Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (20): 4317-4325.doi: 10.3864/j.issn.0578-1752.2011.20.021

• VETERINARY SCIENCE • Previous Articles     Next Articles

Study on Polymorphisms of IRAK2 Gene and Its Association with Mastitis in Chinese Holstein Cattle

 SUN  Shu-Xia, WANG  Chang-Fa, ZHANG  Lian-Jiang, JU  Zhi-Hua, HUANG  Jin-Ming, LI  Jian-Bin, ZHONG  Ji-Feng, ZHANG  Jia-Bao, LI  Qiu-Ling   

  1. 1.吉林大学实验动物中心
    2.山东省农业科学院奶牛研究中心
    3.吉林农业科技学院动物科学学院
  • Received:2010-09-11 Online:2011-10-15 Published:2010-11-24

Abstract: 【Objective】 The associations among five single nucleotide polymorphisms (SNPs) in interleukin-1 receptor associated kinase 2 (IRAK-2) gene and somatic cell score (SCS) in Chinese Holstein Cattle were investigated. 【Method】 A herd of 1 292 dairy cows, 129 Luxi Yellow Cattle and 32 Bohai Black Cattle from Shandong province and Tianjin were used as experimental materials. Polymerase chain reaction (PCR) - restriction fragment length polymorphism (RFLP), created restriction site (CRS)-PCR and sequencing methods were applied to analyze the polymorphisms of five loci (g.28879, g.28916, g.29212, g.40035, and g.400120) in IRAK-2 gene. The associations between SNPs and SCS were analyzed by the least-squares method as applied in the GLM procedure of SAS 8.1 and haplotype analysis was performed by SHEsis software.【Result】The results of haplotype analysis of five SNPs showed that 30 different haplotypes and 71 haplotype combinations were identified. The value of SCS of individuals with H21H23 (TTAGGCTCCC) was the lowest through the result of association between polymorphisms of IRAK-2 gene and SCS. Statistical analyses revealed significant associations between genotype CC and CT in position 28 879, and between GG and AG in position 28 916. The SCS value of genotype CC and GG was lower than that of CT and AG, respectively (P<0.05), whereas no significant differences were detected among the positions 29212, 40035, 40120 and SCS (P>0.05).【Conclusion】The haplotype combination H21H23 was a favorable haplotype combination to the SCS. It may be used as a possible candidate for the molecular markers of mastitis resistance in dairy cattle breeding program.

Key words: ChineseHolsteinCattle, IRAK2, SNPs, SCS, haplotype

[1]杨  钦, 王长法, 杨宏军, 杨少华, 高运东, 仲跻峰, 彭广能. 牛乳中金黄色葡萄球菌山东分离株(zfb)β-溶血素(hlb)的克隆、表达及溶血活性分析. 中国农业科学, 2009, 42(1): 324-330.

Yang Q, Wang C F, Yang H J, Yang S H, Gao Y D, Zhong J F, Peng G N. Expression of β-hemolysin gene of staphylococcus aureus strains Shandong (zfb) and its hemolytic activity. Scientia Agricultura Sinica, 2009, 42(1): 324-330. (in Chinese)

[2]Banos G, Shook G E. Genotype by environment interaction and genetic correlations among parities for somatic cell count and milk yield. Journal of Dairy Science, 1990, 73(9): 2563-2573.

[3]Timms L L, Schultz L H. Mastitis therapy for cows elevated somatic cell counts or clinical mastitis. Journal of Dairy Science, 1984, 67(2): 367-371.

[4]Da Y, Grossman M, Misztal I, Wiggans G R. Estimation of genetic parameters for somatic cell score in Holsteins. Journal of Dairy Science, 1992, 75(8): 2265-2271.

[5]Mark T, Fikse W F, Emanuelson U, Philipsson J. International genetic evaluations of Holstein sires for milk somatic cell and clinical mastitis. Journal of Dairy Science, 2002, 85(9): 2384-2392.

[6]Schutz M M. Genetic evaluation of somatic cell scores for United States Dairy Cattle. Journal of Dairy Science, 1994, 77(7): 2113-2129.

[7]Banos G, Shook G E. Genotype by environment interaction and genetic correlations among parities for somatic cell count and milk yield. Journal of Dairy Science, 1990, 73(9): 2563-2573.

[8]Lund T, Miglior F, Dekkers J C M, Burnside E B. Genetic relationships between clinical mastitis, somatic cell count, and udder conformation in Danish Holsteins. Livestock Production Science, 1994, 39(3): 243-251.

[9]Fallin D, Cohen A, Essioux L, Chumakov I, Blumenfeld M, Cohen D, Schork N J. Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and alzheimer’s disease. Genome Research, 2001, 11(1): 143-151.

[10]肖正中, 赖松家. 奶牛分子育种的研究进展. 畜牧与兽医, 2003, 35(6): 41-44.

Xiao Z Z, Lai S J. Development of molecular breeding in dairy cattle. Animal Husbandry and Veterinary Medicine, 2003, 35(6): 41-44. (in Chinese)

[11]Wojdak-Maksymiec K, Kmie? M, Zukiewicz A. Associations between defensin polymorphism and somatic cell count in milk and milk utility traits in Jersey dairy cows. Journal of Veterinary Medicine Series A-Physiology Pathology Clinical Medicine, 2006, 53(10): 495-500.

[12]Schwerin M, Kühn C, Brunner R, Goldammer T, Bennewitz J, Reinsch N, Xu N, Thomsen H, Looft C, Weimann C, Hiendleder S, Erhardt G, Medjugorac I, Förster M, Brenig B, Reinhardt F, Reents R, Russ I, Averdunk G, Blümel J, Kalm E. QTL mapping and mining functional candidate genes affecting health-the German ADR QTL dairy cattle project. Animal Science Papers and Reports, 2004, 22(1): 95-100.

[13]Zhang F X, Kirschning C J, Mancinelli R, Xu X P, Jin Y, Faure E, Mantovani A, Rothe M, Muzio M, Arditi M. Bacterial lipopolysaccharide activates nuclear factor-κB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. The Journal of Biological Chemistry, 1999, 274(12): 7611-7614.

[14]Jensen L E, Muzio M, Mantovani A, Whitehead A S. IL-1 signaling cascade in liver cells and the involvement of a soluble form of the IL-1 receptor accessory protein. The Journal of Immunology, 2000, 164: 5277-5286.

[15]Janssens S, Beyaert R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Molecular Cell, 2003, 11(2): 293-302.

[16]Hardy M P, O’Neill L A. The murine IRAK-2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. Journal of Biological Chemistry, 2004, 279(26): 27699-27708.

[17]Kim T W, Staschke K, Bulek K, Yao J, Peters K, Oh K H, Vandenburg Y, Xiao H, Qian W, Hamilton T, Min B, Sen G, Gilmour R, Li X. A critical role for IRAK4 kinase activity in toll-like receptor-mediated innate immunity. Journal of Experimental Medicine, 2007, 204(5): 1025-1036.

[18]Kobayashi K, Hernandez L D, Galán J E, Jr Janeway C A , Medzhitov R, Flavell R A. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell, 2002, 110(2): 191-202.

[19]Muzio M, Ni J, Feng P, Dixit V M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science, 1997, 278(28): 1612-1615.

[20]Wang J, Hu Y, Deng W W, Sun B. Negative regulation of toll-like receptors signaling pathways. Microbes and Infection, 2009, 11(3): 321-327.

[21]Ruckdeschel K, Mannel O, Schröttner P. Divergence of apoptosis- inducing and preventing signals in bacteria-faced macrophages through myeloid differentiation factor 88 and IL-1 receptor-associated kinase Members. The Journal of Immunology, 2002, 168: 4601-4611.

[22]Huang Y, Li T, Sane D C, Li L. IRAK1 serves as a novel regulator essential for lipopolysaccharide-induced interleukin-10 gene expression. The Journal of Biological Chemistry, 2004, 279(49): 51697-51703.

[23]Huang Y S, Misior A, Li L W. Novel role and regulation of the Interleukin-1 Receptor Associated Kinase (IRAK) family proteins. Molecular Immunology, 2005, 2(1): 36- 39.

[24]曹果清, 莫清珊, 陈凤仙. 酚/氯仿抽提法提取绵羊凝血块中基因组DNA. 农业科学与技术, 2009, 10(5): 76-78.

Cao G Q, Mo Q S, Chen F X. Genomic DNA isolation by phenol/chloroform extracting method from sheep blood clot. Agricultural Science and Technology, 2009, 10(5): 76-78. (in Chinese)

[25]Miller M P. Tools for population genetic analyses (TFPGA) 1.3: a windows program for the analysis of alloozyme and molecular population genetic data. 1997, http:// www. marksgeneticsoftware. net/_vti_bin/shtml.exe/tfpga.htm.

[26]Shi Y Y, He L. SHEsis, a powerful software platform for analyses of linkage  disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Research, 2005, 15(2): 97-98.

[27]Hu J, Jacinto R, McCall C, Li L. Regulation of IL-1 receptor-associated kinases by lipopolysaccharide. The Journal of Immunology, 2002, 168: 3910-3914.

[28]Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y, Saitoh T, Kawai T, Takeuchi O, Akira S. Sequential control of toll-like receptor–dependent responses by IRAK1 and IRAK2. Nature Immunology, 2008, 9(6): 684-691.

[29]Kwok S, Kellogg D E, McKinney N, Spasic D, Goda L, Levenson C, Sninsky J J. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Research, 1990, 18(4): 999-1005.

[30]马明义, 张思仲. 联合应用巢式PCR和创造酶切位点法检测单核苷酸改变. 中国优生与遗传杂志, 2007, 15(6): 13-14.

Ma M Y, Zhang S Z. A new method for identifying the change of single nucleotide by created restriction site PCR and nest PCR. Chinese Journal of Birth Health and Heredity, 2007, 15(6): 13-14. (in Chinese)
[1] XIA YuXin,LIANG Yan,WANG HaiYang,GUO MengLing,ZHOU Bu,DAI Xu,YANG ZhangPing,MAO YongJiang. Effects of the Number of Subclinical Mastitis and Somatic Cell Score in Milk of Parity 1 on Somatic Cell Score of Holstein Cows for Parity 2 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4052-4064.
[2] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[3] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[4] MA ShuanHong, WAN Jiong, LIANG RuiQing, ZHANG XueHai, QIU XiaoQian, MENG ShuJun, XU NingKun, LIN Yuan, DANG KunTai, WANG QiYue, ZHAO JiaWen, DING Dong, TANG JiHua. Candidate Gene Association Analysis of Maize Transcription Factors in Flowering Time [J]. Scientia Agricultura Sinica, 2022, 55(1): 12-25.
[5] ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286.
[6] YaFei ZHANG,Jie PENG,YanSong ZHU,ShengNan YANG,Xu WANG,WanTong ZHAO,Dong JIANG. Genome Wide Identification of CCD Gene Family in Citrus and Effect of CcCCD4a on the Color of Citrus Flesh [J]. Scientia Agricultura Sinica, 2020, 53(9): 1874-1889.
[7] ZHANG JiFeng,LIU HuaDong,WANG JingGuo,LIU HuaLong,SUN Jian,YANG LuoMiao,JIA Yan,WU WenShen,ZHENG HongLiang,ZOU DeTang. Genome-Wide Association Study and Candidate Gene Mining of Tillering Number in Japonica Rice [J]. Scientia Agricultura Sinica, 2020, 53(16): 3205-3213.
[8] XU Yunbi,YANG QuanNü,ZHENG HongJian,XU YanFen,SANG ZhiQin,GUO ZiFeng,PENG Hai,ZHANG Cong,LAN HaoFa,WANG YunBo,WU KunSheng,TAO JiaJun,ZHANG JiaNan. Genotyping by Target Sequencing (GBTS) and Its Applications [J]. Scientia Agricultura Sinica, 2020, 53(15): 2983-3004.
[9] YANG YuXin,ZOU Cheng. Genome-Wide Detection of Selection Signal in Temperate and Tropical Maize Populations with Use of FST and XP-EHH [J]. Scientia Agricultura Sinica, 2019, 52(4): 579-590.
[10] WeiJun ZHANG, Tian LI, Lin QIN, Jing ZHAO, JunJie ZHAO, Hong LIU, Jian HOU, ChenYang HAO, DongSheng CHEN, YiQin WEI, RuiLian JIN, XueYong ZHANG. TaDRO, A Gene Associated with Wheat Root Architectures, Its Global Distribution and Evolution in Breeding [J]. Scientia Agricultura Sinica, 2018, 51(10): 1815-1829.
[11] HE YaJun, WU DaoMing, YOU JingCan, QIAN Wei. Genome-Wide Association Analysis of Salt Tolerance Related Traits in Brassica napus and Candidate Gene Prediction [J]. Scientia Agricultura Sinica, 2017, 50(7): 1189-1201.
[12] LIU LiYuan, ZHOU JingHang, ZHANG MengHua, LI JinXia, FANG JiQing, TAN ShiXin, WANG AiFang, HUANG XiXia, WANG YaChun. Genetic Effect Analysis of SNPs from 6 Genes on SCS and Milk Production Traits in Xinjiang Brown Cattle [J]. Scientia Agricultura Sinica, 2017, 50(13): 2592-2603.
[13] WANG MengQi, NI Wei, ZHANG HuiMin, YANG ZhangPing, WANG XiPu, JIANG YanSen, MAO YongJiang. Association Between SNPs in the CDS Regions of CXCR1 Gene and the Clinical Mastitis and Lifetime for Chinese Holstein [J]. Scientia Agricultura Sinica, 2017, 50(12): 2359-2370.
[14] LI Dong, TANG Bei-bei, WANG Ying-jie, JI Yan-qin, WANG Fei, LU Zhen-yu, WANG Man, ZHANG Ya-ni, LI Bi-chun. Regulatory Study of Protein Metabolism During the Differentiation Process of Chicken Male Germ Cells [J]. Scientia Agricultura Sinica, 2016, 49(24): 4814-4823.
[15] XU Chen-xi, WANG Meng-qi, ZHU Xiao-rui, ZHANG Yu-feng, XIA Hai-lei, LIU Xian-hui, WANG Xiao-long, ZHANG Hui-min, YANG Zhang-ping, MAO Yong-jiang. Effects of SNPs in the 3’ Untranslated Regions of FADS2 on the Composition of Fatty Acids in Milk of Chinese Holstein [J]. Scientia Agricultura Sinica, 2016, 49(11): 2194-2202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!