Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (15): 3185-3192.doi: 10.3864/j.issn.0578-1752.2011.15.014

• HORTICULTURE • Previous Articles     Next Articles

Effects of Exogenous Salicylic Acid on Ions Contents and Net Photosynthetic Rate in Chrysanthemum Under Salt Stress

GUO  Chun-Xiao, WANG  Wen-Li, ZHENG  Cheng-Shu, SHI  Lian-Hui, SHU  Huai-Rui   

  1. 1. 山东农业大学园艺科学与工程学院
    2. 作物生物学国家重点实验室
  • Received:2010-11-12 Revised:2011-04-13 Online:2011-08-01 Published:2011-05-09

Abstract:  【Objective】The aim of this experiment was to analyze the alleviation mechanism of exogenous SA on chrysanthemum under salt stress. 【Method】The effects of salicylic acid (SA) on contents of Na+, K+, Ca2+,Mg2+ in roots, leaves of chrysanthemum and net photosynthetic rate (Pn) were studied with spraying exogenous SA on leaves.【Result】The results showed that salt stress increased the content of Na+, but reduced the contents of K+, Ca2+, Mg2+ in roots and leaves of chrysanthemum. Exogenous SA treatment increased K+, Ca2+, Mg2+ contents by 37.70%, 16.44% and 20.54%, respectively, decreased Na+ content by 27.13% in the roots; increased the contents of K+, Ca2+, Mg2+ and Pn by 56.52%, 53.23%, 87.53% and 40.74%, respectively, decreased Na+ contents by 53.41% in leaves; increased the contents of K+, Ca2+, Mg2+ by 67.97%, 79.40% and 89.32%, respectively, decreased Na+ contents by 76.06% in the chrysanthemum at the 10th day after stress treatments. SK, Na, SCa, Na and SMg, Na were also significantly increased by exogenous SA under salt stress. Correlation analysis showed that the Pn has significant negative correlation with Na+ and significant positive correlations with K+, Ca2+, Mg2+. 【Conclusion】These results indicated that exogenous SA may alleviate the damage of chrysanthemum seedlings from salt stress via ion selective absorption and transportation.

Key words: chrysanthemum, salt stress, salicylic acid, Pn

[1]李品芳, 白文波, 杨志成. NaCl胁迫对苇状羊茅离子吸收与运输及其生长的影响. 中国农业科学, 2005, 38(7): 1458-1565.

Li P F,Bai W B,Yang Z C. Effects of NaCl stress on ions absorption and transportation and plant growth of tall fescue. Scientia Agricultura Sinica, 2005, 38(7): 1458-1565. (in Chinese)

[2]王学征, 李秋红, 吴凤芝. NaCl胁迫下栽培型番茄Na+、K+吸收、分配和转运特性. 中国农业科学, 2010, 43(7): 1423-1432.

Wang X Z, Li Q H, Wu F Z. Study on the characteristics of absorption, distribution and selective transport of Na+ and K+ in tomato plants under salt stress. Scientia Agricultura Sinica, 2010, 43(7): 1423-1432. (in Chinese)

[3]朱晓军, 杨劲松, 梁永超, 娄运生, 杨晓英. 盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响. 中国农业科学, 2004, 37(10): 1497-1503.

Zhu X J, Yang J S, Liang Y C, Lou Y S, Yang X Y. Effects of exogenous calcium on photosynthesis and its related physiological characteristics of rice seedlings under salt stress. Scientia Agricultura Sinica, 2004, 37(10): 1497-1503. (in Chinese)

[4]宋士清, 郭世荣, 尚庆茂, 张志刚. 外源SA对盐胁迫下黄瓜幼苗的生理效应. 园艺学报, 2006, 33(1): 68-72.

Song S Q, Guo S R, Shang Q M, Zhang Z G. Physiological effects of exogenous salicylic acid on cucumber seedlings under the salt stress. Acta Horticulturae Sinica, 2006, 33(1): 68-72. (in Chinese)

[5]李瑞芬, 王雪青, 王宏芝, 魏建华. 野大麦耐盐适应性反应机制的研究. 中国农业科学, 2006, 39(12): 2459-2466.

Li R F, Wang X Q, Wang H Z, Wei J H. Adaptive mechanisms of salt tolerance in Hordeum brevisubulatum. Scientia Agricultura Sinica, 2006, 39(12): 2459-2466. (in Chinese)

[6]Robinson S P, Downton W S, Millhouse J A. Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach. Plant Physiology, 1983, 73:238-242.

[7]钱琼秋, 宰文珊, 朱祝军, 喻景权. 外源硅对盐胁迫下黄瓜幼苗叶绿体活性氧清除系统的影响. 植物生理与分子生物学学报, 2006, 32(1):107-112.

Qian Q Q, Zai W S. Zhu Z J, Yu J Q. Effects of exogenous silicon on active oxygen scavenging systems in chloroplasts of cucumber (Cucumis sativus L.) seedlings under salt stress. Journal of Plant Physiology and Molecular Biology, 2006, 32(1): 107-112. (in Chinese)

[8]梁 芳, 郑成淑, 孙宪芝, 王文莉. 低温弱光胁迫及恢复对切花菊光合作用和叶绿素荧光参数的影响. 应用生态学报, 2010, 21(1): 29-35.

Liang F, Zheng C S, Sun X Z, Wang W L. Effects of low temperature and weak light stress and its recovery on the photosynthesis and chlorophyll fluorescence parameters of cut flower chrysanthemum. Chinese Journal of Applied Ecology, 2010, 21(1): 29-35. (in Chinese)

[9]郑青松, 王仁雷, 刘友良. 钙对盐胁迫下棉苗离子吸收分配的影响. 植物生理学报, 2001, 27(4): 325-330.

Zheng Q S, Wang R L, Liu Y L. Effects of Ca2+ on absorption and distribution of ions in salt-treated cotton seedlings. Acta Phytophysiologica Sinica, 2001, 27(4): 325-330. (in Chinese)

[10]Munns R. Comparative physiology of salt and water stress. Plant Cell and Environment, 2002, 25: 239-250.

[11]Carter C T, Grieve C M. Mineral nutrition, growth, and germination of Antirrhinum majus L. (Snapdragon) when produced under increasingly saline conditions. HortScience, 2008, 43: 710-718.

[12]杨春武, 李长有, 张美丽, 刘 杰, 鞠 淼, 石德成. 盐、碱胁迫下小冰麦体内的pH及离子平衡. 应用生态学报, 2008, 19(5): 1000-1005.

Yang C W, Li C Y, Zhang M L, Liu J, Ju M, Shi D C. pH and ion balance in wheat-wheatgrass under salt- or alkali stress. Chinese Journal of Applied Ecology, 2008, 19(5): 1000-1005. (in Chinese)

[13]韩金龙, 徐立华, 徐相波, 王同燕, 周柱华, 邢燕菊, 丁  一. 盐胁迫下不同玉米品种在苗期叶片和根中Na+、K+、Ca2+及脯氨酸含量变化的研究. 作物杂志, 2010(1): 49-51.

Han J L, Xu L H, Xu X B, Wang T Y, Zhou Z H, Xing Y J, Ding Y. Changes of Na+, K+, Ca2+ and praline contents in leaf and root of different maize hybrids under salt stress at seedling stage. Crops, 2010(1): 49-51. (in Chinese)

[14]Horva′th E, Szalai G, Janda T. Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 2007, 26: 290-300.

[15]Larkindale J, Knight M R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, ethylene and salicylic acid. Plant Physiology, 2002, 128: 682-695.

[16]Metwally A, Finkemeier I, Georgi M, Dietz K. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, 2003, 132: 272-281.

[17]Stevens J, Senaratna T, Sivasithampara K. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): Associated changes in gas exchange, water relations and membrane stabilization. Journal of Plant Growth Regulation, 2006, 49: 77-83.

[18]吴 琼. 水杨酸在植物胁迫抗性中的作用机制. 中国新技术新产品, 2009(8): 174.

Wu Q. The resistance of salicylic acid in plant stress mechanism. China New Technologies and Products, 2009(8):174. (in Chinese)

[19]陈秉初, 方建文, 杜  浩. 乙酰水杨酸在晚稻移栽中应用的初步探索. 浙江农业学报, 1992, 4(1): 42-43.

Chen B C, Fang J W, Du H. Aspirin acteo salicylic on transplanting of late rice seedlings. Acta Agriculturae Zhejiangensis, 1992, 4(1): 42-43.

[20]原永兵, 曹宗巽. 水杨酸在植物体内的作用. 植物学通报, 1994, 11(3): 1-9.

Yuan Y B, Cao Z X. The role of salicylic acid in plants. Chinese Bulletin of Botany, 1994, 11(3): 1-9. (in Chinese)

[21]Agnes S, Jolan C, Katalin G, Edit H, Ferenc H, Maria L S, Irma T. Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidanse activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. Journal of Plant Physiology, 2009, 166: 914-925.

[22]谢玉英. 水杨酸与植物抗逆性的关系. 生物学杂志, 2007, 24(4): 12-15.

Xie Y Y. The relationship of salicylic acid and plant resistance relationship. Journal of Biology, 2007, 24(4): 12-15. (in Chinese)

[23]Cheeseman J M. Mechanism of salinity tolerance in plants. Plant Physiology, 1988, 87: 547-550.

[24]Bethke P C, Drew M C. Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsium annuun during progressive exposure to NaCl salinity. Plant Physiology, 1992, 99: 219-226.

[25]宁建凤, 郑青松, 杨少海, 邹献中, 孙丽丽, 陈 勇. 高盐胁迫对罗布麻生长及离子平衡的影响. 应用生态学报, 2010, 21(2): 325-330.

Ning J F, Zheng Q S, Yang S H, Zou X Z, Sun L L, Chen Y. Impact of high salt stress on Apocynum venetum growth and ionic homeostasis. Chinese Journal of Applied Ecology, 2010, 21(2): 325-330. (in Chinese)

[26]Feng Z, Liang F, Zheng C S, Shu H R, Sun X Z, Yoo Y K. Effects of acetylsalicylic acid and calcium chloride on photosynthetic apparatus and reactive oxygen-scavenging enzymes in chrysanthemum under low temperature stress with low light. Agricultural Sciences in China, 2010, 9(12): 1777-1786.
[1] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[2] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[3] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[4] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[5] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[6] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[7] BI MengMeng,LIU Di,GAO Ge,ZHU PengFang,MAO HongYu. CmWRKY15-1 Regulates Resistance of Chrysanthemum White Rust Through Salicylic Acid Signaling Pathway [J]. Scientia Agricultura Sinica, 2021, 54(3): 619-628.
[8] MENG Rui,LIU Ye,ZHAO Shuang,FANG WeiMin,JIANG JiaFu,CHEN SuMei,CHEN FaDi,GUAN ZhiYong. Effects of Rootstock and Scion Interaction on Salt Tolerance of Grafted Chrysanthemum Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(3): 629-642.
[9] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[10] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[11] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[12] ZHANG JingYun,LIU YuNuo,WANG ZhaoHao,PENG AiHong,CHEN ShanChun,HE YongRui. Analysis of Resistance Mechanism of CiNPR4 Transgenic Plants to Citrus Canker [J]. Scientia Agricultura Sinica, 2021, 54(18): 3871-3880.
[13] LI JiaWei,SU JiangShuo,ZHANG Fei,FANG WeiMin,GUAN ZhiYong,CHEN SuMei,CHEN FaDi. Construction of Core Collection of Traditional Chrysanthemum morifolium Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2021, 54(16): 3514-3526.
[14] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[15] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
Full text



No Suggested Reading articles found!