Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (16): 3297-3311.doi: 10.3864/j.issn.0578-1752.2011.16.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Comparative Analysis of Genetic Structure and Differentiation of Guangdong and Guangxi Tea Germplasms Based on EST-SSR Markers

QIAO  Xiao-Yan, QIAO  Ting-Ting, ZHOU  Yan-Hua, JIN  Ji-Qiang, MA  Chun-Lei, YAO  Ming-Zhe, CHEN  Liang   

  1. 1. 广东省农业科学院茶叶研究所
    2. 中国农业科学院茶叶研究所国家茶树改良中心
  • Received:2011-01-04 Revised:2011-03-10 Online:2011-08-15 Published:2011-03-16

Abstract: 【Objective】 The well understanding of genetic diversity, structure and differentiation of tea germplasms is important for their effective conservation and reasonable utilization. 【Method】 One hundred and nine core EST-SSR markers were selected and used to analyze the genetic diversity and differentiation of 105 tea accessions from Guangdong and Guangxi provinces. Molecular variance (AMOVA) analysis of inter-groups, inter-populations and individuals within populations was conducted, and then the model-based genetic structure was constructed. 【Result】 A total of 435 alleles were identified with an average of 3.99 alleles per marker (NA). The average of effective number of alleles (NE), Nei's gene diversity (H), observed heterozygosity (Ho), expected heterozygosity (He) and polymorphism information content (PIC) was 2.12, 0.32, 0.59, 0.46 and 0.56, respectively. Guangdong tea germplasms showed lower values of the six indexes mentioned above, compared to Guangxitea. Guangdong Baimaocha (Camellia sinensis var. pubilimba Chang) had lower NA and H values and similar NE, He, Ho and PIC values compared with Guangdong tea (C. sinensis (L.) O. Kuntze). While Guangxi Baimaocha had higher NA value, lower NE, He and H values than Guangxi tea. The values of Fis, Fit and Fst were low among Guangxi and Guangdong Baimaocha and tea populations with strong gene flow. The same results were found between Baimaocha and tea. There were weak genetic differentiation (0.04) and gene flow (6.26) within Baimaocha population. Molecular variance (AMOVA) analysis showed that there was a relatively low level (3.09%) of genetic variation among Guangdong and Guangxi tea germplasms, that within the populations was 94.69%. The population structure analysis could divide all the 105 accessions into 3 groups. Six developed cultivars were grouped into groupⅠ; group Ⅱ consisted of 43 accessions from Guangdong and 16 from Guangxi. The remaining 36 accessions from Guangxi and 4 from Guangdong were assigned into group III.【Conclusion】The genetic diversity of Guangdong tea germplasms was lower than that of Guangxi. Genetic differentiation was insignificant between populations with strong gene flow. Guangdong Baimaocha had much more abundant genetic diversity than Guangdong tea, and genetic differentiation was weak with frequent genetic exchange. Guangxi Baimaocha showed richer genetic diversity than Guangdong Baimaocha, with relatively high genetic divergence and weak gene flow. AMOVA showed that the variation level within Guangdong and Guangxi populations was absolutely higher than among populations.

Key words: Tea germplasm, Baimaocha, genetic diversity, genetic structure, genetic differentiation

[1]陈  亮, 虞富莲, 左志明. 广西茶树种质资源考察研究初报. 广西农业科学, 1996(2): 77-80.

Chen L, Yu F L, Zuo Z M. Reports on research of tea germplasms in Guangxi. Journal of Guangxi Agricultural Science, 1996(2): 77-80. (in Chinese)

[2]陈  亮, 虞富莲, 童启庆. 关于茶组植物分类与演化的讨论. 茶叶科学, 2000, 20(2): 89-94.

Chen L, Yu F L, Tong Q Q. Discussions on phylogenetic classification and evolution of Sect. Thea. Journal of Tea Science, 2000, 20(2): 89-94. (in Chinese)

[3]张宏达. 茶叶植物资源的订正. 中山大学学报: 自然科学版, 1984(1): 1-12.

Zhang H T. A revision on the tea resource plants. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1984(1): 1-12. (in Chinese)

[4]闵天禄. 山茶属茶组植物的订正. 云南植物研究, 1992, 14(2): 115-132.

Min T L. A revision of Camellia Sect. Thea. Acta Botanica Yunnanica, 1992, 14(2): 115-132. (in Chinese)

[5]游小青, 李名君, 杨亚军, 王华夫. 萜烯指数在茶品系间的表达. 茶叶科学, 1992, 12(1): 27-31.

You X Q, Li M J, Yang Y J, Wang H F. Tea varietal expression through terpene index. Journal of Tea Science, 1992: 12(1): 27-31. (in Chinese)

[6]Ni S, Yao M Z, Chen L, Zhao L P, Wang X C. Germplasm and breeding research of tea plant based on DNA marker approaches. Frontiers of Agriculture in China, 2008, 2(2): 200-207.

[7]Gupta P K, Rustgi S, Sharma S, Singh R, Kumar N, Balyan H S. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Molecular and General Genetics, 2003, 270: 315-323.

[8]金基强, 崔海瑞, 龚晓春, 陈文岳, 忻  雅. 用EST-SSR 标记对茶树种质资源的研究. 遗传, 2007, 29(1): 103-108.

Jin J Q, Cui H R, Gong X C, Chen W Y, Xin Y. Studies on tea plants (Camellia sinensis) germplasms using EST-SSR marker. Hereditas, 2007, 29(1): 103-108. (in Chinese)

[9]姚明哲, 刘  振, 陈  亮, 王新超, 马春雷, 梁月荣. 利用EST-SSR分析江北茶区茶树资源的遗传多样性和遗传结构. 茶叶科学, 2009, 29(3): 243-250.

Yao M Z, Liu Z, Chen L, Wang X C, Ma C L, Liang Y R. Genetic diversity and structure of tea germplasm originated from region of North Yangtze River based on EST-SSR markers. Journal of Tea Science, 2009, 29(3): 243-250. (in Chinese)

[10]余继忠, 黄海涛, 姚明哲, 杨亚军. 基于EST-SSR的福云(半)同胞系茶树品种(系)遗传多样性和亲缘关系分析. 茶叶科学, 2010, 30(3): 184-190.

Yu J Z, Huang H T, Yao M Z, Yang Y J. Analysis of genetic diversity and relationship of half-sib tea cultivars related to Fuding Dabai and Yunnan Daye using EST-SSR markers. Journal of Tea Science, 2010, 30(3): 184-190. (in Chinese)

[11]王丽鸳, 刘本英, 姜燕华, 段云裳, 成  浩, 周  健, 唐一春. 用SSR分子标记研究茶组植物种间亲缘进化关系. 茶叶科学, 2009, 29(5): 341-346.

Wang L Y, Liu B Y, Jiang Y H, Duan Y S, Cheng H, Zhou J, Tang Y C. Phylogenetic analysis of interspecies in Section Thea through SSR markers. Journal of Tea Science, 2009, 29(5): 341-346. (in Chinese)

[12]刘  振, 王新超, 赵丽萍, 姚明哲, 王平盛, 许  玫, 唐一春, 陈  亮. 基于EST-SSR的西南茶区茶树资源遗传多样性和亲缘关系分析. 分子植物育种, 2008, 6(1): 100-110.

Liu Z, Wang X C, Zhao L P, Yao M Z, Wang P S, Xu M, Tang Y C, Chen L. Genetic diversity and relationship analysis of tea germplasm originated from south western China based on EST-SSR. Molecular Plant Breeding, 2008, 6(1): 100-110. (in Chinese)

[13]刘  振, 姚明哲, 王新超, 陈  亮. 基于EST-SSR的福建地区茶树资源遗传多样性和亲缘关系分析. 中国农业科学, 2009, 42(5): 1720-1727.

Liu Z, Yao M Z, Wang X C, Chen L. Analysis of genetic diversity and relationship of tea germplasms originated from Fujian province based on EST-SSR markers, Scientia Agricultura Sinica, 2009, 42(5): 1720-1727. (in Chinese)

[14]乔婷婷, 马春雷, 周炎花, 姚明哲, 刘  饶, 陈  亮. 浙江省茶树地方品种与选育品种遗传多样性和群体结构的EST-SSR分析. 作物学报, 2010, 36(5): 744-753.

Qiao T T, Ma C L, Zhou Y H, Yao M Z, Liu R, Chen L. EST-SSR genetic diversity and population structure of tea landraces and developed cultivars (lines) in Zhejiang province, China. Acta Agronomica Sinca, 2010, 36(5): 744-753. (in Chinese)

[15]赵超艺, 周李华, 罗军武, 黄建安, 谭和平. 广东茶树种质资源AFLP分析. 茶叶科学, 2006, 26(4): 249-252.

Zhao C Y, Zhou L H, Luo J W, Huang J A, Tan H P. AFLP analysis of genetic diversity of tea plant germplasm in Guangdong province. Journal of Tea Science, 2006, 26(4): 249-252. (in Chinese)

[16]沈程文, 宁正祥, 黄建安, 陈  栋, 李家贤. 基于表型参数及SRAP标记的广东茶树种质遗传多样性. 应用生态学报, 2009, 20(7): 1551-1558.

Shen C W, Ning Z X, Huang J A, Chen D, Li J X. Genetic diversity of Camellia sinensis germplasm in Guangdong province based on morphological parameters and SRAP markers. Chinese Journal of Applied Ecology, 2009, 20(7): 1551- 1558. (in Chinese)

[17]周炎花, 乔小燕, 马春雷, 乔婷婷, 金基强, 姚明哲, 陈  亮. 广西茶树地方品种遗传多样性和遗传结构的EST-SSR分析. 林业科学, 2011, 47(3): 59-67.

Zhou Y H, Qiao X Y, Ma C L, Qiao T T, Jin J Q, Yao M Z, Chen L. Genetic diversity and structure of tea landraces from Guangxi based on EST-SSR analysis. Scientia Silvae Sinicae, 2011, 47(3): 59-67. (in Chinese)

[18]黎星辉, 施兆鹏, 刘春林, 罗军武, 沈程文, 李家贤, 方华春. 汝城白毛茶与两广主要“白毛茶”居群亲缘关系的RAPD分析. 茶叶科学, 2002, 22(1): 79-82.

Li X H, Shi Z P, Liu C L, Luo J W, Shen C W, Li J X, Fang H C. The genetic relationships of “Rucheng Baimao Cha” and the main populations of “Baimao Cha” in Guangdong and Guangxi region with RAPD method. Journal of Tea Science, 2002, 22(1): 79-82. (in Chinese)

[19]周李华. 广东茶树种质资源遗传多样性AFLP分析[D]. 长沙: 湖南农业大学, 2006.

Zhou L H. Studies on genetic diversity of tea plant [Camellia sinensis (L.) O. Kuntze] germplasm in Guangdong province by AFLP technology[D]. Changsha: Hunan Agricultural University, 2006. (in Chinese)

[20]黎星辉, 刘春林, 施兆鹏, 罗军武, 沈程文, 龚志华, 陈  暄. 汝城白毛茶种群个体间亲缘关系的RAPD分析. 茶叶科学, 2004, 24(1): 33-36.

Li X H, Liu C L, Shi Z P, Luo J W, Shen C W, Gong Z H, Chen X. Analysis of genetic relationships among "Rucheng Baimao Cha" plants with RAPD method. Journal of Tea Science, 2004, 24(1): 33-36. (in Chinese)

[21]Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 1997, 15(1): 8-15.

[22]乔婷婷. 茶树资源遗传多样性及其表型性状关联EST-SSR位点的初步鉴定[D]. 北京: 中国农业科学院, 2010.

Qiao T T. Genetic diversity of tea (Camellia sinensis (L.) O. Kuntze) and association analysis of phenotypic traits with EST-SSR markers[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese)

[23]Charters Y M, Wilkinson M J. The use of self-pollinated progenies as ‘in-groups’ for the genetic characterization of cocoa germplasm. Theoretical and Applied Genetics, 2000, 100(1): 160-166.

[24]Liu K, Muse S V. PowerMarker: an integrated analysis environment for genetic marker data. Bioinformatics, 2005, 21(9): 2128-2129.

[25]Yeh F C, Yang R C, Boyle T. Popgene Version 1. 31. Quick User Guide. Canada: University of Alberta, and Centre for International Forestry Research, 1999.

[26]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620.

[27]施永泰, 边红武, 韩  凝, 潘建伟, 童微星, 朱睦元. 中国江、浙地区栽培大麦遗传资源的RAPD研究. 作物学报, 2004, 30(3): 258- 265.

Shi Y T, Bian H W, Han N, Pan J W, Tong W X, Zhu M Y. Genetic variation analysis by RAPD of some barley cultivars in China. Acta Agronomica Sinica, 2004, 30(3): 258- 265. (in Chinese)

[28]宏棋斌, 侯  磊, 罗小英, 李德谋, 肖月华, 斐  炎, 杨开俊, 甲  错. 应用RAPD标记分析川西北高原青稞的遗传背景. 中国农业科学, 2001, 34(2): 133- 138.

Hong Q B, Hou L, Luo X Y, Li D M, Xiao Y H, Pei Y, Yang K J, Jia C. Using RAPD for evaluating genetic background among naked barley varieties in Sichuan northwestern region. Scientia Agricultura Sinica, 2001, 34(2): 133-138. (in Chinese)

[29]盖钧镒. 植物种质群体遗传结构改变的测度. 植物遗传资源学报, 2005, 6(1): 1-8.

Gai J Y. Indicators related to genetic structure changes of plant germplasm population. Journal of Plant Genetic Resources, 2005, 6(1): 1-8. (in Chinese)

[30]Hamrick J L, Godt M J W, Sherman-Broyles S L. Factors influencing levels of genetic diversity in woody plant species. New Forests, 1992, 6: 95-124.

[31]杨光伟, 冯丽春, 敬成俊, 余茂德, 向仲怀. 桑树种群遗传结构变异分析. 蚕业科学, 2003, 29(4): 323-329.

Yang G W, Feng L C, Jing C J, Yu M D, Xiang Z H. Analysis of genetic structure variance among mulberry( Morus L.) populations. Acta Sericologica Sinica, 2003, 29(4): 323-329. (in Chinese)

[32]赵景奎, 徐立安, 解荷峰, 赵大勇, 黄敏仁. 黄河三角洲柽柳群体遗传多样性RAPD分析. 南京林业大学学报: 自然科学版, 2008, 32(5): 56-60.

Zhao J K, Xu L A, Xie H F, Zhao D Y, Huang M R. RAPD analysis of population genetic diversity of Tamarix chinensis in Yellow River delta. Journal of Nanjing Forestry University: Natural Sciences Edition, 2008, 32(5): 56-60. (in Chinese)

[33]向振勇, 宋松泉, 王桂娟, 陈茂盛, 杨成源, 龙春林. 云南南部不同种源地小桐子遗传多样性的ISSR分析. 云 南植物研究, 2007, 29(6): 619-624.

Xiang Z Y, Song S Q, Wang G J, Chen M S, Yang C Y, Long C L. Genetic diversity of Jatropha curcas (Euphorbiaceae) collected from southern Yunnan, detected by inter-simple sequence repeat (ISSR). Acta Botanica Yunnanica, 2007, 29(6): 619-624. (in Chinese)

[34]Loveless M D, Hamrick J L. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics, 1984, 15: 65-95.

[35]Ellstrang N C. Gene flow among seed plant populations. New Forests, 1992, 6: 241-256.

[36]Paul S, Wachira F N, Powell W, Waugh R. Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theoretical and Applied Genetics, 1997, 94(2): 255-263.

[37]Wachira F, Tanaka J, Takeda Y. Genetic variation and differentiation in tea (Camellia sinensis) germplasm revealed by RAPD and AFLP variation. The Journal of Horticultural Science and Biotechnology, 2001, 76(5): 537-563.

[38]Gillies A C M, Navarro C, Lowe A J, Newton A C, Hernandez M, Wilson J, Cornelius J P. Genetic diversity in Mesoamerican populations of mahogany (Swietenia macrophylla), assessed using RAPDs. Heredity, 1999, 83: 722-732.

[39]Yeh F C, Chong D K X, Yang R C. RAPD variation within and among natural populations of trembling aspen (Populus tremuloides Michx.) from Alberta. Journal of Heredity, 1995, 86(6): 454-460.

[40]Wright S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 1965, 19, 395-420.

[41]张晓丽, 郭  辉, 王海岗, 吕建珍, 袁筱萍, 彭锁堂. 魏兴华. 中国普通野生稻与栽培稻种SSR多样性的比较分析. 作物学报, 2008, 34(4): 591-597.

Zhang X L, Guo H, Wang H G, Lü J Z, Yuan X P, Peng S T, Wei X H. Comparative assessment of SSR allelic diversity in wild and cultivated rice in China. Acta Agronomica Sinica, 2008, 34(4): 591-597. (in Chinese)
[1] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[7] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[8] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[9] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[10] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[11] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[12] CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582.
[13] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[14] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[15] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,ZHANG CaiXia,LI LianWen,PIAO JiCheng. Genetic Diversity and Phylogenetics of Malus baccata (L.) Borkh Revealed by Chloroplast DNA Variation [J]. Scientia Agricultura Sinica, 2020, 53(3): 600-611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!