Scientia Agricultura Sinica ›› 2010, Vol. 43 ›› Issue (4): 698-705 .doi: 10.3864/j.issn.0578-1752.2010.04.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Glyphosate and Post-Drought Rewatering on Protective Enzyme Activities and Membrane Lipid Peroxidation in Leaves of Glyphosate-Resistant Soybean [Glycine max (L.) Merr.] Seedlings

YUAN Xiang-yang, GUO Ping-yi, ZHANG Li-guang, WANG Xin, ZHAO Rui, GUO Xiu, SONG Xi-e
  

  1. (山西农业大学农学院作物化学调控与化学除草实验室)
  • Received:2009-05-18 Revised:2009-09-19 Online:2010-02-20 Published:2010-02-20
  • Contact: GUO Ping-yi

Abstract:

【Objective】 The study was performed to explore glyphosate and post-drought rewatering on protective enzyme activities and membrane lipid peroxidation in leaves of glyphoste-resistant soybean seedlings (RR1). 【Method】 Through pot experiment, water stress and glyphosate treatments were conducted at three-trifoliolate leaf stage. Superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) activities, and malondialdehyde (MDA) content and relative conductivity (EL) of RR1 were analyzed. 【Result】 In normal water condition, glyphosate increased SOD, POD, and CAT activities, MDA content, and EL of RR1, and which increased with increasing of glyphosate dosage and prolonged time in the first 5 days after glyphosate treatment. Seventeen days later, these indicators declined to some extent. In drought condition, SOD, POD, and CAT activities of RR1 treated with higher glyphosate dosages increased first and then reduced, and that treated with lower glyphosate dosages increased with prolonged stress time. However, MDA content and EL of RR1 treated with each glyphosate dosage increased to the largest on the 5th day, and declined 12 days after rewatering. The SOD, POD, and CAT activities, MDA content and EL of RR1 treated with glyphosate in drought condition were higher than that in normal water condition. 【Conclusion】 In normal water condition, the injury of RR1 caused by glyphosate could be eased through a period of growth and development. The reasons which drought stress aggravated the injury of RR1 caused by glyphosate were metabolic imbalance of reactive oxygen species, changes in protective enzyme activities and increased in the plasma membrane peroxidation. Rewatering after short-term drought stress could enhance the drought–resistant or stress-adaptive ability of the cell membrane.

Key words: drought, glyphosate, glyphosate-resistant soybean, protective enzymes, membrane lipid peroxidation

[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[4] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[5] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[6] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[7] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[8] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[9] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[10] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[11] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[12] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[13] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[14] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
[15] YAN ZhenHua,LIU DongYao,JIA XuCun,YANG Qin,CHEN YiBo,DONG PengFei,WANG Qun. Maize Tassel Development, Physiological Traits and Yield Under Heat and Drought Stress During Flowering Stage [J]. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!