Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (10): 2081-2093.doi: 10.3864/j.issn.0578-1752.2011.10.013

• HORTICULTURE • Previous Articles     Next Articles

Molecular ID Establishment of Main China Peach Varieties and Peach Related Species

 CHEN  Chang-Wen, CAO  Ke, WANG  Li-Rong, ZHU  Geng-Rui, FANG  Wei-Chao   

  1. 1.中国农业科学院郑州果树研究所,郑州450009
  • Received:2010-10-15 Online:2011-05-15 Published:2011-01-10

Abstract: 【Objective】 A total of 237 peach germplasms including China landraces, bred varieties, and related species selected from national grape and peach repository of Zhengzhou were studied with SSR(simple sequence repeat) markers. Analysis was made to establish the 237 peach germplasms molecular ID and to study the methods for distinguishing the germplasms more simply.【Method】Germplasms were distinguished with selected SSR markers, bands that amplified by each marker were coded, then combined the code as a molecular ID. 【Result】The results showed that after screening of the 80 primers, 203 alleles were detected using 16 selected SSR markers located on each chromosome of peach, with a mean value of 12.7 alleles/locus. There were 123 selected alleles were coded to establish germplasms molecular ID based on strategy that alleles located both in landraces, bred and related germplasms. 【Conclusion】There were 202 out of 237 germplasms could be identified with an particular combined code numbers. Moreover, the identifying efficiency of different combinations of the primers were analyzed, 176 germplasms could be identified using 8 reduced core primers, with an average value of 22.1 germplasms/primers. The remaining primers have a higher identifying efficiency and more germplasms could be identified separately. At last, for distinguish germplasms more simply, through selection of the primer pairs according to its PIC step by step, the germplasms could be distinguished by a practical primer choice.

Key words: peaches (Prunus persica (L.) Batsch), related species, SSR, molecular ID

[1]FAO. Peaches and nectarines statistics, 2008. http://faostat.fao.org/ site/567/DesktopDefault.aspx?PageID=567#ancor.

[2]Association for Agriculture and Culture. Encyclopedia of Fruits-Prunus Persica. Tokyo: Agriculture Mountain and Fish Village Association in Japan, 1985: 83-91.

[3]Okie W R. Handbook of Peach and Nectarine Varieties. Springfield: The National Technical Information Service, 1998.

[4]汪祖华, 庄恩及. 中国果树志——桃卷. 北京: 中国林业出版社, 2001.

Wang Z H, Zhuang E J. Encyclopedia of Fruit in China—Scroll of Peach. Beijing: China Forestry Press, 2001. (in Chinese)

[5]Byrne D H. Trends in stone fruit cultivar development. Hort Technology, 2005(3): 494-500.

[6]宋  婉, 续九如. 果树种质资源鉴定及DNA指纹图谱应用研究进展. 北京林业大学学报,2000, 22(1): 76-80.

Song W, Xu J R. Progress in application of germplasm identification and fingerprinting of fruit trees. Journal of Beijing Forestry University, 2000, 22(1): 76-80. (in Chinese)

[7]Morgante M, Olivieri A. PCR-amplified microsatellites as markers in plant genetics. The Plant Journal, 1993, 3(1): 175-182.

[8]Gabriela R, Marco A M, Carlos M, Gamalier L, Patricio H. Identification of a minimal microsatellite marker panel for the fingerprinting of peach and nectarine cultivars. Electronic Journal of Biotechnology, 2008, 11(5): 1-12.

[9]Aranzana M J, Carbó J, Arús P. Microsatellite variability in peach [Prunus persica (L.) Batsch]: Cultivar identification; marker mutation; pedigree inferences and population structure. Theoretical and Applied Genetics, 2003, 106(8): 1341-1352.

[10]Poljuha D, Sladonja B, Šeti? E, Miloti? A, Bandelj D, Jakše J, Javornik B. DNA fingerprinting of olive varieties in Istria (Croatia) by microsatellite markers. Scientia Horticulturae, 2008, 115(3): 223-230.

[11]Dangl G S, Yang J, Golino D A, Gradziel T. A practical method for almond cultivar identification and parental analysis using simple sequence repeat markers. Euphytica, 2009, 168: 41-48.

[12]艾呈祥, 张力思, 魏海蓉, 苑克俊, 金松南, 刘庆忠. 甜樱桃品种SSR指纹图谱数据库的建立. 中国农学通报, 2007, 23(5): 55-58.

Ai C X, Zhang L S, Wei H R, Yuan K J, Jin S N, Liu Q Z. Construction of molecular fingerprinting database for sweet cherry using SSR markers. Chinese Agricultural Science Bulletin, 2007, 23(5): 55-58. (in Chinese)

[13]王静毅, 陈业渊, 黄秉智, 于  飞, 武耀廷. 部分香蕉品种SSR指纹图谱的构建. 果树学报, 2009, 26(5): 733-738.

Wang J Y, Chen Y Y, Huang B Z, Yu F, Wu Y T. Establishment of fingerprinting for bananas (Musa nana) by SSR marker. Journal of Fruit Science, 2009, 26(5): 733-738. (in Chinese)

[14]高运来, 朱荣胜, 刘春燕, 李文福, 蒋洪蔚, 李灿东, 姚丙晨, 胡国华, 陈庆山. 黑龙江部分大豆品种分子ID的构建. 作物学报, 2009, 35(2): 211-218.

Gao Y L, Zhu R S, Liu C Y, Li W F, Jiang H W, Li C D, Yao B C, Hu G H, Chen Q S. Establishment of molecular ID in soybean varieties in Heilongjiang, China. Acta Agronomica Sinica, 2009, 35(2): 211-218. (in Chinese)

[15]杨  阳, 刘  振, 赵  洋, 梁国强. 湖南省主要茶树品种分子指纹图谱的构建. 茶叶科学, 2010, 30(5): 367-373.

Yang Y, Liu Z, Zhao Y, Liang G Q. Construction of DNA fingerprints for tea cultivars originated from Hunan province. Journal of Tea Science, 2010, 30(5): 367-373. (in Chinese)

[16]刘新龙, 马  丽, 陈学宽, 应雄美, 蔡  青, 刘家勇, 吴才文. 云南甘蔗自育品种DNA指纹身份证构建. 作物学报, 2010, 36(2): 202-210.

Liu X L, Ma L, Chen X K, Ying X M, Cai Q, Liu J Y, Wu C W. Establishment of DNA fingerprint ID in sugarcane cultivars in Yunnan, China. Acta Agronomica Sinica, 2010, 36(2): 202-210. (in Chinese)

[17]Creste S, Tulmann-Neto A, Figueira A. Detection of simple sequence repeats polymorphisms in denaturating polyacrylamide sequencing gels by silver staining. Plant Molecular Biology Reporter, 2001, 19(4): 299-306.

[18]Dirlewanger E, Cosson P, Tavaud M, Aranzana M J, Poizat C, Zanetto A, Arús P, Laigret F. Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theoretical and Applied Genetics, 2002, 105(1): 127-138.

[19]Cipriani G, Lot G, Huang W G., Marrazzo M T, Peterlunger E, Testolin R. AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L.) Batsch): Isolation; characterisation and cross-species amplification in Prunus. Theoretical and Applied Genetics, 1999, 99(1/2): 65-72.

[20]Aranzana M J, Garcia-Mas J, Carbo J, Arús P. Development and variability analysis of microsatellite markers in peach. Plant Breeding, 2002, 121(1): 87-92.

[21]Romero C, Pedryc A, Muñoz V, Liácer G, Badenes M L. Genetic diversity of different apricot geographical groups determined by SSR markers. Genome, 2003, 46(2): 244-252.

[22]Testolin R, Marrazzo T, Cipriani G., Quarta R, Verde I, Dettori M T, Pancaldi M, Sansavini S. Microsatellite DNA in peach (Prunus persica (L.) Batsch) and its use infingerprinting and testing the genetic origin of cultivars. Genome, 2000, 43: 512-520.

[23]刘慧民, 刘一佳, 吕贵娥, 车代弟. 18种绣线菊分子身份证的构建和SCAR标记转化. 植物生理学通讯, 2009, 45(12): 1171-1176.

Liu H M, Liu Y J, Lü G E, Che D D. Establishment of molecular ID and conversion to SCAR marker in eighteen Spiraea species. Plant Physiology Communications, 2009, 45(12): 1171-1176. (in Chinese)

[24]郑海燕, 粟建光, 戴志刚, 李  燕, 陈基权, 龚友才. 利用ISSR和RAPD标记构建红麻种质资源分子身份证.中国农业科学, 2010, 43(17): 3499-3510.

Zheng H Y, Su J G, Dai Z G, Li Y, Chen J Q, Gong Y C. Establishment of molecular identity for kenaf germplasm using ISSR and RAPD markers. Scientia Agricultura Sinica, 2010, 43(17): 3499-3510. (in Chinese)

[25]齐  兰, 王文泉, 张振文, 叶剑秋, 李开绵. 利用SRAP标记构建18个木薯品种的DNA指纹图谱. 作物学报, 2010, 36(10): 1642-1648.

Qi L, Wang W Q, Zhang Z W, Ye J Q, Li K M. DNA fingerprinting analysis of 18 cassava varieties using sequence-related amplified polymorphism markers. Acta Agronomica Sinica, 2010, 36(10): 1642-1648. (in Chinese)
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[3] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[4] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[5] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[6] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[7] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[8] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[9] FAN XiaoJing, YU WenTao, CAI ChunPing, LIN Yi, WANG ZeHan, FANG WanPing, ZHANG JianMing, YE NaiXing. Construction of Molecular ID for Tea Cultivars by Using of Single- nucleotide Polymorphism (SNP) Markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760.
[10] HU DongMei,JIANG Dong,LI YongPing,PENG Lei,LI DongYun,ZHU YanSong,YANG YunGuang. Identification of Bud Sport Mutation of Satsuma Mandarin by Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096.
[11] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
[12] BI QiuYan,DANG ZhiHong,ZHU WeiQi,GAO ZhanLin,HAN XiuYing,ZHAO JianJiang,WANG WenQiao,LU Fen,WU Jie. Identification of Major Pathogenic Fungi of Soybean in Hebei Province and Screening of Control Fungicides [J]. Scientia Agricultura Sinica, 2021, 54(1): 71-85.
[13] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[14] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[15] CHEN XiaoHong,HE JieLi,SHI TianTian,SHAO HuanHuan,WANG HaiGang,CHEN Ling,GAO ZhiJun,WANG RuiYun,QIAO ZhiJun. Developing SSR Markers of Proso Millet Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(10): 1940-1949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!