Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (22): 4610-4617.doi: 10.3864/j.issn.0578-1752.2011.22.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Response of Abundance and Composition of the Bacterial Community to Long-term Fertilization in Paddy Soils

 YUAN  Hong-Chao, QIN  Hong-Ling, LIU  Shou-Long, TONG  Cheng-Li, WEI  Wen-Xue, WU  Jin-Shui   

  1. 1.中国科学院亚热带农业生态过程重点实验室,长沙 410125
    2.中国科学院研究生院,北京 100049
  • Received:2010-09-10 Online:2011-11-15 Published:2010-12-09

Abstract: 【Objective】 The impacts of long-term fertilization on soil microbial community structure and abundance were studied to clarify their relationship and provide a theoretical basis for the soil fertility evaluation and management of rice cultivation. 【Method】 The soil samples were collected from long-term fertilization experimental plots receiving no fertilization, chemical fertilization, chemical fertilizer + crop residue incorporation. The terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR analysis were combined to characterize the bacterial community structure and abundance.【Result】Proteobacteria (150 bp; relative abundance 33%—37%) and actinomycetes (67 bp; relative abundance 20%—25%) dominated the bacterial community in paddy soils based on T-RFLP analysis. There was a pronounced difference in the bacterial community composition and diversity responding to the long-term fertilization regimes. CCA results indicated that soil organic carbon (SOC) and pH had the greatest influence on the bacterial community composition. The diversity analysis of Shannon and Evenness Index showed that compared with the unfertilized control, all fertilization treatments significantly increased the bacterial diversity and the harvested residue incorporation also shared the highest. The abundance of bacterial 16S rDNA ranging from 4.34×1010—10.94×1010 copies•g-1soil was determined by real-time PCR, and the amount of 16S rDNA copy number in the fertilization incorporations increased about 50% to 100% of which in unfertilized treatments 【Conclusion】Long-term chemical fertilizer and crop residue incorporation improved soil quality and fertility, and consequently resulted in the shift of the bacterial microecology and promoted the bacterial diversity and abundance.

Key words: paddy soil, fertilization, bacterial community structure, diversity, T-RFLP, real-time PCR

[1]卜洪震, 王丽宏, 尤金成, 肖小平, 杨光立, 胡跃高, 曾昭海. 长期施肥管理对红壤稻田土壤微生物量碳和微生物多样性的影响. 中国农业科学, 2010, 43(16): 3340-3347.

Bu H Z, Wang L H, You J C, Xiao X P, Yang G L, Hu Y G, Zeng Z H. Impact of long-term fertilization on the microbial biomass carbon and soil microbial communities in paddy red soil. Scientia Agricultura Sinica, 2010, 43(16): 3340-3347. (in Chinese)

[2]Abbott L K, Murphy D V. Soil Biological Fertility. Netherlands: Kluwer Academic Publishers, 2003.

[3]Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biology and Fertility of Soils, 1999, 29: 111-129.

[4]张逸飞, 钟文辉, 李忠佩, 蔡祖聪. 长期不同施肥处理对红壤水稻土酶活性及微生物群落功能多样性的影响. 生态与农村环境学报, 2006, 22(4): 39-44.

Zhang Y F, Zhong W H, Li Z P, Cai Z C. Effects of long-term different fertilization on soil enzyme activity and microbial community functional diversity in paddy soil derived from quaternary red clay. Journal of Ecology and Rural Environment, 2006, 22(4): 39-44. (in Chinese)

[5]廖育林, 郑圣先, 聂 军, 鲁艳红, 谢 坚, 杨曾平. 长期施用化肥和稻草对红壤水稻土肥力和生产力持续性的影响. 中国农业科学, 2009, 42(10): 3541-3550.

Liao Y L, Zheng S X, Nie J, Lu Y H, Xie J, Yang Z P. Effects of long-term application of fertilizer and rice straw on soil fertility and sustainability of a reddish paddy soil productivity. Scientia Agricultura Sinica, 2009, 42(10): 3541-3550. (in Chinese)

[6]鲁艳红, 杨曾平, 郑圣先, 廖育林, 聂 军, 谢 坚, 向艳文. 长期施用化肥、猪粪和稻草对红壤水稻土化学和生物化学性质的影响. 应用生态学报, 2010, 21(4): 921-929.

Lu Y H, Yang Z P, Zheng S X, Liao Y L, Nie J, Xie J, Xiang Y W. Effects of long term application of chemical fertilizer, pig manure, and rice straw on chemical and biochemical properties of reddish paddy soil. Chinese Journal of Applied Ecology, 2010, 21(4): 921-929. (in Chinese)

[7]郝晓晖, 胡荣桂, 吴金水, 汤水荣, 罗希茜. 长期施肥对稻田土壤有机氮、微生物生物量及功能多样性的影响. 应用生态学报, 2010, 21(6): 1477-1484.

Hao X H, Hu R G, Wu J S, Tang S R, Luo X Q. Effects of long term fertilization on paddy soils organic nitrogen, microbial biomass, and microbial functional diversity. Chinese Journal of Applied Ecology, 2010, 21(6): 1477-1484. (in Chinese)

[8]刘金剑, 吴萍萍, 谢小立, 傅心赣, 沈其荣, 郭世伟. 长期不同施肥制度下湖南红壤晚稻田CH4 的排放. 生态学报, 2008, 28(6): 2878-2886.

Liu J J, Wu P P, Xie X L, Fu X G, Shen Q R, Guo S W. Methane emission from late rice fields in Hunan red soil under different long- term fertilizing systems. Acta Ecologica Sinica, 2008, 28(6): 2878-2886. (in Chinese) 

[9]Tiedie J M, Asuming-Brempong S, Nüsslein K, Marsh L, Flynn S J. Opening the black box of soil microbial diversity. Applied Soil Ecology, 1999, 13: 109-122.

[10]Heid C A, Srevrns J. Real time quantitative PCR. Genome Research, 1996, 6: 986-994.

[11]Beauregard M S, Hamel C, Atul-Nayyar, St-Arnaud M. Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa. Microbial Ecology, 2010, 59(2): 379-389.

[12]Shen J P, Zhang L M, Guo J F, Ray J L, He J Z. Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China. Applied Soil Ecology, 2010, 46(1): 119-124.

[13]陈 哲, 陈春兰, 秦红灵, 王 霞, 吴敏娜, 魏文学. 化肥对稻田土壤细菌多样性及硝化、反硝化功能菌组成的影响. 生态学报, 2009, 29(11): 6142-6147.

Chen Z, Chen C L, Qin H L, Wang X, Wu M N, Wei W X. Effect of fertilization on bacterial community, genetic diversity of amoA and nosZ genes in paddy soil. Acta Ecologica Sinica, 2009, 29(11): 6142-6147. (in Chinese)

[14]王 霞, 陈 哲, 袁红朝, 吴敏娜, 魏文学, 吴金水, 秦红灵. 应用16S rDNA克隆文库技术研究长期稻草还田对水稻土细菌多样性的影响. 生态学报, 2010, 30(13): 3865-3874.

Wang X, Chen Z, Yuan H Z, Wu M N, Wei W X, Wu J S, Qin H L. Effect of long-term fertilization by the application of rice straw on bacterial diversity in paddy soil. Acta Ecologica Sinica, 2010, 30(13): 3865-3874. (in Chinese)

[15]鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.

Lu R K. Analytical Methods of Soil Agricultural Chemistry. Beijing: Chinese Agricultural Science and Technology Press, 2000. (in Chinese)

[16]Chen Z, Luo X Q, Hu R G, Wu M N, Wu J S, Wei W X. Impact of Long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microbial Ecology, 2010, 60(4): 850-861.

[17]Marsh T L, Saxman P, Cole J, Tiedje J. Terminal restriction fragment length polymorphism analysis program, A web-based research tool for microbial community analysis. Applied and Environmental Microbiology, 2000, 9: 3616-3620.

[18]Liu W T, Marsh T L, Cheng H, Forney L J. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology, 1997, 63(11): 4516-4522.

[19]Amann R I, Ludwig W, Schleifer K. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology. Reviews, 1995, 59: 143-169.

[20]Chelius M K, Triplett E W. The diversity of achaea and bacteria in association with the roots of Zea mays L. Microbial Ecology, 2001, 41: 252-263.

[21]Lukow T, Dun?eld P F, Liesack W. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure with in an agricultural soil planted with transgenic and no transgenic potato plants. FEMS Microbiology Ecology, 2000, 32: 241-247.

[22]López-Gutiérrez J C, Henry S, Hallet S, Martin-Laurent F, Catroux G, Philippot L. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. Journal of Microbiological Methods, 2004, 57: 399-407.

 [23]张 薇, 魏海雷, 高洪文. 土壤微生物多样性及其环境影响因子研究进展. 生态学杂志, 2005, 24(1): 45-52.

Zhang W, Wei H L, Gao H W. Advances of studies on soil microbial diversity and environmental impact factors. Chinese Journal of Ecology, 2005, 24(1): 45-52. (in Chinese)

[24]Girvan M S, Campbel C D, Killham K, Prosser J I, Glover L A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environmental Microbiology, 2005, 7(3): 301-313.

[25]Rosello M R, Aman R. The species concept for prokaryotes. FEMS Microbial Reviews, 2001, 25: 39-67.

[26]Michie K, Löwe J. Dynamic filaments of the bacterial cytoskeleton. Annual Review of Biochemistry, 2006, 75: 467-492.

[27]刘恩科, 赵秉强, 李秀英, 姜瑞波, Hwat B S. 不同施肥制度土壤微生物量碳氮变化及细菌群落16S rDNA V3 片段PCR产物的DGGE分析. 生态学报, 2007, 27(3): 1079-1085.

Liu E K, Zhao B Q, Li X Y, Jiang R B, Hwat B S. Microbial C and N biomass and soil community analysis using DGGE of 16S rDNA V3 fragment PCR products under different long-term fertilization systems. Acta Ecologica Sinica, 2007, 27(3): 1079-1085. (in Chinese)

[28]Hardin G. The competitive exclusion principle. Science, 1960, 131: 1292-1297.

[29]Flie B A, Eyhorn F, Mader P. ‘DOK’ long-term farming systerm trial: microbial biomass, activity and diversity affected the decomposition of plant residues//Rees R M, Campell B C, eds. Sustainable Management of Organic Matter. Wallingford: CABI Publishing, 2001: 363-369.

[30]Böhme L, Langer U, Böhme F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agriculture, Ecosystems and Environment, 2005, 109: 141-152.
[1] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[2] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[3] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[4] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[5] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
[6] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[7] WAN HuaQin,GU Xu,HE HongMei,TANG YiFan,SHEN JianHua,HAN JianGang,ZHU YongLi. Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry [J]. Scientia Agricultura Sinica, 2022, 55(22): 4445-4457.
[8] HAN DongMei,HUANG ShiLian,OUYANG SiYing,ZHANG Le,ZHUO Kan,WU ZhenXian,LI JianGuang,GUO DongLiang,WANG Jing. Optimizing Management Mode of Disease and Nutrient During the Entire Fruit Development for Improving Postharvest Storability of Longan Fruit [J]. Scientia Agricultura Sinica, 2022, 55(21): 4279-4293.
[9] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[10] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[11] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[12] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[13] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[14] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[15] YANG Jing,ZHANG He,LI ShuangShuang,LI GuiHua,ZHANG JianFeng. Effects of Amendments on Soil Fauna Community Characteristics in a Fluvo-Aquic Sandy Soil [J]. Scientia Agricultura Sinica, 2022, 55(16): 3185-3199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!