Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (3): 619-628.doi: 10.3864/j.issn.0578-1752.2021.03.015

• HORTICULTURE • Previous Articles     Next Articles

CmWRKY15-1 Regulates Resistance of Chrysanthemum White Rust Through Salicylic Acid Signaling Pathway

BI MengMeng1(),LIU Di1,GAO Ge1,ZHU PengFang1,2,MAO HongYu1,2()   

  1. 1College of Forestry, Shenyang Agruicultural University, Shenyang 100866
    2Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 100866
  • Received:2020-05-04 Accepted:2020-07-13 Online:2021-02-01 Published:2021-02-01
  • Contact: HongYu MAO E-mail:1262665213@qq.com;maohongyu@syau.edu.cn

Abstract:

【Objective】Chrysanthemum White Rust is one of the most important diseases of chrysanthemum, which seriously affects its ornamental quality. This study would provide theoretical reference for the molecular mechanism of Chrysanthemum White Rust through the preliminary analysis of the function of CmWRKY15-1.【Method】In this study, the overexpression and interference vector was constructed based on CmWRKY15-1 gene sequence, which were transformed into resistant cultivar Huangying by Agrobacterium mediated method. The function of CmWRKY15-1 gene in response to Chrysanthemum White Rust in salicylic acid signal pathway was explored by phenotype observation, disease index statistics, changes of endogenous SA content in transgenic plants, expression analysis of key genes of SA synthesis, pathogenesis-related genes and defense enzyme genes. 【Result】The OE-9 and the RNAi-4 strains were obtained after transformation. The disease index of RNAi-4 strain was 53.67 in phenotype identification and disease index investigation, and the resistant response was susceptible, but the phenotype of wild type plants had no change. Meanwhile, the content of endogenous Salicylic Acid (SA) in OE-9 lines increased, compared with WT after inoculation, while in RNAi-4 lines decreased. The overexpression and silencing of CmWRKY15-1 significantly changed SA content, which had a positive regulatory effect on SA accumulation. The expression of SA synthesis genes in OE-9, RNAi-4 and WT showed that the expression of ICS1 in OE-9 upregulated first and then down-regulated, and the highest expression was 3.8 times as much as that in WT. Whereas, the expression level of ICS1 in RNAi-4 decreased after inoculation and remained at a lower level. The PAL expression indicated an increasing trend, and the highest expression was 2.6 times as much as that of the control. PAL expression in RNAi-4 was down-regulated, basically consistent with the change of SA content, which further confirmed that CmWRKY15-1 was a novel regulator mediated by SA signal pathway in respond to Chrysanthemum White Rust. In addition, the analysis of the expression of disease resistance related genes in response to SA signal showed that the expression of these genes peaked at 40 h in OE-9. However, the PR5 was relatively delayed and peaked at 48 h, and their expression in RNAi-4 was significantly lower than that in WT and OE-9 except PR5. The overexpression of CmWRKY15-1 increased the transcription level of PR gene in SA signaling pathway. On the contrary, the silencing of CmWRKY15-1 reduced the expression of these genes.【Conclusion】Therefore, CmWRKY15-1 had a positive regulatory effect on resistance of Chrysanthemum White Rust, and it might respond to Chrysanthemum White Rust through the regulation of SA signal pathway.

Key words: chrysanthemum, CmWRKY15-1 gene, Chrysanthemum White Rust, SA, functional verification

Table 1

Primers used for cloning"

引物Primer 序列Sequence(5′-3′)
Npt Ⅱ F GGCTATGACTGGGCACAACA
Npt Ⅱ R GATACCGTAAAGCACGAGGAA
Actin-F TCCGTTGCCCTGAGGTTCT
Actin-R GATTTCCTTGCTCATCCTGTCA
CmWRKY15-1-F TGGTGGCTGCATCACAT
CmWRKY15-1-R GGAAGAATCAGTGCTAATACATTAA

Table 2

Primers used for cloning"

引物 Primer 序列 Sequence(5′-3′)
ICS1-F TCCCTACTGAAGAGGCACGG
ICS1-R CCAACAGCGGGTTCACTCTC
PAL-F ATGGCACCGAAGCAAGTCACAC
PAL-R GATACCCGAGTAACCCTGGAGGAG
NPR1-F TGTCGAGAAGGATGGAAAGCC
NPR1-R GGAGGCACCCATCATCAACA
PR1-F CTCAACCAAAAGGAATAGTCGG
PR1-R CCCTGCCAGTTTACGCTGTA
PR2-F GGCAATGGTGGTGTTGGAAC
PR2-R CTTCCTCCGTCAGCAGAAGG
PR5-F CCAATGGAGTTTAGCCCCGT
PR5-R GTCCACAACTACCACGCTCA

Fig. 1

PCR identification of potential transgenic plants a: PCR of pBI121-CmWRKY15-1; 1-18: Potential transgenic plants of pBI121-CmWRKY15-1. b: PCR of RNAi-CmWRKY15-1; 1-19: Potential transgenic plants of RNAi-CmWRKY15-1. M: DNA marker; W: Negative control; P: Positive control. The same as below"

Fig. 2

Semi quantitative detection of CmWRKY15-1 gene expression level"

Fig. 3

Relative expression level of CmWRKY15-1 in transgenic lines and WT Different small letters show significant difference (P<0.05). The same as below"

Fig. 4

Phenotypic differences of plant lines RNAi-4 after inoculated R1 and R2: The third leaves after inoculation in RNAi-4 (leaf surface and back); W1 and W2: The third leaves after inoculation in WT (leaf surface and back)"

Fig. 5

SA standard curve of plants WT: Wild-type plants; OE-9: Overexpression plants; RNAi-4: Silence plants. Different small letters show significant difference (P<0.05). The same as below"

Fig. 6

Relative expression levels of ICS1 and PAL"

Fig. 7

Relative expression levels of NPR1, PR1, PR2 and PR5"

[1] 田秀玲, 夏炳强, 罗凤霞, 邓丽琴. 菊花白色锈病的病原菌和侵染途径的初步研究. 沈阳农业大学学报, 1999,30(3):379-380.
TIAN X L, XIA B Q, LUO F X, DENG L Q. A preliminary study on the pathogen and infection pathway of white rust in chrysanthemum. Journal of Shenyang Aricultural University, 1999,30(3):379-380. (in Chinese)
[2] YONG K Y, YONG S R. Occurrence of white rust and growth of chrysanthemum ‘Baekma’ under various relative humidity and temperature conditions in the greenhouse. Korean Journal of Horticultural Science & Technology, 2014,32(6):803-811.
[3] 叶琪明, 梁训义, 方华平, 吴海峰, 江明全. 菊花白色锈病的病原菌和综合防治的初步研究. 农业网络信息, 2005(9):81.
YE Q M, LIANG X Y, FANG H P, WU H F, JIANG M Q. Preliminary study on the pathogen and integrated control of chrysanthemum white rust. Agricultural Network Information, 2005(9):81. (in Chinese)
[4] CHEN L G, SONG Y, LI S J, ZHANG L P, ZOU C S, YU D Q. The role of WRKY transcription factors in plant abiotic stresses. BBA-Gene Regulatory Mechanisms, 2012,1819:120-128.
doi: 10.1016/j.bbagrm.2011.09.002 pmid: 21964328
[5] WEI W, CUI M Y, HU Y, GAO K, XIE Y G, JIANG Y, FENG J Y. Ectopic expression of FvWRKY42, a WRKY transcription factor from the diploid woodland strawberry (Fragaria vesca), enhances resistance to powdery mildew, improves osmotic stress resistance, and increases abscisic acid sensitivity in Arabidopsis. Plant Science, 2018,275:60-74.
pmid: 30107882
[6] ZHAO J, ZHANG X M, GUO R R, WANG Y Q, GUO C L, LI Z, CHEN Z P, GAO H, WANG X P. Over-expression of a grape WRKY transcription factor gene, VlWRKY48, in Arabidopsis thaliana increases disease resistance and drought stress tolerance. Plant Cell, Tissue and Organ Culture, 2018,132(2):359-370.
[7] MANDAL A, SARKAR D, KUNDU S, KUNDU P. Mechanism of regulatin of tomato TRN1 gene expression in late infection with tomato leaf curl New Delhi virus (ToLCNDV). Plant Science, 2015,241:221-237.
pmid: 26706073
[8] 孙清鹏, 李娜, 于涌鲲, 赵福宽, 万善霞, 潘金豹. LeWRKY2基因的克隆及功能分析. 中国农业科学, 2012,45(7):1257-1264.
SUN Q P, LI N, YU Y K, ZHAO F K, WAN S X, PAN J B. Molecular cloning and analysis of LeWRKY2 gene. Scientia Agricultura Sinica, 2012,45(7):1257-1264. (in Chinese)
[9] 李胜男, 秦智伟, 辛明, 周秀艳. 霜霉威胁迫下黄瓜CsWRKY30表达及功能分析. 中国农业科学, 2016,49(7):1277-1288.
doi: 10.3864/j.issn.0578-1752.2016.07.006
LI S N, QIN Z W, XIN M, ZHOU X Y. Expression and functional analysis of CsWRKY30 in cucumber under propamocarb stress. Scientia Agricultura Sinica, 2016,49(7):1277-1288. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.07.006
[10] MERZ P R, MOSER T, HOLL J, KORTEKAMP A, BUCHHOLZ G, ZYPRIAN E, BOGS J. The transcription factor VvWRKY33 is involved in the regulation of grapevine ( Vitis vinifera) defense against the oomycete pathogen Plasmopara viticola. Physiologia Plantarum, 2015,153(3):365-380.
doi: 10.1111/ppl.12251 pmid: 25132131
[11] 张计育, 佟兆国, 高志红, 罗昌国, 渠慎春, 章镇. SA、MeJA、ACC和苹果轮纹病病原菌诱导湖北海棠MhWRKY1基因的表达. 中国农业科学, 2011,44(5):990-999.
ZHANG J Y, TONG Z G, GAO Z H, LUO C G, QU S C, ZHANG Z. Expression of MhWRKY1 gene induced by the elicitors SA, MeJA, ACC and the apple ring spot pathogen. Scientia Agricultura Sinica, 2011,44(5):990-999. (in Chinese)
[12] WANG X, LI J J, GUO J, QIAO Q, GUO X F, MA Y. The WRKY transcription factor PlWRKY65 enhances the resistance of Paeonia lactiflora (herbaceous peony) to Alternaria tenuissima. Horticulture Research, 2020,7(1):720-737.
[13] LI P L, SONG A P, GAO C Y, JIANG J F, CHEN S M, FANG W M, CHEN F D. The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance. Plant Physiology and Biochemistry, 2015,95:26-34.
pmid: 26184088
[14] FAN Q Q, SONG A P, XIN J J, CHEN S M, JIANG J F, WANG Y J, LI X R, CHEN F D. CmWRKY15 facilitates Alternaria tenuissima infection of chrysanthemum. PLoS ONE, 2015,10(11):e0143349.
doi: 10.1371/journal.pone.0143349 pmid: 26600125
[15] 司爱君, 陈红, 余渝, 孔宪辉, 刘丽, 王旭文, 田琴. WRKY转录因子在植物非生物胁迫抗逆育种中的应用. 江苏农业科学, 2019,47(16):9-13.
SI A J, CHEN H, YU Y, KONG X H, LIU L, WANG X W, TIAN Q. Application of WRKY transcription factor in abiotic stress resistance breeding. Jiangsu Agricultural Sciences, 2019,47(16):9-13. (in Chinese)
[16] NIU D D, WANG X J, WANG Y R, SONG X O, WANG J S, GUO J H, ZHAO H W. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1 and SA-dependent signaling pathway. Biochemical and Biophysical Research Communications, 2016,469(1):120-125.
[17] ZHONG Y, CHENG C Z, JIANG B, JIANG N H, ZHANG Y Y, HU M L, ZHONG G Y. Digital gene expression analysis of Ponkan mandarin (Citrus reticulata Blanco) in response to Asia citrus psyllid-vectored Huanglongbing infection. International Journal of Molecular Sciences, 2016,17(7):1063.
[18] NWUGO C C, LIN H, DUAN Y P, CIVEROLO E L. The effect of ‘Candidatus Liberibacter asiaticus’ infection on the proteomic profiles and nutritional status of pre-symptomatic and symptomatic grapefruit(Citrus paradisi)plants. BMC Plant Biology, 2013,13(1):59.
[19] RUSHTON P J, TORRES J T, PARNISKE M, WERNERT P, HAHLBROCK K, SOMSSICH I E. Interaction of elicitor-induced DNA- binding proteins with elicitor response elements in the promoters of parsley PR1 genes. The EMBO Journal, 1996,15(20):5690-5700.
pmid: 8896462
[20] HUH S U, CHOI L M, LEE G J, KIM Y J, PAEK K H. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection. Plant Science, 2012,197:50-58.
[21] VAN VERK M C, NEELEMAN L, BOL J F, LINTHORST H J M. Tobacco transcription factor NtWRKY12 interacts with TGA2.2 in vitro and in vivo. Frontiers in Plant Science, 2011,2:32
doi: 10.3389/fpls.2011.00032 pmid: 22639590
[22] DUAN Y J, JIANG Y Z, YE S L, KARIM A, LING Z Y, HE Y Q, YANG S Q, LUO K M. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana. Plant Cell Reports, 2015,34(5):831-841.
[23] DONG L, HUANG Z Q, LIU D, ZHU P F, LV S J, LI N, MAO H Y. Transcriptome analysis of chrysanthemm in responses to white rust. Scientia Horticulturae, 2018,233:421-430.
[24] MAMMARELLA N D, CHENG Z Y, FU Z Q, DAUDI A, BOLWELL G P, DONG X N, AUSUBEL F M. Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae. Phytochemistry, 2015,112:110-121.
pmid: 25096754
[25] THOMMA B P H J, PENNINCKX I A M A, BROEKAERT W F, CAMMUE B P A. The complexity of disease signaling in Arabidopsis. Current Opinion in Immunology, 2001,13(1):63-68.
doi: 10.1016/s0952-7915(00)00183-7 pmid: 11154919
[26] 吴志苹, 高亦珂, 范敏, 高耀辉. 菊花‘金不凋’再生及遗传转化体系的构建. 分子植物育种, 2020,18(1):150-158.
WU Z P, GAO Y K, FAN M, GAO Y H. Construction of regeneration and transformation system of chrysanthemum Jinbudiao. Molecular Plant Breeding, 2020,18(1):150-158. (in Chinese)
[27] 刘闵豪, 徐郡儡, 叶靖, 李周岐, 范睿深, 李龙. 农杆菌介导的杜仲叶片愈伤组织遗传转化体系. 林业科学, 2020,56(2):79-88.
LIU M H, XU J L, YE J, LI Z Q, FAN R S, LI L. Agrobacterium tumefaciens-mediated transformation of leaf callus in Eucommia ulmoides. Scientia Silvae Sinicae, 2020,56(2):79-88. (in Chinese)
[28] 毕蒙蒙, 祝朋芳, 李雪莹, 毛洪玉. 菊花CmDREBa-2基因的功能验证. 沈阳农业大学学报, 2019,50(4):406-413.
BI M M, ZHU P F, LI X Y, MAO H Y. Functional verification of CmDREBa-2 in chrysanthemum. Journal of Shenyang Agricultural University, 2019,50(4):406-413. (in Chinese)
[29] ZHU P F, ZHAO N L, QI D, LIU N, DUAN Y X. Optimization on identification standards and artificial inoculation methods in vitro on resistance to chrysanthemum white rust. Agricultural Science & Technology, 2011,12(11):1640-1644.
[30] WANG X, LI J J, GUO J, QIAO Q, GUO X F, MA Y. The WRKY transcription factor PlWRKY65 enhances the resistance of Paeonia lactiflora (herbaceous peony) to Alternaria tenuissima. Horticulture Research, 2020,7:57.
doi: 10.1038/s41438-020-0267-7 pmid: 32284869
[31] 李泽华, 杜娟, 贺学娇, 赵树堂, 刘颖丽, 卢孟柱. 杨树油菜素内酯合成基因DET2的克隆与功能分析. 林业科学研究, 2020,33(2):85-92.
LI Z H, DU J, HE X J, ZHAO S T, LIU Y L, LU M Z. Cloning and characterization of brassinosteriod biosynthesis-related gene DET2 in poplar. Forest Research, 2020,33(2):85-92. (in Chinese)
[32] 崔喜艳, 孙小杰, 刘忠野, 张继伟. RNAi机制及在植物中应用的研究概述. 吉林农业大学学报, 2013,35(2):160-166.
CUI X Y, SUN X J, LIU Z Y, ZHANG J W. A research review of RNA interference mechanisms and its applications in plants. Journal of Jilin Agricultural University, 2013,35(2):160-166. (in Chinese)
[33] GODGE M R, PURKAYASTHA A, DASGUPTA I, KUMAR P P. Virus-induced gene silencing for functional analysis of selected genes. Plant Cell Reports, 2008,27(2):209-219.
pmid: 17938933
[34] 白描, 杨国顺, 陈石, 张美玲. 植物系统性RNAi的研究进展. 基因组学与应用生物学, 2009,28(3):607-612.
BAI M, YANG G S, CHEN S, ZHANG M L. Progress in research of the plant systemic RNA interference. Genomics and Applied Biology, 2009,28(3):607-612. (in Chinese)
[35] GLAZEBROOK J, CHEN W, ESTES B, CHANG H S, NAWRAH C, METRAUX J P, ZHU T, KATAGIRI F. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. The Plant Journal, 2003,34(2):217-228.
doi: 10.1046/j.1365-313x.2003.01717.x pmid: 12694596
[36] KATAGIRI F. A global view of defense gene expression regulation-A highly interconnected signaling network. Current Opinion in Plant Biology, 2004,7(5):506-511.
[37] ROJO E, SOLANO R, SANCHEZ-SERRANO J J. Interactions between signaling compounds involved in plant defense. Plant Growth Regul, 2003,22(1):82-98.
[38] CAARLS L, PIETERSE C M J, VAN WEES S C M. How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science, 2015,6:170.
doi: 10.3389/fpls.2015.00170 pmid: 25859250
[39] 张红志, 蔡新忠. 病程相关基因非表达子1(NPR1): 植物抗病信号网络中的关键节点. 生物工程学报, 2005,21(4):511-515.
ZHANG H Z, CAI X Z. Nonexpressor of pathogenesis-related genes 1 (NPR1): A key node of plant disease resistance signalling network. Chinese Journal of Biotechnology, 2005,21(4):511-515.
[40] CHEN C H, CHEN Z X. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiology, 2002,129:706-716.
[41] TANG Y, KUANG J F, WANG F Y, CHEN L, HONG K Q, XIAO Y Y, XIE H, LU W J, CHEN J Y. Molecular characterization of PR and WRKY genes during SA-and MeJA-induced resistance against Colletotrichum musae in banana fruit. Postharvest Biology and Technology, 2013,79:62-68.
[42] 雷煜, 张振楠, 胡广, 刘建芬, 唐叶, 张宁, 司怀军, 吴家和. 棉花WRKY22基因分离及其对黄萎病的抗性分析. 华北农学报, 2018,33(6):160-168.
LEI Y, ZHANG Z N, HU G, LIU J F, TANG Y, ZHANG N, SI H J, WU J H. GhWRKY22 isolation and function analysis in cotton resistance to Verticillium wilt. Acta Agriculturae Boreali-Sinica, 2018,33(6):160-168. (in Chinese)
[1] XU Qian, WANG Han, MA Sai, HU QiuHui, MA Ning, SU AnXiang, LI Chen, MA GaoXing. Inhibition and Interaction of Pleurotus eryngii Polysaccharide and Its Digestion Products on Starch Digestive Enzymes [J]. Scientia Agricultura Sinica, 2023, 56(2): 357-367.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[4] ZHANG Rui,ZHANG TianLiu,FAN TingTing,ZHU Bo,ZHANG LuPei,XU LingYang,GAO HuiJiang,LI JunYa,CHEN Yan,GAO Xue. Evolutionary Relationship Between Transposable Elements and Tandem Repeats in Bovinae Species [J]. Scientia Agricultura Sinica, 2022, 55(9): 1859-1867.
[5] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[6] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[7] LI Hui,YIN ShiCai,GUO ZongXiang,MA HaoYun,REN ZiQi,SHE DongMei,MEI XiangDong,NING Jun. Synthesis and Bioactivity of Sex Pheromone Analogues of Protoschinia scutosa [J]. Scientia Agricultura Sinica, 2022, 55(9): 1790-1799.
[8] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[9] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[10] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[11] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[12] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[13] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
[14] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[15] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!