Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (24): 5175-5189.doi: 10.3864/j.issn.0578-1752.2025.24.006

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Amino Acid Substitutions at Different Sites of Succinate Dehydrogenase on the Sensitivity of Magnaporthe oryzae to Benzovindiflupyr

WANG MengYun(), DENG LiYuan, YU Yang, YANG YuHeng, FANG AnFei, TIAN BinNian, WANG Jing, BI ChaoWei*()   

  1. College of Plant Protection, Southwest University, Chongqing 400715
  • Received:2025-08-19 Accepted:2025-09-26 Online:2025-12-22 Published:2025-12-22
  • Contact: BI ChaoWei

Abstract:

【Background】Rice blast, caused by Magnaporthe oryzae, is a devastating fungal disease that seriously threatens rice yield. Benzovindiflupyr developed by Syngenta belongs to the new structure of succinate dehydrogenase inhibitors (SDHIs) fungicides, which has a significant inhibitory effect on M. oryzae, but the research on the resistance mechanism of M. oryzae is relatively scarce.【Objective】This study aims to explore the internal mechanism of M. oryzae against benzovindiflupyr, and to provide a theoretical basis for scientifically guiding the application of benzovindiflupyr in the prevention and control of rice blast, prolonging its effective service life and ensuring the control effect.【Method】Homology comparison, molecular docking and site-directed mutagenesis were used to explore the reasons for the difference in sensitivity of M. oryzae to different SDHIs fungicides (benzovindiflupyr, bixafen, fluxapyroxad, carboxin and fluopyram), and the effect of amino acid substitution at different sites on the affinity of benzovindiflupyr to M. oryzae was analyzed.【Result】75 strains of M. oryzae collected in the field were highly sensitive to benzovindiflupyr, with an average EC50 value of 0.041 μg·mL-1, which was distributed between 0.018 and 0.068 μg·mL-1. The interaction between five SDHIs fungicides and MoSdh was different, including hydrogen bonding, π-π stacking and hydrophobic interaction. The affinity of these fungicides to MoSdh from high to low was benzovindiflupyr, bixafen, fluxapyroxad, carboxin and fluopyram, which corresponded to the EC50 values of these five SDHIs fungicides to M. oryzae (from low to high). A total of 15 types of amino acid substitutions were found in the 8 sites of the succinate dehydrogenase complex of M. oryzae. Among them, 7 sites such as B subunit P198 were highly conserved, while the amino acids at the S77 site in the C subunit were species-specific. Most of the substitutions affected the binding affinity of benzovindiflupyr to MoSdh (mainly related to hydrophobic interaction and π-π stacking number). Among them, 11 substitutions such as MoSdhBP198Q and MoSdhBR243H resulted in a decrease in affinity, and the sensitivity of SdhBH245D/L/Y mutant to benzovindiflupyr decreased, which was consistent with the change of affinity.【Conclusion】Molecular docking technology can be used as an effective method to preliminarily screen SDHIs fungicides with prevention and control effects on M. oryzae. Amino acid substitutions in B, C and D subunits of M. oryzae, including MoSdhBP198Q, MoSdhBR243H, MoSdhBH245D/L/Y/Q, MoSdhBI247V/N, MoSdhCS77N, MoSdhDD122G/N, can lead to resistance of M. oryzae to benzovindiflupyr.

Key words: Magnaporthe oryzae, benzovindiflupyr, succinate dehydrogenase, site-directed mutation, molecular docking

Table 1

Primers for site-directed mutagenesis vector construction"

引物名称
Primer name
序列
Sequence (5′-3′)
产物
Production description
P1F CGAGCTCCTCACATCTTGCCATCCTCGGTAC 扩增构建pSKH载体的上游片段(1568 bp)Amplify the upstream fragment (1568 bp) for constructing the pSKH vector
P1R TTGCGGCCGCTCATACGAAAGCCATCTCCTTCTTGAT
P2F CAAGCTTGGTGTGTGAGGAAGACGGTGATAGA 扩增构建pSKH载体的下游片段(1128 bp)Amplify the downstream fragment (1128 bp) for constructing the pSKH vector
P2R CCCCGGGACGCTTGTTGTTGTTAGGTTGTATTCG
Jsac TTAACCCTCACTAAAGGGAAC 验证构建pSKH载体的上游片段(1649 bp)Verify the upstream fragment (1649 bp) of the constructed pSKH vector
Jnot TTCAATATCATCTTCTGTCGAC
Jsma CCAGAATGCACAGGTACACTTGTT 验证构建pSKH载体的下游片段(1276 bp)Verify the downstream fragment (1276 bp) of the constructed pSKH vector
Jhind ACGACTCACTATAGGGCGAATTGG
L1F CATGAGCCTGTACCGTTGCCTCACCATTCTTAACTGCACAAG 构建MoSdhBH245L质粒载体
Construct the MoSdhBH245L plasmid vector
L1R CTTGTGCAGTTAAGAATGGTGAGGCAACGGTACAGGCTCATG
Y1F CCATGAGCCTGTACCGTTGCTACACCATTCTTAACTGCAC 构建MoSdhBH245Y质粒载体
Construct the MoSdhBH245Y plasmid vector
Y1R GTGCAGTTAAGAATGGTGTAGCAACGGTACAGGCTCATGG
DF TGATCCTCGGTGGCTACTG 扩增原生质体转化所需的大片段(4597 bp)
Amplify the large fragment (4597 bp) required for protoplast transformation
DR CGCTTGTTGTTGTTAGGTTGTA
JP1F TCCACCATTGAATGCGACCATGAA 验证转化子的上游片段(1859 bp)
Verify the upstream fragment (1859 bp) of the transformant
JP1R ATGTCCTCGTTCCTGTCTGCTAATAAG
JP2F CGGCGAAGCAGAAGAATAGC 验证转化子的下游片段(2030 bp)
Verify the downstream fragment (2030 bp) of the transformant
JP2R CTGGAAGGGCGTGTTGAAC

Fig. 1

Baseline of sensitivity of M. oryzae to benzovindiflupyr"

Fig. 2

Homology alignment of succinate dehydrogenase complex subunits in different crop pathogenic fungi"

Fig. 3

Molecular docking binding mode of SDHIs and MoSdh in M. oryzae"

Table 2

Sensitivity of wild-type M. oryzae to SDHIs and the molecular docking binding mode of SDHIs and MoSdh"

杀菌剂
Fungicide
药剂结合腔
Binding pocket
(≤5 Å)
结合模式Binding mode EC50
(μg·mL-1)
MoSdh与SDHIs的
结合亲和力
Docking affinity of MoSdh
with SDHIs (kJ·mol-1)
疏水作用
Hydrophobic
interaction
氢键
Hydrogen
bond
其他作用力
Other
interaction
苯并烯氟菌唑
Benzovindiflupyr
B-W202, P198, I247 B-P198, I247 B-W202 0.027 -30.209
C-L66, V80 C-L66, V80
D-Y123 D-Y123 D-Y123 D-Y123 (π-π stacking)
联苯吡菌胺
Bixafen
C-L66, V80, R83 C-L66, V80, R83 2.567 -27.363
D-Y123 D-Y123 D-Y123 D-Y123 (π-π stacking)
氟唑菌酰胺
Fluxapyroxad
B-P198, I247 B-P198, I247 8.230 -24.727
C-L66, L76, V80 C-L66, L76, V80
D-Y123 D-Y123 D-Y123 (π-π stacking)
萎锈灵
Carboxin
B-H245, I247 B-H245, I247 20.334 -23.598
C-R83, V80 C-R83, V80 C-R83 (π-π stacking)
D-Y123 D-Y123
氟吡菌酰胺
Fluopyram
B-W202, S199, H245, I247 B-H245, I247 B-W202 B-S199 (Halogen bond) >200 -23.221
C-V80, R83 C-V80 C-R83 (π-π stacking)
D-Y123 D-Y123 (π-π stacking)

Fig. 4

Molecular docking binding mode of benzovindiflupyr with MoSdh of different types of M. oryzae"

Table 3

Molecular docking of benzovindiflupyr with MoSdh of different types of M. oryzae"

突变方式
Mutation mode
药剂结合腔
Binding pocket
(≤5 Å)
结合模式Binding mode MoSdh与苯并烯氟菌唑的结合亲和力
Docking affinity of MoSdh with benzovindiflupyr (kJ·mol-1)
MoSdh与苯并烯氟菌唑的结合亲和力变化
Change of binding affinity between MoSdh and benzovindiflupyr (kJ·mol-1)
疏水作用
Hydrophobic interaction
氢键
Hydrogen bond
其他作用力
Other interaction
野生型Wild-type B-W202, P198, I247 B-P198, I247 B-W202 D-Y123
(π-π stacking)
-30.209 0
C-L66, V80 C-L66, V80
D-Y123 D-Y123 D-Y123
SdhBH245D B-W202, P198 B-P198 B-W202 D-Y123
(π-π stacking)
-28.326 1.883
C-L66, V80 C-L66, V80
D-Y123 D-Y123
SdhBH245L B-W202, P198, I247 B-P198, I247 B-W202 -29.539 0.670
C-L66, V80 C-L66, V80
D-Y123 D-Y123 D-Y123
SdhBH245Y B-W202, P198 B-P198 B-W202 -29.999 0.209
C-L66, V80 C-L66, V80
D-Y123 D-Y123 D-Y123
SdhBH245Q B-W202, I247 B-I247 B-W202 -29.748 0.460
C-L66, V80 C-L66, V80
D-Y123 D-Y123 D-Y123
SdhBP198Q B-H245, W202 B-H245 B-W202 C-R83
(π-π stacking)
-29.414 0.795
C-Q82, R83 C-Q82
SdhBN203H B-W202, P198, I247 B-P198, I247 B-W202 -30.376 -0.167
C-L66, V80 C-L66, V80
D-Y123 D-Y123 D-Y123
SdhBN203K B-W202, P198, I247 B-P198, I247 B-W202 D-Y123
(π-π stacking)
-30.167 0.042
C-L66, V80 C-L66, V80
D-Y123 D-Y123 D-Y123
SdhBR243H B-W202, P198, I247 B-P198, I247 B-W202 D-Y123
(π-π stacking)
-27.949 2.259
C-L66, V80 C-L66, V80
D-Y123 D-Y123
SdhBI247V B-W202, P198, I247 B-P198 B-W202 D-Y123
(π-π stacking)
-28.870 1.339
C-L66, V80 C-L66, V80
D-Y123 D-Y123 D-Y123
SdhBI247N B-W202, P198 B-P198 B-W202 -29.455 0.753
C-L66, V80 C-L66, V80 N247
D-Y123 D-Y123 D-Y123
SdhCL66F B-W202, P198, I247 B-P198, W202, I247 B-W202 D-Y123
(π-π stacking)
-32.593 -2.385
C-F66, V80 C-F66, V80
D-Y123 D-Y123 D-Y123
SdhCL66R B-P198, W201, W202, I247 B-P198, W201, I247 B-W202 D-D122 (Halogen bond) -31.840 -1.632
C-R66, Y71, L76, V80 C-R66, Y71, L76, V80 C-R66
D-D122
SdhCS77N B-W202, P198, I247 B-P198, I247 B-W202 -29.957 0.251
C-L66, V80 C-L66, V80
D-Y123 D-Y123 D-Y123
SdhDD122G B-W202, I247 B-I247 B-W202 -27.656 2.552
C-L66, V80 C-L66, V80
D-Y123 D-Y123
SdhDD122N B-W202, P198, I247 B-P198, I247 B-W202 -28.033 2.176
C-L66, V80 C-L66, V80
D-Y123 D-Y123

Fig. 5

Verification of site-directed mutant strains"

Table 4

Sensitivity of different types of strains to benzovindiflupyr"

菌株
Strain
基因型
Genotype
回归方程
Equation of regression (y=)
R2 EC50 (μg·mL-1) RF 抗性水平
Resistance level
wz-1 7.4741+1.5842x 0.992 0.027
H1 8.8909+2.5357x 0.972 0.029 1 S
D3 SdhBH245D 4.2376+0.9175x 0.953 6.776 247 HR
D5 SdhBH245D 4.3753+0.6525x 0.947 9.066 331 HR
Y8 SdhBH245Y 5.8840+1.3997x 0.972 0.234 7 LR
Y9 SdhBH245Y 5.8630+1.4149x 0.973 0.246 9 LR
Y10 SdhBH245Y 6.2961+1.6271x 0.994 0.160 6 LR
L12 SdhBH245L 3.5038+0.9303x 0.999 40.579 1481 VHR
L14 SdhBH245L 3.5434+0.9548x 0.981 33.539 1224 VHR
L15 SdhBH245L 3.3332+1.0327x 0.989 41.117 1501 VHR
N1 SdhBN203H 5.8713+1.4021x 0.923 0.239 9 LR
R1 SdhBR243H 7.8322+2.9574x 0.917 0.110 4 S
[1]
WANG Y, LI J. The plant architecture of rice (Oryza sativa). Plant Molecular Biology, 2005, 59(1): 75-84.

pmid: 16217603
[2]
SHARMA T R, RAI A K, GUPTA S K, VIJAYAN J, DEVANNA B N, RAY S. Rice blast management through host-plant resistance: Retrospect and prospects. Agricultural Research, 2012, 1(1): 37-52.

doi: 10.1007/s40003-011-0003-5
[3]
褚晋, 闫晗, 徐晗, 缪建锟, 杨皓, 董海. 辽宁省稻瘟病菌对肟菌酯敏感性监测. 植物病理学报, 2021, 51(1): 95-103.

doi: 10.13926/j.cnki.apps.000350
CHU J, YAN H, XU H, MIAO J K, YANG H, DONG H. Sensitivity detection of Magnaporthe oryzae to trifloxystrobin in Liaoning Province. Acta Phytopathologica Sinica, 2021, 51(1): 95-103. (in Chinese)

doi: 10.13926/j.cnki.apps.000350
[4]
孙国昌, 杜新法, 陶荣祥, 孙漱沅. 水稻稻瘟病防治策略和21世纪研究展望. 植物病理学报, 1998, 28(4): 289-292.
SUN G C, DU X F, TAO R X, SUN S Y. Control tactics and research prospect of rice blast in the 21st century. Acta Phytopathologica Sinica, 1998, 28(4): 289-292. (in Chinese)
[5]
DEAN R, VAN KAN J A, PRETORIUS Z A, HAMMOND-KOSACK K E, DI PIETRO A, SPANU P D, RUDD J J, DICKMAN M, KAHMANN R, ELLIS J, FOSTER G D. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, 13(4): 414-430.

doi: 10.1111/j.1364-3703.2011.00783.x pmid: 22471698
[6]
FERNANDEZ J, ORTH K. Rise of a cereal killer: The biology of Magnaporthe oryzae biotrophic growth. Trends in Microbiology, 2018, 26(7): 582-597.

doi: 10.1016/j.tim.2017.12.007
[7]
DAGDAS Y F, YOSHINO K, DAGDAS G, RYDER L S, BIELSKA E, STEINBERG G, TALBOT N J. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science, 2012, 336(6088): 1590-1595.

doi: 10.1126/science.1222934 pmid: 22723425
[8]
ASIBI A E, CHAI Q, COULTER J A. Rice blast: A disease with implications for global food security. Agronomy, 2019, 9(8): 451.

doi: 10.3390/agronomy9080451
[9]
朱凤, 田子华, 邰德良, 刘永锋. 从2014年稻瘟病重发谈今后防控对策的改进. 江苏农业科学, 2016, 44(8): 155-158.
ZHU F, TIAN Z H, TAI D L, LIU Y F. The improvement of prevention and control measures in the future was discussed from the recurrence of rice blast in 2014. Jiangsu Agricultural Sciences, 2016, 44(8): 155-158. (in Chinese)
[10]
张传清, 周明国, 朱国念. 稻瘟病化学防治药剂的历史沿革与研究现状. 农药学学报, 2009, 11(1): 72-80.
ZHANG C Q, ZHOU M G, ZHU G N. The historical evolution and research status of rice blast chemical control agents. Chinese Journal of Pesticide Science, 2009, 11(1): 72-80. (in Chinese)
[11]
D’ÁVILA L S, DE FILIPPI M C C, CAFÉ-FILHO A C. Sensitivity of Pyricularia oryzae populations to fungicides over a 26-year time frame in Brazil. Plant Disease, 2021, 105(6): 1771-1780.

doi: 10.1094/PDIS-08-20-1806-RE
[12]
KIMURA N, FUKUCHI A. MBI-D resistance management of Pyricularia oryzae using an application program incorporating benomyl. Journal of Pesticide Science, 2018, 43(1): 33-35.

doi: 10.1584/jpestics.D17-064
[13]
MAO X, WANG Y, HOU Y, ZHOU M. Activity of the succinate dehydrogenase inhibitor fungicide penthiopyrad against Sclerotinia sclerotiorum. Plant Disease, 2020, 104(10): 2696-2703.

doi: 10.1094/PDIS-10-19-2253-RE
[14]
HUANG X P, LUO J, SONG Y F, LI B X, MU W, LIU F. Favorable bioactivity of the SDHI fungicide benzovindiflupyr against Sclerotinia sclerotiorum mycelial growth, sclerotial production, and myceliogenic and carpogenic germination of sclerotia. Plant Disease, 2019, 103(7): 1613-1620.

doi: 10.1094/PDIS-05-18-0729-RE
[15]
HE L, CUI K, SONG Y, MU W, LIU F. High-efficiency control of gray mold by the novel SDHI fungicide benzovindiflupyr combined with a reasonable application approach of dipping flower. Journal of Agricultural and Food Chemistry, 2018, 66(26): 6692-6698.

doi: 10.1021/acs.jafc.8b01936 pmid: 29889512
[16]
DENG L, SUN W, YU Y, YANG Y, FANG A, TIAN B, WANG J, BI C. Two types of amino acid substitutions in the succinate dehydrogenase complex subunit confer resistance to benzovindiflupyr in Colletotrichum sublineola. Pest Management Science, 2025, 81(1): 69-79.

doi: 10.1002/ps.v81.1
[17]
AVENOT H F, MICHAILIDES T J. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection, 2010, 29(7): 643-651.

doi: 10.1016/j.cropro.2010.02.019
[18]
HORSEFIELD R, YANKOVSKAYA V, SEXTON G, WHITTINGHAM W, SHIOMI K, OMURA S, BYRNE B, CECCHINI G, IWATA S. Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): A mechanism of electron transfer and proton conduction during ubiquinone reduction. Journal of Biological Chemistry, 2006, 281(11): 7309-7316.

doi: 10.1074/jbc.M508173200 pmid: 16407191
[19]
SARASTE M. Oxidative phosphorylation at the fin de siècle. Science, 1999, 283(5407): 1488-1493.

doi: 10.1126/science.283.5407.1488 pmid: 10066163
[20]
LIU S, MA J, JIANG B, YANG G, GUO M. Functional characterization of MoSdhB in conferring resistance to pydiflumetofen in blast fungus Magnaporthe oryzae. Pest Management Science, 2022, 78(10): 4018-4027.

doi: 10.1002/ps.v78.10
[21]
AVENOT H, SELLAM A, MICHAILIDES T. Characterization of mutations in the membrane-anchored subunits AaSDHC and AaSDHD of succinate dehydrogenase from Alternaria alternata isolates conferring field resistance to the fungicide boscalid. Plant Pathology, 2009, 58(6): 1134-1143.

doi: 10.1111/ppa.2009.58.issue-6
[22]
GUO M, ZHU X, LI H, TAN L, PAN Y. Development of a novel strategy for fungal transformation based on a mutant locus conferring carboxin-resistance in Magnaporthe oryzae. AMB Express, 2016, 6(1): 57.

doi: 10.1186/s13568-016-0232-x
[23]
HE L, CUI K, SONG Y, LI T, LIU N, MU W, LIU F. Activity of the novel succinate dehydrogenase inhibitor fungicide pydiflumetofen against SDHI-sensitive and SDHI-resistant isolates of Botrytis cinerea and efficacy against gray mold. Plant Disease, 2020, 104(8): 2168-2173.

doi: 10.1094/PDIS-12-19-2564-RE
[24]
SUN H Y, CUI J H, TIAN B H, CAO S L, ZHANG X X, CHEN H G. Resistance risk assessment for Fusarium graminearum to pydiflumetofen, a new succinate dehydrogenase inhibitor. Pest Management Science, 2020, 76(4): 1549-1559.

doi: 10.1002/ps.v76.4
[25]
CUI K, JIANG C, SUN L, WANG M, HE L, ZHOU L. Resistance risk assessment for benzovindiflupyr in Sclerotium rolfsii and transmission of resistance genes among population. Pest Management Science, 2024, 80(8): 3979-3987.

doi: 10.1002/ps.v80.8
[26]
SUN Y, LIU X, YING J, HE Z, TIAN G, LIU W, CHEN X, GU C, CHEN Y. Investigation of antifungal activity and assessment of resistance risk of fungicide benzovindiflupyr in Pyricularia oryzae. Journal of Agricultural and Food Chemistry, 2025, 73(19): 11960-11971.

doi: 10.1021/acs.jafc.5c02583
[27]
DENG L, LIU M, YU Y, YANG Y, FANG A, TIAN B, WANG J, BI C. Amino acid mutation of succinate dehydrogenase complex induced resistance to benzovindiflupyr in Magnaporthe oryzae. Pesticide Biochemistry and Physiology, 2024, 203: 106027.

doi: 10.1016/j.pestbp.2024.106027
[28]
LIU X, SUN Y, LIU C, LIU B, LI T, CHEN X, CHEN Y. Various amino acid substitutions in succinate dehydrogenase complex regulating differential resistance to pydiflumetofen in Magnaporthe oryzae. Pesticide Biochemistry and Physiology, 2024, 203: 105990.

doi: 10.1016/j.pestbp.2024.105990
[29]
European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance benzovindiflupyr. EFSA Journal, 2015, 13(3): 4043.

doi: 10.2903/j.efsa.2015.4043 pmid: 40061606
[30]
HU M J, FERNÁNDEZ-ORTUÑO D, SCHNABEL G. Monitoring resistance to SDHI fungicides in Botrytis cinerea from strawberry fields. Plant Disease, 2016, 100(5): 959-965.

doi: 10.1094/PDIS-10-15-1210-RE
[31]
CHEN W, WEI L, ZHAO W, WANG B, ZHENG H, ZHANG P, LOU T, DUAN Y, HOU Y, ZHOU M, CHEN C. Resistance risk assessment for a novel succinate dehydrogenase inhibitor pydiflumetofen in Fusarium asiaticum. Pest Management Science, 2021, 77(1): 538-547.

doi: 10.1002/ps.v77.1
[32]
AVENOT H F, SELLAM A, KARAOGLANIDIS G, MICHAILIDES T J. Characterization of mutations in the iron-sulphur subunit of succinate dehydrogenase correlating with boscalid resistance in Alternaria alternata from California pistachio. Phytopathology, 2008, 98(6): 736-742.

doi: 10.1094/PHYTO-98-6-0736
[1] YAO Hong, SHI ShouRong, ZHAO RuQian. The Potential and Mechanism of Chlorogenic Acid to Alleviate Intestinal Inflammation in Chickens Based on Network Pharmacology and Molecular Docking [J]. Scientia Agricultura Sinica, 2025, 58(3): 600-616.
[2] LIU ZhuoLin, LIU HongYun. The Potential and Mechanisms of Apigenin to Relieve Heat Stress and Hypoxia in Dairy Cows Based on Network Pharmacology and Molecular Docking [J]. Scientia Agricultura Sinica, 2024, 57(5): 1010-1022.
[3] ZHAO Jie, ZHAO LongYuan, PAN NingHui, GUAN LiRong, DU YunLong, LI ChengYun, WANG YunYue, XIE Yong. Hydrolase Gene BGIOSGA023826 Involved in Regulation of Resistance Process to Rice Blast [J]. Scientia Agricultura Sinica, 2024, 57(23): 4607-4618.
[4] LIU RUI, ZHAO YuHan, GU XinYi, WANG YanXia, JIN XueHui, WU WeiHuai, ZHANG YaLing. Distribution and Variation Analysis of AVR-Pita Family in Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(3): 466-480.
[5] LI li, SUN ling, ZHANG JinHua, ZOU XiaoWei, SUN Hui, REN JinPing, JIANG ZhaoYuan, LIU XiaoMei. Evaluation of Resistance and Analysis of Utilization Value of the Major Japonica Rice Varieties in Jilin Province Based on the Physiological Race Variation of Magnaporthe oryzae [J]. Scientia Agricultura Sinica, 2023, 56(22): 4441-4452.
[6] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[7] NIAN HeFen, ZHANG YuXi, LI BoLiao, CHEN XiuLin, LUO Kun, LI GuangWei. Expression and Ligand Binding Characteristics of GfunOBP2 from Grapholita funebrana [J]. Scientia Agricultura Sinica, 2023, 56(12): 2302-2316.
[8] LI GuiXiang,LI XiuHuan,HAO XinChang,LI ZhiWen,LIU Feng,LIU XiLi. Sensitivity of Corynespora cassiicola to Three Common Fungicides and Its Resistance to Fluopyram from Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1359-1370.
[9] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[10] WU YunYu,XIAO Ning,YU Ling,CAI Yue,PAN CunHong,LI YuHong,ZHANG XiaoXiang,HUANG NianSheng,JI HongJuan,DAI ZhengYuan,LI AiHong. Construction and Analysis of Broad-Spectrum Resistance Gene Combination Pattern for Japonica Rice in Lower Region of the Yangtze River, China [J]. Scientia Agricultura Sinica, 2021, 54(9): 1881-1893.
[11] XiaoHe LIU,GuiSheng QIU,ZhaoGuo TONG,HuaiJiang ZHANG,WenTao YAN,Qiang YUE,LiNa SUN. Ligands Binding Characteristics of Chemosensory Protein CsasCSP16 of Carposina sasakii [J]. Scientia Agricultura Sinica, 2021, 54(5): 945-958.
[12] QIN JianHui,LI JinQiao,ZHAO Xu,LI KeBin,CAO YaZhong,YIN Jiao. Expression, Purification and Functional Analysis of Odorant Binding Protein 11 (OBP11) in Anomala corpulenta [J]. Scientia Agricultura Sinica, 2021, 54(14): 3017-3028.
[13] LI ZuRen,LUO DingFeng,BAI HaoDong,XU JingJing,HAN JinCai,XU Qiang,WANG RuoZhong,BAI LianYang. Cloning and Expression Analysis of Light Harvesting Chlorophyll a/b Protein Gene CcLhca-J9 in Conyza canadensis [J]. Scientia Agricultura Sinica, 2021, 54(1): 86-94.
[14] MENG Feng,ZHANG YaLing,JIN XueHui,ZHANG XiaoYu,JIANG Jun. Detection and Analysis of Magnaporthe oryzae Avirulence Genes AVR-Pib, AVR-Pik and AvrPiz-t in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2019, 52(23): 4262-4273.
[15] WANG WenJuan,SU Jing,YANG JianYuan,WEI XiaoYan,CHEN KaiLing,CHEN Zhen,CHEN Shen,ZHU XiaoYuan. Analysis of Magnaporthe oryzae Avirulent Genes in the Infected Hybrid Rice Combinations Derived from a Sterile Line of Guang 8 A [J]. Scientia Agricultura Sinica, 2018, 51(24): 4633-4646.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!