J C, CHEN Q, WANG F, XU X X, ZHU Z L, GE S F, JIANG Y M. Effects of potassium levels on translocation of 13C- photoassimilates to fruit in ‘Fuji’ apple during fruit expanding period . Chinese Journal of Applied Ecology, 2020,31(6):1859-1866. (in Chinese)
[36] 王宇斐. 苹果果实糖代谢对不同施钾水平的响应及与SnRK1的关系[D]. 西安: 西北农林科技大学, 2018.
WANG Y F. Response of sugar metabolism in apple fruit to different potassium levels and its relationship with SnRK1[D]. Xi’an: Northwest Agriculture and Forestry University, 2018. (in Chinese)
[1] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[2] SONG JiangTao,SHEN DanDan,GONG XuChen,SHANG XiangMing,LI ChunLong,CAI YongXi,YUE JianPing,WANG ShuaiLing,ZHANG PuFen,XIE ZongZhou,LIU JiHong. Effects of Artificial Fruit Thinning on Sugar and Acid Content and Expression of Metabolism-Related Genes in Fruit of Beni-Madonna Tangor [J]. Scientia Agricultura Sinica, 2022, 55(23): 4688-4701.
[3] LI YangMei,LIU Xin,JIA MengHan,TONG YuXin. Tipburn Injury and Nutritional Quality of Lettuce Plants as Affected by Humidity Control During the Light Period in A Plant Factory [J]. Scientia Agricultura Sinica, 2022, 55(20): 4011-4019.
[4] ZHAO XiaoHui,ZHANG YanYan,RONG YaSi,DUAN JianZhao,HE Li,LIU WanDai,GUO TianCai,FENG Wei. Study on Critical Nitrogen Dilution Model of Winter Wheat Spike Organs Under Different Water and Nitrogen Conditions [J]. Scientia Agricultura Sinica, 2022, 55(17): 3321-3333.
[5] WAN LianJie,HE Man,LI JunJie,TIAN Yang,ZHANG Ji,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Ponkan Growth and Quality as well as Soil Properties [J]. Scientia Agricultura Sinica, 2022, 55(15): 2988-3001.
[6] DING Peng,TONG YueYue,LIU HuiChao,YIN Xin,LIU JiangJun,HE Xi,SONG ZeHe,ZHANG HaiHan. Dynamic Changes of Yolk Microbiota in Yellow-Feathered Broiler and Its Role on Early Colonization of Intestinal Microbiota During the Embryonic Stage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2837-2849.
[7] Biao SONG,KaiYue XU,XiaoHua WANG,JiuXin GUO,LiangQuan WU,Da SU. Spatial Distribution of Phytic Acid and Minerals’ Availability in Pomelo Fruit [J]. Scientia Agricultura Sinica, 2021, 54(6): 1229-1242.
[8] XU HaoCong,YAO Bo,WANG Quan,CHEN TingTing,ZHU TieZhong,HE HaiBing,KE Jian,YOU CuiCui,WU XiaoWen,GUO ShuangShuang,WU LiQuan. Determination of Suitable Band Width for Estimating Rice Nitrogen Nutrition Index Based on Leaf Reflectance Spectra [J]. Scientia Agricultura Sinica, 2021, 54(21): 4525-4538.
[9] ZHAI ShengNan,LIU AiFeng,LI FaJi,LIU Cheng,GUO Jun,HAN Ran,ZI Yan,WANG XiaoLu,LÜ YingYing,LIU JianJun. Improvement and Application of the Method for Determining Yellow Pigment Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(2): 239-247.
[10] WANG KunJiao,REN Tao,LU ZhiFeng,LU JianWei. Effects of Different Magnesium Supplies on the Growth and Physiological Characteristics of Oilseed Rape in Seeding Stage [J]. Scientia Agricultura Sinica, 2021, 54(15): 3198-3206.
[11] WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
[12] PANG BaoGang,CAO Nan,ZHOU ZhiGuo,ZHAO WenQing. Critical Phosphorus Concentration Dilution Model and Phosphorus Nutrition Diagnosis in Two Cotton Cultivars with Different Phosphorus Sensitivity [J]. Scientia Agricultura Sinica, 2020, 53(22): 4561-6130.
[13] WANG HaiLian,WANG RunFeng,LIU Bin,ZHANG HuaWen. Effects of Harvesting at Different Growth Stage on Agronomic and Nutritional Quality Related Traits of Sweet Sorghum [J]. Scientia Agricultura Sinica, 2020, 53(14): 2804-2813.
[14] ZHANG Yu, HOU LuLu, YAN RuiRui, XIN XiaoPing. Effects of Grazing Intensity on Plant Community Characteristics and Nutrient Quality of Herbage in a Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2550-2561.
[15] GONG Hao,YANG Liu,LI DanDan,LIU GuoFu,XIAO ZhiXin,WU QingYing,CUI GuoWen. Response of Alfalfa Production and Quality to Fertilization and Cutting Frequency and Benefit Analysis in Mollisol Agricultural Area in Cold Region [J]. Scientia Agricultura Sinica, 2020, 53(13): 2657-2667.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!