Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (14): 3017-3028.doi: 10.3864/j.issn.0578-1752.2021.14.008

• PLANT PROTECTION • Previous Articles     Next Articles

Expression, Purification and Functional Analysis of Odorant Binding Protein 11 (OBP11) in Anomala corpulenta

QIN JianHui(),LI JinQiao,ZHAO Xu,LI KeBin,CAO YaZhong,YIN Jiao()   

  1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2020-10-31 Accepted:2020-12-05 Online:2021-07-16 Published:2021-07-26
  • Contact: Jiao YIN E-mail:17863800974@163.com;jyin@ippcaas.cn

Abstract:

【Objective】The objective of this research is to explore the function of Anomala corpulenta odorant binding protein 11 (AcorOBP11) by studying the binding characteristics of AcorOBP11 with the host plant volatiles, and to lay the foundation for clarifying the olfactory molecular mechanism of AcorOBP11.【Method】Reverse transcription PCR (RT-PCR) was used to clone the full-length ORF ofAcorOBP11 by specific primers, and sequences with high similarity were downloaded for sequence comparison and analysis by BLAST. Prokaryotic expression of AcorOBP11 was conducted by Escherichia coliprotein expression system, the OBP11 was inserted into the expression vector pET28a, and the recombinant plasmid was transferred into E. coli competent cells BL21 (DE3). The target protein was purified by using recombinant enterokinase to remove the His-tag and purified again by using a nickel column. The purified protein was diluted with 50 mmol·L-1 Tris-HCl (pH 7.4) to a dilution of 2 μmol·L-1, and the odorant was diluted with chromatographic grade methanol to a final concentration of 1 mmol·L-1, and 1-NPN was used as a fluorescent probe to determine the binding characteristics of AcorOBP11 to 37 host plant volatiles by fluorescence competitive binding assay. Modeller was used to obtain the three-dimensional structure of AcorOBP11 by using AgamOBP48 (PDB ID: 4ij7) as a template. Autodock semi-flexible docking was used to simulate the binding of AcorOBP11 to host plant volatiles.【Result】The full-length ORF ofAcorOBP11 was amplified, which is 639 bp in total, including 17 amino acids of signal peptide at the N-terminal. With eight conserved cysteine sites, AcorOBP11 belongs to the Plus-C OBP subfamily. The evolutionary tree results indicated that it had the closest evolutionarily relationship with HparOBP9. AcorOBP11 was successfully inserted into pET-28a and expressed at 0.25 mmol·L-1 IPTG and induced expression at 37℃. The target protein was obtained by nickel column purification twice. The results of competitive binding experiments showed that AcorOBP11 has a good binding ability to 13 kinds of host plant volatiles, such as α-ionone, 3-methylbutanal, 2-ethylhexyl acrylate, bornyl acetate, cinene, trans-2-hexenal, 2-ethylhexanal, isovaleric acid. Among them, α-ionone has the best binding ability, and its competitive dissociation constant is 22.78 μmol·L-1. The molecular docking results showed that AcorOBP11 has the lowest binding free energy with α-ionone, which is -24.74 kJ·mol-1, and forms a hydrogen bond at Cys163, indicating that it has the strongest binding ability with α-ionone, which is consistent with the fluorescence competition binding result. 【Conclusion】AcorOBP11 can recognize a variety of host plant volatiles, and it is speculated that it plays an important role in locating host plants for A. corpulenta. The results will provide new insights forA. corpulenta ecological control.

Key words: Anomala corpulenta, odorant binding protein 11 (OBP11), prokaryotic expression, fluorescence competitive binding, homology modeling, molecular docking

Fig. 1

Sequence analysis of AcorOBP11 "

Fig. 2

Expression and purification of the AcorOBP11 protein"

"

气味配体 Ligand 结构式 Structural formula 分子式 Formula IC50(μmol·L-1) Ki (μmol·L-1)
α-紫罗兰酮 α-Ionone C13H20O 25.36 22.78
异戊醛 3-Methylbutanal C5H10O 27.27 24.49
丙烯酸-2-乙基己酯
2-Ethylhexyl acrylate
C11H20O2 27.96 25.11
乙酸龙脑酯 Bornyl acetate C12H20O2 29.35 26.36
柠檬烯 Cinene C10H16 30.39 27.29
反-2-己烯醛 Trans-2-hexenal C6H10O 32.54 29.23
2-乙基己醛 2-Ethylhexanal C8H16O 33.33 29.94
异戊酸 Isovaleric acid C5H10O2 33.53 30.12
4-羟基-4-甲基-2-戊酮
4-Hydroxy-4-methyl-2-pentanone
C6H12O2 33.55 30.13
庚醛 Heptanal C7H14O 36.34 32.64
丁醛 Butyraldehyde C4H8O 38.42 34.51
苯乙酸乙酯 Ethyl phenylacetate C10H12O2 38.54 34.61
辛醛 Octanal C8H16O 38.87 34.91
α-松油醇 α-Terpineol C10H18O 41.44 37.22
水杨酸甲酯 Methyl salicylate C8H8O3 41.83 37.57
顺-3-己烯基丁酯
Cis-3-hexenyl buyrate
C10H18O2 42.84 38.48
1-辛烯-3-醇 1-Octen-3-ol C8H16O 44.37 39.85
戊醛 Pentanal C5H10O 44.40 39.88
己二酸二异丁酯
Diisobutyl adipate
C14H26O4 45.49 40.86
反-2-壬烯醛 Trans-2-nonenal C9H16O 45.55 40.91
苯甲酸甲酯 Methyl benzoate C8H8O2 46.01 41.32
反式-2-己烯-1-醇 Trans-2-hexen-1-ol C6H12O 47.72 42.86
芳樟醇 Linalool C10H18O 48.53 43.59
β-石竹烯 β-Caryophyllene C15H24 48.71 43.75
β-罗勒烯 β-Ocimene C10H16 48.76 43.79
甲基庚烯酮 6-Methyl-5-hepten-2-one C8H14O 49.02 44.03
3,4-二甲基苯乙酮
3,4-Dimethyl phenylketone
C10H12O 49.58 44.53
乙酸叶醇酯 Cis-3-hexenyl acetate C8H14O2 50.95 45.76
苯甲醛 Benzaldehyde C7H6O 51.45 46.21
2-壬酮 2-Nonanone C9H18O 53.77 48.29
2-辛醇 2-Octanol C8H18O 54.59 49.03
异丁醛 Isobutyraldehyde C4H8O 59.34 53.30
壬醛 Nonanal C9H18O 70.65 63.45
己酸 Caproic acid C6H12O2 152.96 137.37
α-丁香酚 α-Eugenol C10H12O2 N N
法尼烯 Farnesene C15H24 N N
十二碳烯 Propylene tetramer C12H24 N N

Fig. 3

Binding of AcorOBP11 with different ligands"

Fig. 4

Three-dimensional structure model (A) and Ramachandran plot (B) of AcorOBP11"

"

配体
Ligand
结构式
Structural formula
结合能
Binding energy (kJ·mol-1)
α-紫罗兰酮
α-Ionone
-24.74
异戊醛
3-Methylbutanal
-20.72
丙烯酸-2-乙基己酯 2-Ethylhexyl acrylate -21.39
乙酸龙脑酯
Bornyl acetate
-22.52
柠檬烯
Cinene
-21.23
反-2-己烯醛
Trans-2-hexenal
-18.59

Fig. 5

The key residues of the different ligands that interact with AcorOBP11 (two dimensional)"

Fig. 6

The key residues of the different ligands that interact with AcorOBP11 (three dimensional)"

[1] MUELLER D, PIERCE L, BENEZET H, KRISCHIK V. Practical application of pheromone traps in food and tobacco industry. Journal of the Kansas Entomological Society, 1990, 63(4):548-553.
[2] KLEIN M G, TUMLINSON J H, LADD T L, DOOLITTLE R E. Japanese beetle (Coleoptera: Scarabaeidae): Response to synthetic sex attractant plus phenethyl propionate: Eugenol. Journal of Chemical Ecology, 1981, 7(1):1-7.
doi: 10.1007/BF00988630
[3] LEAL W S, ONO M, HASEGAWA M, SAWADA M. Kairomone from dandelion, Taraxacum officinale, attractant for scarab beetleAnomala octiescostata. Journal of Chemical Ecology, 1994, 20(7):1697-1704.
doi: 10.1007/BF02059891
[4] 李晓峰, 曹雅忠, 尹姣, 张帅, 李金桥, 李克斌. 华北大黑鳃金龟植物源引诱剂配方筛选及引诱效果. 植物保护学报, 2020, 47(1):35-45.
LI X F, CAO Y Z, YIN J, ZHANG S, LI J Q, LI K B. Prescription screening and trapping effect of plant volatile attractants to northern China scarab beetle Holotrichia oblita . Journal of Plant Protection, 2020, 47(1):35-45. (in Chinese)
[5] 谢明惠, 陈浩梁, 衣建坤, 李克斌, 张杰, 苏卫华. 铜绿丽金龟对植物源挥发物的触角电位和行为反应. 植物保护, 2015, 41(1):33-38.
XIE M H, CHEN H L, YI J K, LI K B, ZHANG J, SU W H. Electroantennographic and behavioral responses of Anomala corpulenta to plant volatiles . Plant Protection, 2015, 41(1):33-38. (in Chinese)
[6] FRANCIS F, LOGNAY G, HAUBRUGE E. Olfactory responses to aphid and host plant volatile releases: (E)-beta-farnesene an effective kairomone for the predator Adalia bipunctata. Journal of Chemical Ecology, 2004, 30(4):741-755.
doi: 10.1023/B:JOEC.0000028429.13413.a2
[7] LEAL W S. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 2013, 58:373-391.
doi: 10.1146/annurev-ento-120811-153635
[8] VOGT R G, RIDDIFORD L M. Pheromone binding and inactivation by moth antennae. Nature, 1981, 293(5828):161-163.
doi: 10.1038/293161a0
[9] JU Q, QU M J, WANG Y, JIANG X J, LI X, DONG S L, HAN Z J. Molecular and biochemical characterization of two odorant-binding proteins from dark black chafer, Holotrichia parallela. Genome, 2012, 55(7):537-546.
doi: 10.1139/g2012-042
[10] 房迟琴, 张鑫鑫, 刘丹丹, 李克斌, 张帅, 曹雅忠, 樊东, 尹姣. 暗黑鳃金龟气味结合蛋白HparOBP15a基因的克隆及功能分析. 昆虫学报, 2016, 59(3):260-268.
FANG C Q, ZHANG X X, LIU D D, LI K B, ZHANG S, CAO Y Z, FAN D, YIN J. Cloning and functional analysis of an odorant-binding protein HparOBP15a gene from Holotrichia parallela (Coleoptera: Melolonthidae) . Acta Entomologica Sinica, 2016, 59(3):260-268. (in Chinese)
[11] DENG S S, YIN J, ZHONG T, CAO Y Z, LI K B. Function and immunocytochemical localization of two novel odorant-binding proteins in olfactory sensilla of the scarab beetleHolotrichia oblita Faldermann (Coleoptera: Scarabaeidae). Chemical Senses, 2012, 37(2):141-150.
doi: 10.1093/chemse/bjr084
[12] WANG B, GUAN L, ZHONG T, LI K B, YIN J, CAO Y Z. Potential cooperations between odorant-binding proteins of the scarab beetle Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae). PLoS ONE, 2013, 8(12):e84795.
doi: 10.1371/journal.pone.0084795
[13] YIN J, WANG C Q, FANG C Q, ZHANG S, CAO Y Z, LI K B, LEAL W S. Functional characterization of odorant-binding proteins from the scarab beetleHolotrichia oblita based on semiochemical- induced expression alteration and gene silencing. Insect Biochemistry and Molecular Biology, 2019, 104:11-19.
doi: 10.1016/j.ibmb.2018.11.002
[14] WANG C Q, LI J Q, LI E T, NYAMWASA I, LI K B, ZHANG S, PENG Y, WEI Z J, YIN J. Molecular and functional characterization of odorant-binding protein genes in Holotrichia oblita Faldermann. International Journal of Biological Macromolecules, 2019, 136:359-367.
doi: 10.1016/j.ijbiomac.2019.06.013
[15] WEI H S, DUAN H X, LI K B, ZAHNG S, WEI Z J, YIN J. The mechanism underlying OBP heterodimer formation and the recognition of odors in Holotrichia oblita Faldermann. International Journal of Biological Macromolecules, 2020, 152:957-968.
doi: 10.1016/j.ijbiomac.2019.10.182
[16] 王超群, 赵莹, 曹雅忠, 魏红爽, 李克斌, 张帅, 彭宇, 尹姣. 铜绿丽金龟气味结合蛋白AcorOBP1的表达和结合特性分析. 昆虫学报, 2017, 60(4):363-371.
WANG C Q, ZHAO Y, CAO Y Z, WEI H S, LI K B, ZHANG S, PENG Y, YIN J. Expression and binding characterization of odorant binding protein 1 (AcorOBP1) in Anomala corpulenta (Coleoptera: Scarabaeoidea) . Acta Entomologica Sinica, 2017, 60(4):363-371. (in Chinese)
[17] LASKOWSKI R A, MACARTHUR M W, MOSS D S, THORNTON J M. PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 1993, 26(2):283-291.
doi: 10.1107/S0021889892009944
[18] LASKOWSKI R A, RULLMANNN J A, MACARTHUR M W, KAPTEIN R, THORNTON J M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 1996, 8(4):477-486.
[19] 王桂荣, 郭予元, 吴孔明. 昆虫触角气味结合蛋白的研究进展. 昆虫学报, 2002, 45(1):131-137.
WANG G R, GUO Y Y, WU K M. Progress in the studies of antenna odorant binding proteins of insects. Acta Entomologica Sinica, 2002, 45(1):131-137. (in Chinese)
[20] FIELD L M, PICKETT J A, WADHAMS L J. Molecular studies in insect olfaction. Insect Molecular Biology, 2010, 9(6):545-551.
doi: 10.1046/j.1365-2583.2000.00221.x
[21] 鞠倩, 郭晓强, 李晓, 蒋相国, 倪婉莉, 曲明静. 铜绿丽金龟对寄主植物挥发物的触角电生理及行为反应. 植物保护学报, 2016, 43(2):281-287.
JU Q, GUO X Q, LI X, JIANG X G, NI W L, QU M J. EAG and behavioral responses of copper-green chafer Anomala corpulentaMotschulsky (Coleoptera: Rutelidae) . Journal of Plant Protection, 2016, 43(2):281-287. (in Chinese)
[22] YIN J, FENG H L, SUN H Y, XI J H, CAO Y Z, LI K B. Functional analysis of general odorant binding protein 2 from the meadow moth, Loxostege sticticalis L. (Lepidoptera: Pyralidae). PLoS ONE, 2012, 7(3):e33589.
doi: 10.1371/journal.pone.0033589
[23] LI S, PICIMBON J F, JI S D, KAN Y C, QIAO C L, ZHOU J J, PELOSI P. Multiple functions of an odorant-binding protein in the mosquito Aedes aegypti. Biochemical and Biophysical Research Communications, 2008, 372(3):464-468.
doi: 10.1016/j.bbrc.2008.05.064
[24] LI G W, CHEN X L, LI B L, ZAHNG G H, LI Y P, WU J X. Binding properties of general odorant binding proteins from the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae). PLoS ONE, 2016, 11(5):e0155096.
doi: 10.1371/journal.pone.0155096
[25] 李广伟, 陈秀琳, 尚天翠. 光肩星天牛气味结合蛋白AglaOBP12的基因克隆、表达及配体结合特征. 昆虫学报, 2017, 60(10):1141-1154.
LI G W, CHEN X L, SHANG T C. cDNA cloning, expression and ligand binding properties of the odorant binding protein AglaOBP12 in the Asian longhorned beetle,Anoplophora glabripennis (Coleoptera: Cerambycidae) . Acta Entomologica Sinica, 2017, 60(10):1141-1154. (in Chinese)
[26] KOSHLAND D E. Application of a theory of enzyme specificity to protein synthesis. Proceeding of the National Academy of Sciences of the United States of America, 1958, 44(2):98-104.
[1] LI GuiXiang,LI XiuHuan,HAO XinChang,LI ZhiWen,LIU Feng,LIU XiLi. Sensitivity of Corynespora cassiicola to Three Common Fungicides and Its Resistance to Fluopyram from Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1359-1370.
[2] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[3] XiaoHe LIU,GuiSheng QIU,ZhaoGuo TONG,HuaiJiang ZHANG,WenTao YAN,Qiang YUE,LiNa SUN. Ligands Binding Characteristics of Chemosensory Protein CsasCSP16 of Carposina sasakii [J]. Scientia Agricultura Sinica, 2021, 54(5): 945-958.
[4] LI ZuRen,LUO DingFeng,BAI HaoDong,XU JingJing,HAN JinCai,XU Qiang,WANG RuoZhong,BAI LianYang. Cloning and Expression Analysis of Light Harvesting Chlorophyll a/b Protein Gene CcLhca-J9 in Conyza canadensis [J]. Scientia Agricultura Sinica, 2021, 54(1): 86-94.
[5] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[6] BI KeRan,LI Yin,HAN KaiKai,ZHAO DongMin,LIU QingTao,LIU YuZhuo,HUANG XinMei,YANG Jing. Prokaryotic Expression and Polyclonal Antibody Preparation of Duck Oligoadenylate Synthase-Like Protein [J]. Scientia Agricultura Sinica, 2019, 52(23): 4429-4436.
[7] Ling LI,Yao TAN,XiaoRong ZHOU,BaoPing PANG. Molecular Cloning, Prokaryotic Expression and Binding Characterization of Odorant Binding Protein GdauOBP20 in Galeruca daurica [J]. Scientia Agricultura Sinica, 2019, 52(20): 3705-3712.
[8] LI Du, NIU ChangYing, LI FengQi, LUO Chen. Binding Characterization of Odorant Binding Protein OBP56h in Drosophila suzukii with Small Molecular Compounds [J]. Scientia Agricultura Sinica, 2019, 52(15): 2616-2623.
[9] WANG Hui,CHAI ZhiXin,ZHU JiangJiang,ZHONG JinCheng,ZHANG ChengFu,Xin JinWei. Cloning and Identification of Long-Chain Non-Coding RNA Linc24063 and Its Correlation with the Expression Level of miRNAs in Yak [J]. Scientia Agricultura Sinica, 2019, 52(14): 2538-2547.
[10] YI Min,LÜ Qing,LIU KeKe,WANG LiJun,WU YuJiao,ZHOU ZeYang,LONG MengXian. Expression, Purification and Localization Analysis of Polar Tube Protein 2 (NbPTP2) from Nosema bombycis [J]. Scientia Agricultura Sinica, 2019, 52(10): 1830-1838.
[11] ZHANG Kui,LI ChongYang,SU JingJing,TAN Juan,XU Man,CUI HongJuan. Expression, Purification and Immunologic Function of Integrin β2 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(1): 181-190.
[12] ZHAO Jie, REN SuWei, LIU Ning, AI XinYu, MA Ji, LIU XiaoNing. Cloning and Expression of Phosphatidylethanolamine Binding Protein in Helicoverpa armigera [J]. Scientia Agricultura Sinica, 2018, 51(8): 1493-1503.
[13] ZHI Shuang, REN YanHong, TANG Xing, XU FengXiang, WANG ChuanHong, ZHAO AiChun, WANG XiLing. Molecular Cloning and Expression Analysis of Genes MaGDHs Encoding Glutamate Dehydrogenase in Mulberry [J]. Scientia Agricultura Sinica, 2018, 51(4): 758-769.
[14] ZHENG XiuPing, DING HaoJie, GUO XiaoLu, YANG Yi, HUANG Yan, CHEN XueQiu, ZHOU QianJin, DU AiFang. Characteristics of Hc-daf-22 Gene from Haemonchus contortus: Crokaryotic Expression and Its Enzymatic Activity [J]. Scientia Agricultura Sinica, 2017, 50(8): 1535-1542.
[15] WEI YuanJie, WANG YaMei, HUANG LiNa, LIU Ning, ZHAO Jie, AI XinYu, LIU XiaoNing. Cloning, Prokaryotic Expression and Preparation of the Polyclonal Antibody Against CYP6CY3 from Aphis gossypii [J]. Scientia Agricultura Sinica, 2017, 50(7): 1351-1360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!