Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (23): 4262-4273.doi: 10.3864/j.issn.0578-1752.2019.23.007

• PLANT PROTECTION • Previous Articles     Next Articles

Detection and Analysis of Magnaporthe oryzae Avirulence Genes AVR-Pib, AVR-Pik and AvrPiz-t in Heilongjiang Province

MENG Feng,ZHANG YaLing(),JIN XueHui(),ZHANG XiaoYu,JIANG Jun   

  1. College of Agronomy, Heilongjiang Bayi Agricultural University/Heilongjiang Plant Resistance Research Center, Daqing 163000, Heilongjiang
  • Received:2019-05-30 Accepted:2019-08-01 Online:2019-12-01 Published:2019-12-01
  • Contact: YaLing ZHANG,XueHui JIN E-mail:byndzyl@163.com;Jxh2686@163.com

Abstract:

【Objective】The objective of this study is to investigate the distribution and variation mechanism of avirulence genes AVR-Pib, AVR-Pik and AvrPiz-t in Magnaporthe oryzae strains from different regions and years in Heilongjiang Province, to understand the pathogenic phenotypes of different avirulence gene alleles, and to provide a reference for utilization and distribution of resistance cultivars in Heilongjiang Province.【Method】Based on the avirulence gene sequences published in NCBI, specific primers were designed to amplify full length and the coding sequence (CDS) regions of three genes, respectively. From 2016 to 2017, 335 M. oryzae strains in different regions of Heilongjiang Province were collected and isolated, and their DNA was PCR-amplified using avirulence genes primers and analyzed by agarose gel electrophoresis. The PCR products with different band patterns and from representative strains of different regions were selected for sequencing. The sequencing results were compared with the corresponding avirulence gene sequences for base and amino acid. The pathogenic phenotype of M. oryzae strains with different variant types was determined based on the rice resistance to single-gene lines.【Result】The specific bands of AVR-Pib, AVR-Pik and AvrPiz-t were detected in PCR detection and appeared in different distribution frequencies and mutation types, indicating that these 3 avirulence genes were all distributed in Heilongjiang Province. The average amplification frequency of the 3 avirulence genes was 75.52%, 87.16% and 85.67%, respectively. Among them, 4 types of band (bandless, high band, mid to high band and low band) of AVR-Pib were detected by electrophoresis analysis and 5 variant types AVR-Pib (1-1, 1-2, 2, 3, 3-1) were detected by PCR product sequencing. The genotypes AVR-Pib-1-1, AVR-Pib-1-2, AVR-Pib-2 and AVR-Pib-3-1 are newly discovered variant types, of which genotypes AVR-Pib-1-1 and AVR-Pib-1-2 are insertions of transposon Pot2 but with different insertion sites. The genotype AVR-Pib-2 has a small fragment insertion in the upstream of CDS region. The genotype AVR-Pib-3-1 base sequence has 4 differences from the original sequence, namely 32 (C/G) 35 (T/A) 36 (T/A) 38 (T/A), and the amino acid translation was terminated prematurely. Pathogenic analysis showed that except for the normal genotype AVR-Pib-3, the other alleles lost their avirulence functions. Seven AVR-Pik alleles (D, A, B, C, E, F, F2) were detected after PCR product sequencing, and the alterations in the nucleotide sequences of these alleles all resulted in amino acid missense mutations. The 7 AVR-Pik alleles have been reported previously. The avirulence gene AvrPiz-t was analyzed by electrophoresis and sequencing of PCR products, and 2 types of band (high band and normal band type) and 4 genotypes of AvrPiz-t (A, B, C, D) were revealed. Among them, AvrPiz-t-A is the original genotype, while AvrPiz-t-B has a base A insertion at position 191, causing premature termination of amino acid translation. Genotype AvrPiz-t-C is a newly discovered allelic type, characterized by the presence of a nucleotide variation at position 17 (T/C) and the insertion of base C at position 19 compared with type A, leading to the frameshift mutation and premature translation termination. The high band type avirulent genotype AvrPiz-t-D was sequenced and verified as having an insertion of the Pot3 transposon. Rice single-gene lines infection showed that the strains with AvrPiz-t-A were avirulent to Piz-t line due to Piz-t recognition, whereas the strains with AvrPiz-t (B, C, D) were virulent to Piz-t line due to lost the ability recognized by Piz-t.【Conclusion】The avirulence genes AVR-Pib, AVR-Pik and AvrPiz-t of M. oryzae in Heilongjiang Province are widely distributed and the types of variation are abundant. The results of this study can provide a reference for breeding and popularizing rice cultivars with corresponding disease-resistance genes.

Key words: Heilongjiang Province, Magnaporthe oryzae, avirulence gene, AVR-Pib, AVR-Pik, AvrPiz-t

Table 1

The primers for M. oryzea avirulence genes amplification"

无毒基因
Avirulence gene
引物序列
Primer sequence (5′-3′)
目的片段长度
Length of targeted fragments (bp)
目的
Purpose
AVR-Pib F1: AAGTCCTTCCCATTACCCTA
R1: GCAATAACCATCCAGCCATA
484 检测AVR-Pib CDS
Detection of AVR-Pib CDS
F2: GAAGTACCCACCCATAACCC
R2: CAAGGGAGGCAAATCTAACC
1147 检测AVR-Pib基因全长
Detection of AVR-Pib gene full length
AVR-Pik F1: AATTTATTCAACTGCCACTCTG
R1: AACCTCGTCAAACCTCCCTA
526 检测AVR-Pik CDS
Detection of AVR-Pik CDS
F2: GACAAACAGGATGGGATT
R2: AGGTCGTAGGTCGGAAAC
1929 检测AVR-Pik基因全长
Detection of AVR-Pik gene full length
AvrPiz-t F1: ATCAAATGAACACCAGGAA
R1: CCAGCCGAAGATACAAAA
450 检测AvrPiz-t CDS
Detection of AvrPiz-t CDS
F2: AATCTCCCAATGGTTCGC
R2: AAAGTGGCTCGTTCCTAA
1965 检测AvrPiz-t基因全长
Detection of AvrPiz-t gene full length

Fig. 1

Location of AVR-Pib F1/R1 and AVR-Pib F2/R2 primers in avirulence gene AVR-Pib"

Fig. 2

Agarose gel electrophoresis bands of AVR-Pib amplification of tested strains"

Fig. 3

Characterization of allelic variation at AVR-Pib"

Fig. 4

Disease phenotype of the AVR-Pib-3, AVR-Pib-1-1, AVR-Pib-1-2, AVR-Pib-2 and AVR-Pib-3-1 strains"

Fig. 5

Base sequence alignment of AVR-Pik of tested strains"

Fig. 6

Comparison analysis of amino acid sequence of AVR-Pik genotypes"

Fig. 7

Agarose gel electrophoresis bands of AvrPiz-t amplification of tested strains"

Fig. 8

Base sequence alignment of AvrPiz-t of tested strains"

Fig. 9

AvrPiz-t characteristics and primer design"

Fig. 10

Comparison analysis of amino acid sequence of AvrPiz-t genotypes"

Fig. 11

Disease phenotype of the AvrPiz-t-A, AvrPiz-t-B, AvrPiz-t-C and AvrPiz-t-D strains"

Table 2

Amplification frequency of avirulence genes of M. oryzae in Heilongjiang Province in 2016 and 2017"

无毒基因
Avirulence gene
2016(127 a 2017(208 b 总计Total(335 c
出现个数
Number of occurrences
出现频率
Frequency of occurrence (%)
出现个数
Number of occurrences
出现频率
Frequency of occurrence (%)
出现个数
Number of occurrences
出现频率
Frequency of occurrence (%)
AVR-Pib 104 81.89 149 71.63 253 75.52
AVR-Pik 105 82.68 187 89.90 292 87.16
AvrPiz-t 111 87.40 176 84.62 287 85.67
[1] COUCH B C, KOHN L M . A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia, 2002,94(4):683-693.
doi: 10.1080/15572536.2003.11833196 pmid: 21156541
[2] OU S H . Rice Diseases. 2nd ed. Kew, UK: Commonwealth Mycological Institute, 1985.
[3] FLOR H H . Current status of the gene-for-gene concept. Annual Review of Phytopathology, 1971,9:275-296.
doi: 10.1146/annurev-phyto-072910-095339 pmid: 21599495
[4] MARCEL S, SAWERS R, OAKELEY E, ANGLIKER H, PASZKOWSKI U . Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. The Plant Cell, 2010,22(9):3177-3187.
doi: 10.1105/tpc.110.078048 pmid: 20858844
[5] LIU W, ZHOU X, LI G, LI L, KONG L, WANG C, ZHANG H, XU J R . Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathogens, 2011,7(1):e1001261.
doi: 10.1371/journal.ppat.1001261 pmid: 21283781
[6] MA J H, WANG L, FENG S J, LIN F, XIAO Y, PAN Q H . Identification and fine mapping of AvrPi15, a novel avirulence gene of Magnaporthe grisea. Theoretical and Applied Genetics, 2006,113(5):875-883.
doi: 10.1007/s00122-006-0347-6
[7] SWEIGARD J A, CARROLL A M, KANG S, FARRALL L, CHUMLEY F G, VALENT B . Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. The Plant Cell, 1995,7(8):1221-1233.
doi: 10.1105/tpc.7.8.1221 pmid: 7549480
[8] KANG S, SWEIGARD J A, VALENT B . The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions, 1995,8(6):939-948.
doi: 10.1094/mpmi-8-0939 pmid: 8664503
[9] ORBACH M J, FARRALL L, SWEIGARD J A, CHUMLEY F G, VALENT B . A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. The Plant Cell, 2000,12(11):2019-2032.
doi: 10.1105/tpc.12.11.2019 pmid: 11090206
[10] COLLEMARE J, PIANFETTI M, HOULLE A E, MORIN D, CAMBORDE L, GAGEY M J, BARBISAN C, FUDAL I, LEBRUN M H, BŐHNERT H U . Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism. New Phytologist, 2008,179(1):196-208.
doi: 10.1111/j.1469-8137.2008.02459.x pmid: 18433432
[11] FARMAN M L, LEONG S A . Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps. Genetics, 1998,150(3):1049-1058.
pmid: 9799257
[12] LI W, WANG B, WU J, LU G, HU Y, ZHANG X, ZHANG Z G, ZHAO Q, ZHANG H Y, WANG Z Y, WANG G L, HAN B, WANG Z H, ZHOU B . The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Molecular Plant-Microbe Interactions, 2009,22(4):411-420.
doi: 10.1094/MPMI-22-4-0411 pmid: 19271956
[13] YOSHIDA K, SAITOH H, FUJISAWA S, KANZAKI H, MATSUMURA H, YOSHIDA K, TOSA Y, CHUMA I, TAKANO Y, WIN J, KAMOUN S, TERAUCHI R . Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. The Plant Cell, 2009,21(5):1573-1591.
doi: 10.1105/tpc.109.066324 pmid: 19454732
[14] WU J, KOU Y, BAO J, LI Y, TANG M, ZHU X, PONAYA A, XIAO G, LI J, LI C, SONG M Y, CUMAGUN C J, DENG Q, LU G, JEON J S, NAQVI N I, ZHOU B . Comparative genomics identifies the Magnaporthe oryzae avirulence effector Avr-Pi9 that triggers Pi9-mediated blast resistance in rice. New Phytologist, 2015,206(4):1463-1475.
doi: 10.1111/nph.13310 pmid: 25659573
[15] SCHNEIDER D R, SARAIVA A M, AZZONI A R, MIRANDA H R, DE TOLEDO M A, PELLOSO A C, SOUZA A P . Overexpression and purification of PWL2D, a mutant of the effector protein PWL2 from Magnaporthe grisea. Protein Expression and Purification, 2010,74(1):24-31.
doi: 10.1016/j.pep.2010.04.020
[16] ZHANG S, WANG L, WU W, HE L, YANG X, PAN Q . Function and evolution of Magnaporthe oryzae avirulence gene Avr-Pib responding to the rice blast resistance gene Pib. Scientific Reports, 2015,5:11642.
doi: 10.1038/srep11642 pmid: 26109439
[17] 李祥晓, 王倩, 罗生香, 何云霞, 朱苓华, 周永力, 黎志康 . 黑龙江省稻瘟病菌无毒基因分析及抗病种质资源筛选. 作物学报, 2012,38(12):2192-2197.
doi: 10.3724/SP.J.1006.2012.02192
LI X X, WANG Q, LUO S X, HE Y X, ZHU L H, ZHOU Y L, LI Z K . Analyzing avirulence genes of Magnaporthe oryzae from Heilongjiang province and screening rice germplasm with resistance to blast fungus. Acta Agronomica Sinica, 2012,38(12):2192-2197. (in Chinese)
doi: 10.3724/SP.J.1006.2012.02192
[18] 王世维, 郑文静, 赵家铭, 魏松红, 王妍, 赵宝海, 刘志恒 . 辽宁省稻瘟病菌无毒基因型鉴定及分析. 中国农业科学, 2014,47(3):462-472.
doi: 10.3864/j.issn.0578-1752.2014.03.006
WANG S W, ZHENG W J, ZHAO J M, WEI S H, WANG Y, ZHAO B H, LIU Z H . Identification and analysis of Magnaporthe oryzae avirulence genes in Liaoning Province. Scientia Agricultura Sinica, 2014,47(3):462-472. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.03.006
[19] 汪文娟, 苏菁, 杨健源, 韦小燕, 陈凯玲, 陈珍, 陈深, 朱小源 . 源于广8 A杂交稻组合的稻瘟病菌无毒基因型分析. 中国农业科学, 2018,51(24):4633-4646.
doi: 10.3864/j.issn.0578-1752.2018.24.005
WANG W J, SU J, YANG J Y, WEI X Y, CHEN K L, CHEN Z, CHEN S, ZHU X Y . Analysis of Magnaporthe oryzae avirulent genes in the infected hybrid rice combinations derived from a sterile line of Guang 8 A. Scientia Agricultura Sinica, 2018,51(24):4633-4646. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.24.005
[20] 刘华招, 刘延, 刘化龙, 徐正进, 陈温福 . 黑龙江省种植品种中稻瘟病抗性基因PibPita的分布. 东北农业大学学报, 2011,42(4):27-31.
LIU H Z, LIU Y, LIU H L, XU Z J, CHEN W F . Distribution of two rice blast resistance genes Pib and Pita in major rice cultivars in Heilongjiang Province in China. Journal of Northeast Agricultural University, 2011,42(4):27-31. (in Chinese)
[21] 于连鹏 . 黑龙江省主栽水稻品种PitaPiaPiz-t抗瘟基因检测和抗性评价[D]. 大庆: 黑龙江八一农垦大学, 2017.
YU L P . Pita, Pia and Piz-t genes detection and blast resistance evaluation of main rice varieties in Heilongjiang Province[D]. Daqing: Heilongjiang Bayi Agricultural University, 2017. (in Chinese)
[22] 蒋金芬, 韩红萍, 梁友方 . 滤纸片法低温冷冻保存菌种的实验室应用. 中国公共卫生, 2006,22(3):310.
doi: 10.11847/zgggws2006-22-03-30 pmid: 19443872
JIANG J F, HAN H P, LIANG Y F . Laboratory application of filter paper method for cryopreservation. Chinese Journal of Public Health, 2006,22(3):310. (in Chinese)
doi: 10.11847/zgggws2006-22-03-30 pmid: 19443872
[23] 连兆煌 . 无土栽培原理与技术. 北京: 农业出版社, 1994.
LIAN Z H. Principles and Techniques of Soilless Cultivation. Beijing: Agriculture Press, 1994. (in Chinese)
[24] 靳学慧, 马汇泉 . 农业植物病理学. 赤峰: 内蒙古科学技术出版社, 1999.
JIN X H, MA H Q . Agricultural Plant Pathology. Chifeng: Inner Mongolia Science and Technology Press, 1999. (in Chinese)
[25] LONGYA A, CHAIPANYA C, FRANCESCHETTI M, MAIDMENT J H.R, BANFIELD M J, JANTASURIYARAT C, . Gene duplication and mutation in the emergence of a novel aggressive allele of the AVR-Pik effector in the rice blast fungus. Molecular Plant-Microbe Interactions, 2019,32(6):740-749.
doi: 10.1094/MPMI-09-18-0245-R pmid: 30601714
[26] 孙强, 张三元, 张俊国, 杨春刚 . 东北水稻生产现状及对策. 北方水稻, 2010,40(2):72-74.
SUN Q, ZHANG S Y, ZHANG J G, YANG C G . Current situation of rice production in northeast of China and countermeasures. North Rice, 2010,40(2):72-74. (in Chinese)
[27] 时克, 雷财林, 程治军, 许兴涛, 王久林, 万建民 . 稻瘟病抗性基因PitaPib在我国水稻主栽品种中的分布. 植物遗传资源学报, 2009,10(1):21-26.
SHI K, LEI C L, CHENG Z J, XU X T, WANG J L, WAN J M . Distribution of two blast resistance genes Pita and Pib in major rice cultivars in China. Journal of Plant Genetic Resources, 2009,10(1):21-26. (in Chinese)
[28] KANZAKI H, YOSHIDA K, SAITOH H, FUJISAKI H, HIRABUCHI A, ALAUX L, FOURNIER E, THARREAU D, TERAUCHI R . Arms race co-evolution of Magnaporthe oryzae Avr-Pik and rice Pik genes driven by their physical interactions. The Plant Journal, 2012,72(6):894-907.
doi: 10.1111/j.1365-313X.2012.05110.x pmid: 22805093
[29] 姜华, 余欢, 王艳丽, 孙国昌 . 稻瘟病菌无毒基因序列变异研究进展. 浙江农业学报, 2015,27(3):512-520.
JIANG H, YU H, WANG Y L, SUN G C . Progress on sequence variation of avirulence gene in the rice blast fungus Magnaporthe grisea. Acta Agriculturae Zhejiangensis, 2015,27(3):512-520. (in Chinese)
[30] ZHANG S, WANG L, WU W, HE L, YANG X, PAN Q . Function and evolution of Magnaporthe oryzae avirulence gene Avr-Pib responding to the rice blast resistance gene Pib. Scientific Reports, 2015,5:11642.
doi: 10.1038/srep11642 pmid: 26109439
[31] WU W H, WANG L, ZHANG S, LIANG Y Q, ZHENG X L, YI K X, HE C P . Assessment of sensitivity and virulence fitness costs of the AvrPik alleles from Magnaporthe oryzae to isoprothiolane. Genetics and Molecular Research, 2014,13(4):9701-9709.
doi: 10.4238/2014.November.24.1
[32] 陈美莲 . 稻瘟病菌无毒基因AvrPiz-t的遗传变异分析[D]. 福州: 福建农林大学, 2014.
CHEN M L . Genetic variation of avirulence gene AvrPiz-t in Magnaporthe oryzae[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014. (in Chinese)
[33] 刘殿宇 . 黑龙江省稻瘟病菌致病性与无毒基因检测及遗传多样性分析[D]. 大庆: 黑龙江八一农垦大学, 2017.
LIU D Y . Pathogenicity avirulent gene detection and genetic diversity analysis of Magnaporthe oryzae in Heilongjiang Province[D]. Daqing: Heilongjiang Bayi Agricultural University, 2017. (in Chinese)
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[3] WU YunYu,XIAO Ning,YU Ling,CAI Yue,PAN CunHong,LI YuHong,ZHANG XiaoXiang,HUANG NianSheng,JI HongJuan,DAI ZhengYuan,LI AiHong. Construction and Analysis of Broad-Spectrum Resistance Gene Combination Pattern for Japonica Rice in Lower Region of the Yangtze River, China [J]. Scientia Agricultura Sinica, 2021, 54(9): 1881-1893.
[4] PENG XianLong,WANG Wei,ZHOU Na,LIU HaiYang,LI PengFei,LIU ZhiLei,YU CaiLian. Analysis of Fertilizer Application and Its Reduction Potential in Paddy Fields of Heilongjiang Province [J]. Scientia Agricultura Sinica, 2019, 52(12): 2092-2100.
[5] REN ShiLong, BAI Hui, WANG yongFang, QUAN JianZhang, DONG ZhiPing, LI ZhiYong, XING JiHong. Identification and Analysis of Magnaporthe oryzae of Foxtail Millet Avirulence Genes [J]. Scientia Agricultura Sinica, 2018, 51(6): 1079-1088.
[6] WANG WenJuan,SU Jing,YANG JianYuan,WEI XiaoYan,CHEN KaiLing,CHEN Zhen,CHEN Shen,ZHU XiaoYuan. Analysis of Magnaporthe oryzae Avirulent Genes in the Infected Hybrid Rice Combinations Derived from a Sterile Line of Guang 8 A [J]. Scientia Agricultura Sinica, 2018, 51(24): 4633-4646.
[7] WANG Xiao-yu, YANG Xiao-guang, Lü Shuo, CHEN Fu. The Possible Effects of Global Warming on Cropping Systems in China Ⅻ. The Possible Effects of Climate Warming on Geographical Shift in Safe Planting Area of Rice in Cold Areas and the Risk Analysis of Chilling Damage [J]. Scientia Agricultura Sinica, 2016, 49(10): 1859-1871.
[8] WANG Shi-Wei-1, 2 , ZHENG Wen-Jing-2, ZHAO Jia-Ming-2, WEI Song-Hong-1, WANG Yan-1, ZHAO Bao-Hai-1, LIU Zhi-Heng-1. Identification and Analysis of Magnaporthe oryzae Avirulence Genes in Liaoning Province [J]. Scientia Agricultura Sinica, 2014, 47(3): 462-472.
[9] WANG Jing, YANG Xiao-Guang, 吕Shuo , LIU Zhi-Juan, LI Ke-南, XUN Xin, LIU Yuan, WANG 恩Li. Spatial-Temporal Characteristics of Potential Yields and Yield Gaps of Spring Maize in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2012, 45(10): 1914-1925.
[10] ZHANG Yue-Juan, ZHAO Ting-Chang, YANG Yu-Wen. Screening of the Interactive Proteins of Avirulent Proteins AvrPto or AvrPtoB in Susceptible Tomato Cultivar Zhongshusihao by Yeast Two-Hybrid System  [J]. Scientia Agricultura Sinica, 2011, 44(23): 4939-4944.
[11] SHEN Ying1, LI Cheng-yun2. Current Research Status and Future Prospects of Genetic Diversity of Magnaporthe grisea Fungus [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 3100-3106.
[12] ,,,,,,. Virulence Variation in Sexual Progeny and Composition of Avirulence Genes from the Cross CH63 and TH16 of Magnaporthe Grisea [J]. Scientia Agricultura Sinica, 2005, 38(12): 2428-2433 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!