Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (24): 4633-4646.doi: 10.3864/j.issn.0578-1752.2018.24.005

• PLANT PROTECTION • Previous Articles     Next Articles

Analysis of Magnaporthe oryzae Avirulent Genes in the Infected Hybrid Rice Combinations Derived from a Sterile Line of Guang 8 A

WANG WenJuan(),SU Jing,YANG JianYuan,WEI XiaoYan,CHEN KaiLing,CHEN Zhen,CHEN Shen,ZHU XiaoYuan()   

  1. Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640
  • Received:2018-06-22 Accepted:2018-08-09 Online:2018-12-16 Published:2018-12-16

Abstract:

【Objective】 The objective of this study is to analyze the avirulent genotypes of Magnaporthe oryzae derived from the hybrid rice combinations of Guang 8 A, and to provide a reference for rational distribution of cultivars with different blast resistant genes in South China. 【Method】 A set of single-spore strain was subjected to pathotype analysis using blast monogenic differential lines. According to the functional markers of 8 Avr genes, which had been cloned and were associated with the rice blast pathogenicity, the haplotypes of Avr genes were analyzed. The DNA, which extracted from the 27 strains of rice blast fungi, was used as a template for PCR amplification. The PCR products of avirulent full gene or CDS region were analyzed by agarose gel electrophoresis and sequencing, and their sequences were compared to corresponding avirulent genes.【Result】 The tested strains showed high frequency (>85%) of avirulence to the 5 monogenic differential lines, such as IRBLkh-K3 (Pikh), IRBLb-B (Pib), IRBLz5-CA (Pi2), NIL-e1 (Pi50) and IRBL9-W (Pi9), all strains were avirulent to IRBL9-W (Pi9) and NIL-e1 (Pi50). These strains showed relatively low frequency of avirulence (<20%) to the 7 monogenic differential lines, such as IRBLks-F5 (Piks), IRBLa-A (Pia), IRBL19-A (Pi19) and so on, indicating that the strains from the combination of Guang 8 A showed different pathotypes to different rice blast-resistant lines. AvrPi9 and AvrPik fragments were almost present in all strains, and two haplotypes (AvrPik-D and AvrPik-E) of AvrPik were identified. But none of Avr1-CO39, AvrPii or AvrPia was amplified in any strain. The expected size products of AvrPiz-t, AvrPib and AvrPita could be detected in some strains, but they all appeared in lower frequency and different mutation types in the tested strain. Amplicon sequencing of 7 strains (GD13-621, GD14-349, GD15-291, et al.) revealed that the sequences of AvrPi9, AvrPita and AvrPiz-t were identical to those of the respective avirulent strains. This result indicated that these 3 Avr genes had a stable gene structure. Compared to AvrPib in an avirulent strain, AvrPib in the tested strains contained 2 nucleotide changes or 3 consecutive nucleotide insertions in the gene upstream region. The results indicated that AvrPib had a rich haplotype. The sequences of AvrPik in 6 strains were highly consistent, only contained one nucleotide changes in the coding region (136C/A), resulting in one amino acid substitutions (46H/N), which showed two haplotypes of AvrPik (AvrPik-D or AvrPik-E).【Conclusion】 In the strains from the major rice cultivars of Guang 8 A in South China, the distribution of AvrPi9 and AvrPik was relatively wide. In the susceptible areas of the above cultivars, the resistant cultivars carrying Pi9 and Pik could be used as rotation planting cultivars.

Key words: hybrid rice combinations, Guang 8 A, Magnaporthe oryzae, avirulent gene, rice blast-resistant lines

Table 1

Forty-one M. oryzae strains and their origins"

采集地区
Sampling location
采集品种
Sampling cultivar
菌株编号
Strain number
采集地区
Sampling location
采集品种
Sampling cultivar
菌株编号
Strain number
河源 Heyuan 广8优165 Guang8you165 GD12-535 河源 Heyuan 广8优169 Guang8you169 GD15-259
阳江 Yangjiang 广8优169 Guang8you169 GD12-716 河源 Heyuan 广8优169 Guang8you169 GD15-270
阳江 Yangjiang 广8优169 Guang8you169 GD12-721 河源 Heyuan 广8优165 Guang8you165 GD15-291
阳江 Yangjiang 广8优169 Guang8you169 GD12-730 河源 Heyuan 广8优2168 Guang8you2168 GD15-304
河源 Heyuan 广8优169 Guang8you169 GD13-493 河源 Heyuan 广8优165 Guang8you165 GD15-315
阳江 Yangjiang 广8优169 Guang8you169 GD13-621 河源 Heyuan 广8优188 Guang8you188 GD15-316
阳江 Yangjiang 广8优169 Guang8you169 GD13-626 云浮 Yunfu 广8优169 Guang8you169 GD15-436
茂名 Maoming 广8优169 Guang8you169 GD13-659 阳江 Yangjiang 广8优169 Guang8you169 GD15-506
阳江 Yangjiang 广8优188 Guang8you188 GD13-3009 阳江 Yangjiang 广8优2168 Guang8you2168 GD15-520
阳江 Yangjiang 广8优2168 Guang8you2168 GD13-3024 阳江 Yangjiang 广8优169 Guang8you169 GD15-523
河源 Heyuan 广8优2168 Guang8you2168 GD14-070 阳江 Yangjiang 广8优169 Guang8you169 GD15-530
云浮 Yunfu 广8优169 Guang8you169 GD14-298 阳江 Yangjiang 广8优169 Guang8you169 GD15-542
阳江 Yangjiang 广8优169 Guang8you169 GD14-349 阳江 Yangjiang 广8优165 Guang8you165 GD15-543
阳江 Yangjiang 广8优169 Guang8you169 GD14-366 茂名 Maoming 广8优169 Guang8you169 GD15-586
阳江 Yangjiang 广8优169 Guang8you169 GD14-368 河源 Heyuan 广8优165 Guang8you165 GD16-246
阳江 Yangjiang 广8优169 Guang8you169 GD14-372 河源 Heyuan 广8优188 Guang8you188 GD16-272
阳江 Yangjiang 广8优165 Guang8you165 GD14-376 河源 Heyuan 广8优165 Guang8you165 GD16-280
阳江 Yangjiang 广8优169 Guang8you169 GD14-381 阳江 Yangjiang 广8优169 Guang8you169 GD16-327
阳江 Yangjiang 广8优165 Guang8you165 GD14-401 阳江 Yangjiang 广8优2168 Guang8you2168 GD16-334
河源 Heyuan 广8优2168 Guang8you2168 GD15-023 从化 Conghua 广8优169 Guang8you169 GD16-3071
韶关 Shaoguan 广8优金占 Guang8youjinzhan GD15-236

Table 2

Primers used for the PCR detection of Avr genes in this study"

引物
Primer
引物序列
Sequence (5′-3′)
预期片段大小
Expected fragment size (bp)
目的
Purpose
Avr1-CO39 F TGCCGCATTTTGCTAACCG 994 检测Avr1-CO39启动子及CDS To detect Avr1-CO39 promoter and CDS
Avr1-CO39 R GCGAATCCATAGACAAGGAC
AvrPita F CAGGCATACATTGGAGAGCC 1549 检测AvrPita启动子及CDS To detect AvrPita promoter and CDS
AvrPita R CCCTCCATTCCAACACTAAC
AvrPii F GGTAGATATCCGCTGACTGG 839 检测AvrPii启动子及CDS To detect AvrPii promoter and CDS
AvrPii R ACTGTCCGCCGCTCGTTTGG
AvrPi9 F ATGCAGTTCTCTCAGATCCTC 342 检测AvrPi9 CDS To detect AvrPi9 CDS
AvrPi9 R CTACCAGTGCGTCTTTTCGAC
AvrPiz-t F GTTGCGATTATGATCCGTCG 1144 检测AvrPiz-t启动子及CDS To detect AvrPiz-t promoter and CDS
AvrPiz-t R GTACTCTAGCAAACGACCGG
AvrPia F CAGAGAAACGGACTTGGAGG 1220 检测AvrPia启动子及CDS To detect AvrPia promoter and CDS
AvrPia R GGTATACACGTACGGTAGGG
AvrPik-CDE F TCCTGCTGCTAACTCCATTC ~1000 检测AvrPik-CDE型启动子及CDS To detect the type of AvrPik-CDE promoter and CDS
AvrPik-CDE R GGGTACAGGAATACCAGG
AvrPik-D F ACCCTAACTTTTTCGACC 286 检测AvrPik-D型CDS To detect the type of AvrPik-D CDS
AvrPik-D R TCAACCAAGCGTAAACCTCG
AvrPib F ATGCCGACAATGCGAGGTAT 1598 检测AvrPib启动子及CDS To detect AvrPib promoter and CDS
AvrPib R GGACAAGGGAGGCAAATCTAAC

Table 3

Pathotypes of different strains against 25 blast-resistant lines"

菌株
Strain
IRBLs单基因系对菌株的反应 Reactions of IRBLs to the strains
LTH
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Pia Pii Piks Pik Pikp Pikh Piz Piz5 Pizt Pita Pib Pit Pish Pi1 Pi3 Pi5 Pi7 Pi9 Pi12 Pi19 Pikm Pi20 Pita2 Pi11 Pi50
GD12-535 S S S S S R S S R R R S S S S S S R S S S S R S R S
GD13-3009 S R S R R R R R S S R R R S R R R R S S R S S S R S
GD13-3024 S S S R R S R R R S R S S S S S R R S S S S S S R S
GD13-493 S S S R S R S R S S R S S S S S S R S S S S R S R S
GD13-621 S R S R R R S R R S R S R R S R R R S S R S R S R S
GD13-659 S S S R S R S R S S R S S R S S S R S S S S S S R S
GD14-070 S S S R R R R R S S R S S S S S R R S S R S S S R S
GD14-349 S S S R R R R R R R R S S R S S R R S S R S R S R S
GD14-366 S R S R R R R R R R R S R S S S R R S R S R S S R S
GD14-368 S R S S R S R R R R S S R R S S S R S R S S S S R S
GD14-376 S S S S S S S R R S R S S S S S S R S S S S S S R S
GD14-401 S R S R R R R R S S R S S S S S R R S S S S S S R S
GD15-23 S S S S S R R R S S R S S S S S S R S S S S S S R S
GD15-259 S S S S S R R R S S R S S S S S S R S S S S S S R S
GD15-270 S S S S S R S R R S R S S S S R S R S S S S S S R S
GD15-291 S S S R R R S R R S R S S S S S R R S S S S S S R S
GD15-315 R R R R S R R R R R R S R R R R R R R R R R S R R S
GD15-436 S S S S S R R R S S R S S S S R S R S S S S S S R S
GD15-506 S S S S S S S R R S S S R S S S S R S S S R R R R S
GD15-523 S S S R S R S R S S S S S S S S S R S S S S S S R S
GD15-530 S R S R R R R S S R R S S R S S S R S S S S S S R S
GD15-586 S R S R S R R S S S R S S R S S S R S S S S S S R S
GD16-272 R R S R S R R R R R R S R R S R R R S R R R R S R S
GD16-280 R S R R S R R R R R R S S S R R S R S R S R R S R S
GD16-3071 S S S S S R S R R S R S S S S S S R S S S R R R R S
GD16-327 S S S R S R S R S S S S S R S R S R S S S S S S R S
GD16-334 S S S S S R R R S S R S S S S S S R S S S S S S R S
无毒基因频率
The frequency of
avirulent genes (%)
11.1 33.3 7.4 63.0 37.0 85.2 59.3 88.9 51.9 29.6 85.2 3.7 25.9 33.3 11.1 29.6 37.0 100.0 3.7 18.5 22.2 22.2 29.6 11.1 100.0

Fig. 1

Detection of Avr genes in M. oryzae strains based on molecular markers of avirulent genes"

Fig. 2

Sequences alignment of AvrPib or AvrPik from tested strains to their standard sequences"

Table 4

Comparison of avirulent genes haplotypes and pathogenic types of different strains"

菌株
Strain
Pi9的反应
Reactions to Pi9
Pik不同等位基因的反应
Reactions to different Pik alleles
Pii的反应
Reactions to Pii
Piz-t的反应
Reactions to Piz-t
Pita的反应
Reactions to Pita
Pib的反应
Reactions to Pib
PiaPi-CO39的反应
Reactions to Pia and Pi-CO39
IRBL9
-W
AVR单倍型
AVR haplotype
IRBLk
-Ka
IRBLkp
-K60
IRBLkh
-K3
IRBL1
-CL
IRBL7
-M
IRBLkm
-Ts
AVR单倍型
AVR haplotype
IRBLi
-F5
AVR单倍型
AVR haplotype
IRBLzt
-T
AVR单倍型
AVR haplotype
IRBLta
-K1
AVR单倍型
AVR haplotype
IRBLb
-B
AVR单倍型
AVR haplotype
IRBLa
-A
AVR单倍型
AVR haplotype
Avr-Pia Avr1-CO39
GD12-535 R + S S R S S S D S - R - R - R - S - -
GD13-3009 R + R R R S R R D R - S - S - R - S - -
GD13-3024 R + R R S S R S - S - R + S + R - S - -
GD13-493 R + R S R S S S - S - S - S + R - S - -
GD13-621 R + R R R S R R D R - R + S + R + S - -
GD13-659 R + R S R S S S - S - S - S - R - S - -
GD14-349 R + R R R S R R D S - R - R + R - S - -
GD14-366 R + R R R S R S D R - R - R - R - S - -
GD14-368 R + S R S S S S - R - R - R - S - S - -
GD14-376 R + S S S S S S - S - R + S - R - S - -
GD14-401 R + R R R S R S D R - S - S - R - S - -
GD14-70 R + R R R S R R D S - S - S - R - S - -
GD15-23 R + S S R S S S - S - S - S - R - S - -
GD15-259 R + S S R S S S - S - S - S - R - S - -
GD15-270 R + S S R S S S - S - R + S - R - S - -
GD15-291 R + R R R S R S D S - R + S - R + S - -
GD15-315 R + R S R S R R D R - R - R - R - R - -
GD15-436 R + S S R S S S - S - S - S - R - S - -
GD15-506 R + S S S S S S - S - R + S - S + S - -
GD15-523 R + R S R S S S - S - S - S - S - S - -
GD15-530 R + R R R S S S D R - S - R - R - S - -
GD15-586 R + R S R S S S - R - S - S - R - S - -
GD16-272 R + R S R S R R D R - R - R - R - R - -
GD16-280 R + R S R S S S D S - R - R - R - R - -
GD16-3071 R + S S R S S S - S - R + S - R + S - -
GD16-327 R + R S R S S S - S - S - S - S - S - -
GD16-334 R + S S R S S S - S - S - S - R - S - -

Table 5

Pathogenic reaction of 41 strains to 11 blast-resistant lines"

采集品种
Sampling cultivar
菌株
Strain
11个单基因系对菌株的反应 Reactions of 11 blast-resistant lines to the strains
1 2 3 4 5 6 7 8 9 10 11
Pi9 Pi2 Piz Pikh Pi1 Pikp Pita2 Pish Pii Piz-t Pi50
广8优165 Guang8you165 GD12-535 R R S R R S R S S R R
广8优169 Guang8you169 GD12-716 R R R R R R R R S S R
广8优169 Guang8you169 GD12-721 R R R R R S S S S S R
广8优169 Guang8you169 GD12-730 R R S R R S S S S S R
广8优169 Guang8you169 GD13-493 R R S R R S R S S S R
广8优169 Guang8you169 GD13-621 R R R R R R R R R R R
广8优169 Guang8you169 GD13-626 R R R R R R S R S R R
广8优169 Guang8you169 GD13-659 R S S R R S S S S S R
广8优188 Guang8you188 GD13-3009 R R S R R R S S S S R
广8优2168 Guang8you2168 GD13-3024 R R R R R R S R R S R
广8优2168 Guang8you2168 GD14-070 R R R R R S S S S S R
广8优169 Guang8you169 GD14-298 R R R R R R R R R R R
广8优169 Guang8you169 GD14-349 R R S R R R R S S S R
广8优169 Guang8you169 GD14-366 R S R R S R S R R S R
广8优169 Guang8you169 GD14-368 R S R R R R S R R R R
广8优169 Guang8you169 GD14-372 R S R R S S S R R S R
广8优165 Guang8you165 GD14-376 R R S R R S S R S R R
广8优169 Guang8you169 GD14-381 R R R R R R S S S S R
广8优165 Guang8you165 GD14-401 R S R R R R S S S S R
广8优2168 Guang8you2168 GD15-023 R R S R R S S S S S R
广8优金占 Guang8youjinzhan GD15-236 R S R R R S S R R S R
广8优169 Guang8you169 GD15-259 R S S R R S S S S S R
广8优169 Guang8you169 GD15-270 R R S S R S S S R R R
广8优165 Guang8you165 GD15-291 R S S R R R R R R S R
广8优2168 Guang8you2168 GD15-304 R R R R R R S S S R R
广8优165 Guang8you165 GD15-315 R S R R R R S R R S R
广8优188 Guang8you188 GD15-316 R S R R R R R R R S R
广8优169 Guang8you169 GD15-436 R R S R R S S S S S R
广8优169 Guang8you169 GD15-506 R R R R R S S R R S R
广8优2168 Guang8you2168 GD15-520 R R S R R S S S R S R
广8优169 Guang8you169 GD15-523 R R R R R S S S S S R
广8优169 Guang8you169 GD15-530 R S R R R R R R R R R
广8优169 Guang8you169 GD15-542 R R R R R R S S R S R
广8优165 Guang8you165 GD15-543 R R R R R R R R R S R
广8优169 Guang8you169 GD15-586 R S R R R S S S S S R
广8优165 Guang8you165 GD16-246 R S S R R R R S S S S
广8优188 Guang8you188 GD16-272 R R R R R R R R S S R
广8优165 Guang8you165 GD16-280 R R R R R R R R R R R
广8优169 Guang8you169 GD16-327 R R S R R S S S S S R
广8优2168 Guang8you2168 GD16-334 R R S R R S S S S S R
广8优169 Guang8you169 GD16-3071 R R S R S S R S S R R
无毒基因频率
The frequency of avirulent genes (%)
100.00 68.29 58.54 97.56 92.68 51.22 34.15 43.90 41.46 26.83 97.56

Fig. 3

Comparison the frequency of different Avr genes in M. oryzae from different rice cultivars"

[1] GNANAMANICKAM S S . Rice and its importance to human life//Biological Control of Rice Diseases. Springer Science+Business Media B.V., 2009: 1-11.
doi: 10.1007/978-90-481-2465-7_1
[2] COUCH B C, KOHN L M . A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia, 2002,94(4):683-693.
[3] SKAMNIOTI P, GURR S J . Against the grain: safeguarding rice from rice blast disease. Trends in Biotechnology, 2009,27(3):141-150.
doi: 10.1016/j.tibtech.2008.12.002 pmid: 19187990
[4] MIAH G, RAFII M Y, ISMAIL M R, PUTEH A B, RAHIM H A, ASFALIZA R, LATIF M A . Blast resistance in rice: a review of conventional breeding to molecular approaches. Molecular Biology Reports, 2013,40(3):2369-2388.
doi: 10.1007/s11033-012-2318-0 pmid: 23184051
[5] CHOI J, PARK S Y, KIM B R, ROH J H, OH I S, HAN S S, LEE Y H . Comparative analysis of pathogenicity and phylogenetic relationship in Magnaporthe grisea species complex. PLoS ONE, 2013,8(2):e57196.
doi: 10.1371/journal.pone.0057196 pmid: 3582606
[6] ASHKANI S, RAFII M Y, SHABANIMOFRAD M, MIAH G, SAHEBI M, AZIZI P, TANWEER F A, AKHTAR M S , NASEHI A. Molecular breeding strategy and challenges towards improvement of blast disease resistance in rice crop.Frontiers in Plant Science, 2015, 6: Article 886.
doi: 10.3389/fpls.2015.00886 pmid: 4644793
[7] TANWEER F A, RAFII M Y, SIJAM K, RAHIM H A, AHMED F, LATIF M A . Current advance methods for the identification of blast resistance genes in rice. Comptes Rendus Biologies, 2015,338(5):321-334.
doi: 10.1016/j.crvi.2015.03.001 pmid: 25843222
[8] 梁世胡, 李传国, 李锐, 李曙光, 顾海永, 张其文 . 增城丝苗型水稻优质不育系广8A的选育. 杂交水稻, 2010,25(6):8-10, 40.
LIANG S H, LI C G, LI R, LI S G, GU H Y, ZHANG Q W . Breeding of Zengchengsimiao-type fine quality CMS line Guang 8A in rice. Hybrid Rice, 2010,25(6):8-10, 40. (in Chinese)
[9] FLOR H H . Current status of the gene-for-gene concept. Annual Review of Phytopathology, 1971,9:275-296.
[10] MARCEL S, SAWERS R, OAKELEY E, ANGLIKER H, PASZKOWSKI U . Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. The Plant Cell, 2010,22(9):3177-3187.
[11] LIU W D, ZHOU X Y, LI G T, LI L, KONG L G, WANG C F, ZHANG H F, XU J R . Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for Appressorium formation. PLoS Pathogens, 2011,7(1):e1001261.
doi: 10.1371/journal.ppat.1001261 pmid: 3024261
[12] YOSHIDA K, SAITOH H, FUJISAWA S, KANZAKI H, MATSUMURA H, YOSHIDA K, TOSA Y, CHUMA I, TAKANO Y, WIN J, KAMOUN S, TERAUCHI R . Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. The Plant Cell, 2009,21(5):1573-1591.
doi: 10.1105/tpc.109.066324 pmid: 19454732
[13] ZHANG S L, WANG L, WU W H, HE L Y, YANG X F, PAN Q H . Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. Scientific Reports, 2015,5:11642.
[14] WU J, KOU Y J, BAO J D, LI Y, TANG M Z, ZHU X L, PONAYA A, XIAO G, LI J B, LI C Y, SONG M Y ,CUMAGUN C J R C, DENG Q Y, LU G D, JEON J S, NAQVI N I, ZHOU B. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytologist, 2015,206(4):1463-1475.
[15] RAY S, SINGH P K, GUPTA D K, MAHATO A K, SARKAR C, RATHOU R, SINGH N K , SHARMA T R. Analysis of Magnaporthe oryzae genome reveals a fungal effector,which is able to induce resistance response in transgenic rice line containing resistance gene,Pi54. Frontiers in Plant Science, 2016, 7: Article 1140.
doi: 10.3389/fpls.2016.01140 pmid: 4976503
[16] 李祥晓, 王倩, 罗生香, 何云霞, 朱苓华, 周永力, 黎志康 . 黑龙江省稻瘟病菌无毒基因分析及抗病种质资源筛选. 作物学报, 2012,38(12):2192-2197.
LI X X, WANG Q, LUO S X, HE Y X, ZHU L H, ZHOU Y L, LI Z K . Analyzing avirulence genes of Magnaporthe oryzae from Heilongjiang province and screening rice germplasm with resistance to blast fungus. Acta Agronomica Sinica, 2012,38(12):2192-2197. (in Chinese)
[17] 王世维, 郑文静, 赵家铭, 魏松红, 王妍, 赵宝海, 刘志恒 . 辽宁省稻瘟病菌无毒基因型鉴定及分析. 中国农业科学, 2014,47(3):462-472.
WANG S W, ZHENG W J, ZHAO J M, WEI S H, WANG Y, ZHAO B H, LIU Z H . Identification and analysis of Magnaporthe oryzae avirulence genes in Liaoning province. Scientia Agricultura Sinica, 2014,47(3):462-472. (in Chinese)
[18] 朱名海, 赵美, 舒灿伟, 周而勋 . 南繁区稻瘟病菌无毒基因的检测. 华中农业大学学报, 2017,36(4):21-25.
ZHU M H, ZHAO M, SHU C W, ZHOU E X . Detection of avirulence genes in Magnaporthe oryzae from South China Crop Breeding Area. Journal of Huazhong Agricultural University, 2017,36(4):21-25. (in Chinese)
[19] 周益军, 程兆榜, 范永坚, 王金生, 陈毓苓, 张文荟 . 用不同类型的水稻鉴别品种鉴定江苏稻瘟病菌的致病性. 作物学报, 2003,29(2):268-273. (in Chinese)
ZHOU Y J, CHENG Z B, FAN Y J, WANG J S, CHEN Y L, ZHANG W H . Study on the pathogenicity of Magnaporthe grisea collected from Jiangsu with four sets of differentials. Acta Agronomica Sinica, 2003,29(2):268-273. (in Chinese)
[20] 兰波, 杨迎青, 常冬冬, 徐沛东, 李湘民 . 基于丽江新团黑谷的稻瘟病菌致病性分化. 华中农业大学学报, 2015,34(1):28-32.
LAN B, YANG Y Q, CHANG D D, XU P D, LI X M . Pathogenicity differentiation of rice blast pathogen (Magnaporthe grisea) based on Lijiangxintuanheigu. Journal of Huazhong Agricultural University, 2015,34(1):28-32. (in Chinese)
[21] 汪文娟, 苏菁, 张杰, 李亦龙, 陈深, 曾列先, 杨健源, 朱小源 . 源于粤晶丝苗2号穗瘟的稻瘟病菌致病性分析 .广东农业科学, 2012(23):59-61.
WANG W J, SU J, ZHANG J, LI Y L, CHEN S, ZENG L X, YANG J Y, ZHU X Y . Pathogenicity analysis of the rice blast fungus isolated from the blast panicles of Yuejingsimiao 2 . Guangdong Agricultural Sciences, 2012(23):59-61. (in Chinese)
[22] 汪文娟, 韦小燕, 陈凯玲, 陈尉芹, 陈珍, 杨健源, 朱小源 . 源自杂交稻组合五优308稻瘟病菌致病性分析 .广东农业科学, 2015(14):70-73.
WANG W J, WEI X Y, CHEN K L, CHEN W Q, CHEN Z, YANG J Y, ZHU X Y . Pathogenicity analysis onMagnaporthe grisea of hybrid combination Wuyou308 .Guangdong Agricultural Sciences, 2015(14):70-73. (in Chinese)
[23] ZHU X Y, CHEN S, YANG J Y, ZHOU S C, ZENG L X, HAN J L, SU J, WANG L, PAN Q H . The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theoretical and Applied Genetics, 2012,124(7):1295-1304.
doi: 10.1007/s00122-012-1787-9 pmid: 22270148
[24] SELISANA S M, YANORIA M J, QUIME B, CHAIPANYA C, LU G, OPULENCIA R, WANG G L, MITCHELL T, CORRELL J, TALBOT N J, LEUNG H, ZHOU B . Avirulence (AVR) gene-based diagnosis complements existing pathogen surveillance tools for effective deployment of resistance(R) genes against rice blast disease.Phytopathology, 2017,107(6):711-720.
[25] 朱小源, 杨健源, 陈玉托, 杨维新, 陈喜劳, 曾列先, 陈深 . 引致天优998抗性丧失的稻瘟病菌小种鉴定及其致病性测定. 广东农业科学, 2008(12):84-86.
ZHU X Y, YANG J Y, CHEN Y T, YANG W X, CHEN X L, ZENG L X, CHEN S . Race identification and pathogenicity test of the blast fungus causing the resistance breakdown of hybrid rice Tianyou 998.Guangdong Agricultural Sciences, 2008(12):84-86. (in Chinese)
[26] 李进斌, 李成云, 陈艳, 雷财林, 凌忠专 . 二十二个抗稻瘟病基因在云南的利用价值评价. 植物保护学报, 2005,32(2):113-119.
LI J B, LI C Y, CHEN Y, LEI C L, LING Z Z . Evaluation of twenty-two blast resistance genes in Yunnan using monogenetic rice lines. Acta Phytophylacica Sinica, 2005,32(2):113-119. (in Chinese)
[27] 张国民, 马军韬, 肖佳雷, 刘迎雪, 辛爱华, 任洋, 张丽艳, 刘东风 . 已知抗瘟基因在黑龙江省寒地稻区的评价与利用. 植物病理学报, 2011,41(1):72-79.
ZHANG G M, MA J T, XIAO J L, LIU Y X, XIN A H, REN Y, ZHANG L Y, LIU D F . Evaluation and utilization of value of twenty-four blast resistance genes in north cold region, Heilongjiang. Acta Phytopathologica Sinica, 2011,41(1):72-79. (in Chinese)
[28] KANZAKI H, YOSHIDA K, SAITOH H, FUJISAKI K, HIRABUCHI A, ALAUX L, FOURNIER E, THARREAU D, TERAUCHI R . Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. The Plant Journal, 2012,72(6):894-907.
[29] WOOLHOUSE M E, WEBSTER J P, DOMINGO E, CHARLESWORTH B, LEVIN B R . Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nature Genetics, 2002,32(4):569-577.
[30] WU W H, WANG L, ZHANG S, LIANG Y Q, ZHENG X L, YI K X, HE C P . Assessment of sensitivity and virulence fitness costs of the AvrPik alleles from Magnaporthe oryzae to isoprothiolane. Genetics and Molecular Research, 2014,13(4):9701-9709.
[31] 汪文娟, 周继勇, 汪聪颖, 苏菁, 封金奇, 陈炳, 冯爱卿, 杨健源, 陈深, 朱小源 . 八个抗稻瘟病基因在华南籼型杂交水稻中的分布. 中国水稻科学, 2017,31(3):299-306.
WANG W J, ZHOU J Y, WANG C Y, SU J, FENG J Q, CHEN B, FENG A Q, YANG J Y, CHEN S, ZHU X Y . Distribution of eight rice blast resistance genes in indica hybrid rice in China. Chinese Journal of Rice Science, 2017,31(3):299-306. (in Chinese)
[32] IMAM J, ALAM S, MANDAL N P, SHUKLA P, SHARMA T R, VARIAR M . Molecular identification and virulence analysis of AVR genes in rice blast pathogen, Magnaporthe oryzae from Eastern India. Euphytica, 2015,206(1):21-31.
doi: 10.1007/s10681-015-1465-5
[33] TELEBANCO-YANORIA M J, IMBE T, KATO H, TSUNEMATSU H, EBRON L A, VERA CRUZ C M, KOBAYASHI N, FUKUTA Y . A set of standard differential blast isolates (Magnaporthe grisea (Hebert) Barr.) from the Philippines for rice (Oryza sativa L.) resistance.Japan Agricultural Research Quarterly, 2008,42(1):23-34.
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[3] WU YunYu,XIAO Ning,YU Ling,CAI Yue,PAN CunHong,LI YuHong,ZHANG XiaoXiang,HUANG NianSheng,JI HongJuan,DAI ZhengYuan,LI AiHong. Construction and Analysis of Broad-Spectrum Resistance Gene Combination Pattern for Japonica Rice in Lower Region of the Yangtze River, China [J]. Scientia Agricultura Sinica, 2021, 54(9): 1881-1893.
[4] MENG Feng,ZHANG YaLing,JIN XueHui,ZHANG XiaoYu,JIANG Jun. Detection and Analysis of Magnaporthe oryzae Avirulence Genes AVR-Pib, AVR-Pik and AvrPiz-t in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2019, 52(23): 4262-4273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!