Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (22): 4560-4569.doi: 10.3864/j.issn.0578-1752.2011.22.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Analysis of Two-Seed Pod Storage Capacity in Soybean in Different Years

 YANG  Zhen, SHEN  Yan-Ru, HAN  Dong-Wei, LIU  Chun-Yan, JIANG  Hong-Wei, CHEN  Qing-Shan, HU  Guo-Hua   

  1. 1.东北农业大学农学院,哈尔滨 150030
    2.黑龙江省农垦科研育种中心,哈尔滨 150090
    3.国家大豆工程技术研究中心,哈尔滨 150050
    4.黑龙江省农业科学院齐齐哈尔分院,黑龙江齐齐哈尔 161041
  • Received:2011-05-06 Online:2011-11-15 Published:2011-07-14

Abstract: 【Objective】The objective of this study is to locate consensus QTLs of two-seed pod length and width for breeding new varieties with high two-seed pod storage capacity and increase yield of soybean. 【Method】In order to find out the steady and repeatable QTLs of these traits, a F2:14-F2:18 RIL population containing 147 lines derived from a cross between Charleston as female and Dongnong594 as male parent were used in this experiment. A genetic linkage map was constructed with 164 SSR primers screened in two parents and amplified in 147 lines population. Two-seed pod length and width showing polymorphic in parents were investigated and QTLs were analyzed in one site in the early two years and two sites in the late three years. 【Result】 Nineteen QTLs for the two-seed pod length and width were analyzed with software Windows QTL Cartographer V2.0 by CIM and MIM under different environments, pod length were mapped in the linkage groups A1, B2, C2, D1a, D1b, N and G, 17 QTLs for two-seed pod width were mapped in the linkage groups A1, C2, D1a, D1b, N and H. In these QTLs,7 QTLs for two-seed pod length with linkage primers including Satt200—qTSPL-a1-1—Satt042, Sat_214—qTSPL-d1a-1—Sat_112, Satt198—qTSPL-d1a-3—Satt502, Satt370— qTSPL-d1a-6—Satt402, Sat_092—qTSPL-c2-4—Satt289, Satt277—qTSPL-c2-5—Sct_188 and Satt168—qTSPL-b2-1—Sat_083 could be detected together by CIM and MIM, 1 QTL for two-seed pod width including Satt528—qTSPW-d1a-2—Satt182 could be detected together by two methods. Eight two-seed pod length QTLs including Satt200—qTSPL-a1-1—Satt042, Sat_119— qTSPL-a1-2—Sat_105, Sat_214—qTSPL-d1a-1—Sat_112, Satt220—qTSPL-d1a-4—Sat_162, Satt370—qTSPL-d1a-6—Satt402, Satt168—qTSPL-b2-1—Sat_083, Sat_092—qTSPL-c2-4—Satt289 and Satt277—qTSPL-c2-5—Sct_188 could be detected in more than two years, 4 two-seed pod width QTLs including Satt076—qTSPW-c2-1—Satt072, Satt335—qTSPW-c2-2—Sat_120, Satt200— qTSPW-a1-1—Satt042 and Satt182—qTSPW-d1a-3—Satt584 could be detected in more than two years.【Conclusion】Mapping two-seed pod length and width QTL provide valuable information for soybean molecular marker assistant breeding selection.

Key words: soybean, two-seed pod length, two-seed pod width, QTL analysis

[1]Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: Association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735-742.

[2]Lee S H, Park K Y, Lee H S, Park E H, Boerma H R. Genetic mapping of QTLs conditioning soybean sprout yield and quality. Theoretical and Applied Genetics, 2001, 103(5): 702-709.

[3]Hoeck J A, Fehr W R, Shoemaker R C, Welke G A, Johnson S L, Cianzio S R. Molecular marker analysis of seed size in soybean. Crop Science, 2003, 43: 68-74.

[4]Mian M A R, Bailey M A, Tamulonis J P, Shipe E R, Carter Jr. T E, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theoretical and Applied Genetics, 1996, 93: 1011-1016.

[5]Reyna V, Sneller C H. Evaluation of marker-assisted introgression of yield QTL alleles into adapted soybean. Crop Science, 2001, 41: 1317-1321.

[6]Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schimidt M E. Seed quality QTL in a prominent soybean population. Theoretical and Applied Genetics, 2004, 109: 552-561.

[7]薛永国, 刘丽君, 杨  喆, 高明杰,张  雷. 大豆油分含量QTL分析. 东北农业大学学报, 2007, 38(6): 721-724.

Xue Y G, Liu L J, Yang Z, Gao M J, Zhang L. Soybean oil QTL analysis. Journal of Northeast Agricultural University, 2007, 38(6): 721-724. (in Chinese)

[8]Panthee D R, Pantalone V R, Sams C E, Saxton A M, West D R, Orf J H, Killam A S. Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds. Theoretical and Applied Genetics, 2005, 112: 546-553.

[9]Panthee D R, Pantalone V R, Saxton A M, West D R, Sams C E. Genomic regions associated with amino acid composition in soybean. Molecular Breeding, 2006, 17: 79-89.

[10]康  明, 王继安, 杨明亮. 大豆高油酸、低亚麻酸性状的分子标记. 东北农业大学学报, 2008, 39(9): 1-5.

Kang M, Wang J A, Yang M L. Molecular markers of high-oleic acid and low-linoenic acid traits in soybean. Journal of Northeast Agricultural University, 2008, 39(9):1-5. (in Chinese)

[11]Guo B, Sleper D A, Arelli P R, Shannon J G, Nguyen H T. Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763. Theoretical and Applied Genetics, 2005, 111: 965-971.

[12]Walker D R, Narvel J M, Boerma H R, All J N, Parrott W A. A QTL that enhances and broadens Bt insect resistance in soybean. Theoretical and Applied Genetics, 2004, 109: 1051-1057.

[13]Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M. Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theoretical and Applied Genetics, 2005, 111: 851-861.

[14]Fraser J, Egli D B, Leggett J E. Pod and seed development in soybean cultivars with differences in seed size. Agronomy Journal, 1981, 74(1): 81-85.

[15]武天龙, 赵则胜, 蒋家云, 蔡向忠, 汤  楠, 赵晓东. 菜用大豆粒荚性状遗传变异及相关性的研究. 上海农学院学报, 1999, 17(2): 79-84.

Wu T L, Zhao Z S, Jiang J Y, Cai X Z, Tang N, Zhao X D. Study on genetic variation of seed pod characters in vegetable soybean and their correlation. Journal of Shanghai Agricultural College, 1999, 17(2): 79- 84. (in Chinese)

[16]王  珍. 大豆SSR遗传图谱构建及重要农艺性状QTL分析[D]. 南宁: 广西大学, 2004.

Wang Z. Construction of soybean SSR based map and QTL analysis important agronomic traits[D]. Nanning: Guangxi University, 2004. (in Chinese)

[17]李灿东, 蒋洪蔚, 张闻博, 邱鹏程, 刘春燕, 李文福, 高运来, 陈庆山, 胡国华. 大豆荚粒相关性状的QTL分析. 分子植物育种, 2008, 6(6): 1091-1100.

Li C D, Jiang H W, Zhang W B, Qiu P C, Liu C Y, Li W F, Gao Y L, Chen Q S, Hu G H. QTL analysis of seed and traits in soybean. Molecular Plant Breeding, 2008, 6(6): 1091-1100. (in Chinese)

[18]陈庆山, 刘春燕, 吕  东, 何建勋. 大豆DNA提取基本原理的探讨. 东北农业大学学报, 2004, 35(2): 129-134.

Chen Q S, Liu C Y, Lü D, He J X. The basic principle of DNA extraction from soybean. Journal of Northeast Agricultural University, 2004, 35(2): 129-134. (in Chinese)

[19]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genetics Newsletters, 1997, 14: 11-13.

[20]陈庆山, 张忠臣, 刘春燕, 王伟权, 李文滨. 应用Charleston×东农594重组自交系群体构建SSR大豆遗传图谱. 中国农业科学, 2005, 38(7): 1312-1316.

Chen Q S, Zhang Z C, Liu C Y, Wang W Q, Li W B. Construction and analysis of soybean genetic map using recombinant inbred line of Charleston × Dongnong 594. Scientia Agricultura Sinica, 2005, 38(7): 1312-1316. (in Chinese)

[21]谭巍巍, 王  阳, 李永祥, 刘  成, 刘志斋, 彭  勃, 王  迪, 张  岩, 孙宝成, 石云素, 宋燕春, 杨德光, 王天宇, 黎  裕. 不同环境下多个玉米穗部性状的QTL分析. 中国农业科学, 2011, 44(2): 233-244.

Tan W W, Wang Y, Li Y X, Liu C, Liu Z Z, Peng B, Wang D, Zhang Y, Sun B C, Shi Y S, Song Y C, Yang D G, Wang T Y, Li Y. QTL analysis of ear traits in maize across multiple environments. Scientia Agricultura Sinica, 2011, 44(2): 233-244. (in Chinese)

[22]Zwart R S, Thompson J P, Milgate A W, Bansal U K, Williamson P M, Raman H, Bariana H S. QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Molecular Breeding, 2010, 26: 107-124.

[23]Ishimaru K, Yano M, Aoki N, Ono K, Hirose T, Lin S Y, Monna L, Sasaki T, Ohsugi R. Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theoretical and Applied Genetics, 2001, 102: 793-800.

[24]赵芳明, 朱海涛, 丁效华, 曾瑞珍, 张泽民, 李文涛, 张桂权. 基于SSSL的水稻重要性状QTL的鉴定及稳定性分析. 中国农业科学, 2007, 40(3): 447-456.

Zhao F M, Zhu H T, Ding X H, Zeng R Z, Zhang Z M, Li W T, Zhang G Q. Detection of QTLs for traits of agronomic importance and analysis of their stabilities using SSSLs in rice. Scientia Agricultura Sinica, 2007, 40(3): 447-456. (in Chinese)

[25]王贤智. 大豆产量相关性状的遗传与稳定性分析及QTL定位研究[D]. 北京: 中国农业科学院, 2008.

Wang X Z. Inheritance, stable analysis and QTL mapping of yield related traits in soybean[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. (in Chinese)

[26]Huang N, Angeles E R, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush G S. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theoretical and Applied Genetics, 1997, 95: 313-320.

[27]刘春燕, 齐照明, 韩冬伟, 单大鹏, 蒋洪蔚, 陈庆山, 胡国华. 大豆产量相关性状的多年多点QTL分析. 东北农业大学学报, 2011, 41(11): 1-9.

Liu C Y, Qi Z M, Han D W, Shan D P, Jiang H W, Chen Q S, Hu G H. QTL analysis of yield components on soybean under different environment. Journal of Northeast Agricultural University, 2011, 41(11): 1-9. (in Chinese)

[28]单大鹏, 刘春燕, 蒋洪蔚, 董晓慧, 陈庆山, 胡国华. 两种方法定位5个地点大豆蛋白质含量QTL. 中国油料作物学报, 2011, 33(1): 9-14.

Shan D P, Liu C Y, Jiang H W, Dong X H, Chen Q S, Hu G H. QTL analysis of soybean protein content using two methods in 5 different environments. Chinese Journal of Oil Crop Sciences, 2011, 33(1): 9-14. (in Chinese)
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[5] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[6] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[7] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[8] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[9] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[10] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[11] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[12] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[13] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
[14] WANG ShiYa,ZHENG DianFeng,XIANG HongTao,FENG NaiJie,LIU Ya,LIU MeiLing,JIN Dan,MOU BaoMin. Damage of AsA-GSH Cycle of Soybean Leaves Under Waterlogging Stress at Initial Flowing Stage and the Mitigation Effect of Uniconazole [J]. Scientia Agricultura Sinica, 2021, 54(2): 271-285.
[15] ZENG ShiXiao,NIAN Hai,CHENG YanBo,MA QiBin,WANG Liang. Effects of Different Soybean Varieties on the Yield and Quality of Yuba [J]. Scientia Agricultura Sinica, 2021, 54(2): 449-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!