Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (5): 945-958.doi: 10.3864/j.issn.0578-1752.2021.05.007

• PLANT PROTECTION • Previous Articles     Next Articles

Ligands Binding Characteristics of Chemosensory Protein CsasCSP16 of Carposina sasakii

XiaoHe LIU1(),GuiSheng QIU1,ZhaoGuo TONG2,HuaiJiang ZHANG1,WenTao YAN1,Qiang YUE1,LiNa SUN1()   

  1. 1Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning
    2School of Agriculture Science, Xichang University, Xichang 615013, Sichuan
  • Received:2020-05-11 Accepted:2020-06-22 Online:2021-03-01 Published:2021-03-09
  • Contact: LiNa SUN E-mail:liuxiaoheaye@163.com;sunlina@caas.cn

Abstract:

【Objective】Carposina sasakii is one of the most destructive pests on orchards in north China. The objectives of this study are to get the recombinant CsasCSP16 protein, characterize the binding profiles of CsasCSP16 with some small molecular volatiles from host plants, and predict the key residue between CsasCSP16 and putative ligands. In overall this research possibly lays a theoretical and practical foundation for the understanding of olfactory mechanism in C. sasakii.【Method】The recombinant protein CsasCSP16 was induced to express by constructing prokaryotic expression system, and purified by using the Ni-NTA agarose affinity column. Then, the fluorescence competitive assay was applied, and N-phenyl-1-naphthylamine (1-NPN) was selected as the fluorescence probe to measure the binding profiles of CsasCSP16 recombinant with 33 host plant volatiles and 2 sex pheromone compounds. The Modeller software was used to build three-dimensional model. CSPMbraA6 (PDB ID: 1N8U) was used as the template for homology modeling of CsasCSP16 protein structure. The modeled structure of CsasCSP16 was docked with 35 selected ligands by Autodock Vina. Then, the complexes from above step were introduced to GROMACS (2019.3) to conform the stability. Moreover, the binding energies of the complexes were calculated by g_mmpbsa and the key residues interaction between CsasCSP16 and host volatiles were predicted.【Result】The recombinant expression vector was successfully constructed, and the recombinant protein of CsasCSP16 with high purity was obtained by bacterial system. Further, competitive fluorescence binding assays with 35 candidate ligands showed that CsasCSP16 had high binding affinities against methyl salicylate, 6-methyl-5-hepten-2-one, pentadecane, butyl heptanoate and α-pinene, and the recorded Ki values were 6.59, 6.25, 3.50, 6.73 and 4.47 μmol·L-1, respectively. Ligand docking results revealed that the Vina Scores of CsasCSP16-methyl salicylate, CsasCSP16-6-methyl-5-hepten-2-one, CsasCSP16-pentadecane, CsasCSP16-butyl heptanoate and CsasCSP16-α-pinene were -6.1, -5.3, -5.8, -5.2 and -6.6, respectively. Finally, the g_mmpbsa analysis demonstrated that the binding energies of CsasCSP16-methyl salicylate, CsasCSP16-6-methyl-5- hepten-2-one, CsasCSP16-pentadecane and CsasCSP16-butyl heptanoate were -50.264, -65.551, -136.035 and -93.805 kJ·mol-1, respectively. Ile49, Val71, Ile72 and Tyr90 contribute energy more than 3 kJ·mol-1, suggesting their key involvement in the function of CsasCSP16. 【Conclusion】The CsasCSP16 has a certain binding capacity with several odors from host plant volatiles, suggesting that it may play an important role in the localization of host plants. Ile49, Val71, Ile72, and Tyr90 may be the key residues involved in the function of CsasCSP16.

Key words: Carposina sasakii, chemosensory protein (CSP), prokaryotic expression, competitive binding, molecular docking, dynamic simulation

Fig. 1

The prokaryotic expression and protein purification of recombinant protein CsasCSP16 A:CsasCSP16 cDNA核苷酸序列及其推导的氨基酸序列,信号肽序列用下划线标注,保守的半胱氨酸残基用圆圈标注,终止密码子用星号表示 Nucleotide and deduced amino acid sequence of CsasCSP14 cDNA. Signal peptide is underlined, conserved cysteine residues are marked in circles, the stop codons are denoted by asterisks [25]。B:CsasCSP16在大肠杆菌中的表达Induciton of the CsasCSP16 in E. coli;1:蛋白分子量标签 Protein molecular weight marker;4:未诱导对照组 Control group without induction;2、3和5:IPTG诱导的表达产物 Expressed products induced by IPTG。C:超声破菌结果The result of sonication;1:蛋白分子量标签 Protein molecular weight marker;2:重组菌的上清蛋白The soluble fraction of recombinant E. coli;3:包涵体 Inclusion body。D:CsasCSP16重组蛋白的纯化 Purification of the CsasCSP16 recombinant protein;1:蛋白分子量标签 Protein molecular weight marker;2:上柱前蛋白 The proteins before purified by NTA-Ni affinity chromatography;3:流出液 Outflow;4:30 mmol·L -1 咪唑 Imidazole at 30 mmol·L -1;5:300 mmol·L-1咪唑 Imidazole at 300 mmol·L-1"

Table 1

Binding data of recombinant CsasCSP16 with different host volatiles and sex pheromone molecules"

寄主挥发物和性信息素分子
Host volatile and sex pheromone molecule
CSP16 结合能
Binding energy (kJ·mol-1)
IC50 (μmol·L-1) Ki (μmol·L-1)
醇类 Alcohols 2-己烯醇 2-hexenol >50 >50 -
苯乙醇 Phenethyl alcohol >50 >50 -
醛类 Aldehydes 反-2-己烯醛 (E)-2-hexenal >50 >50 -
己醛 Hexanal >50 >50 -
苯甲醛 Benzaldehyde >50 >50 -
庚醛 Heptanal >50 >50 -
辛醛 Octanal >50 >50 -
壬醛 Nonanal >50 >50 -
癸醛 Decanal >50 >50 -
酯类 Esters 丁酸乙酯 Ethyl butyrate >50 >50 -
乙酸丁酯 Butyl acetate >50 >50 -
乙酸异戊酯 Isoamyl acetate >50 >50 -
乙酸-顺-3-己烯酯 (Z)-3-hexenyl acetate >50 >50 -
丁酸丁酯 Butyl butyrate >50 >50 -
己酸乙酯 Ethyl hexanoate >50 >50 -
乙酸己酯 Hexyl acetate >50 >50 -
水杨酸甲酯 Methyl salicylate 18.69 6.59 -25.52
庚酸乙酯 Ethyl heptanoate >50 >50 -
己酸丁酯 Butyl hexanoate >50 >50 -
茉莉酸甲酯 Methyl jasmonate >50 >50 -
乙酸二甲基丁酯 Dimethyl butyl acetate >50 >50 -
辛酸正丁酯 Butyl octanoate >50 >50 -
庚酸丁酯 Butyl heptanoate 19.74 6.73 -21.76
辛酸丙酯 Propyl octanoate >50 >50 -
萜类 Terpenoids α-蒎烯 α-pinene 11.50 4.47 -27.61
α-罗勒烯 α-ocimene >50 >50 -
腈类 Benzonitriles 苯甲腈 Benzonitrile >50 >50 -
烷烃类 Alkanes 癸烷 Decane >50 >50 -
十四烷 Tetradecane >50 >50 -
十五烷 Pentadecane 7.90 3.50 -24.27
十六烷 Hexadecane >50 >50 -
十八烷 Octadecane >50 >50 -
酮类物质 Ketone 6-甲基-5-庚烯-2-酮 6-methyl-5-hepten-2-one 17.83 6.25 -22.16
Z-7-二十烯-11-酮 Z-7-eicosen-11-one >50 >50 -
Z-7-十九烯-11-酮 Z-7-nonadecen-11-one >50 >50 -

Fig. 2

Ligand-binding assay for CsasCSP16 A、B:CsasCSP16与1-NPN的结合Binding curves of CsasCSP16 to 1-NPN;C:CsasCSP16与配体的荧光竞争结合Fluorescence competition of CsasCSP16 with ligands;D:CsasCSP16对不同气味物质的结合亲和力(以1/Ki表示)的比较Comparison of the binding affinities (indicated by 1/Ki) of CsasCSP16 with different components"

Fig. 3

Three-dimensional (3D) structure of CsasCSP16 A:CsasCSP16与1N8U序列比对Alignment of CsasCSP16 and 1N8U sequence;B:CsasCSP16与1N8U的三维结构比对Superimposed structure of CsasCSP16 and the template 1N8U;C:CsasCSP16三维结构模型Three-dimensional structure of CsasCSP16;D:1N8U的三维结构模型 Three-dimensional structure of 1N8U used as a template"

Fig. 4

The Ramachandran plot of CsasCSP16 In the figure, the dark green regions are the best regions of the protein residues, the green regions are the appropriate regions of the protein residues, other regions are the irrational areas for protein residues"

Fig. 5

Binding modes of the different ligands in the putative binding pocket of CsasCSP16"

Fig. 6

RMSD value for the whole backbone of atoms of CsasCSP16-ligand complex"

Table 2

The binding free energy and components of ligand molecule"

配体
Ligand name
范德华力
Val der Waals
(kJ·mol-1)
静电作用力
Electrostatic force (kJ·mol-1)
极性溶剂化能
Polar solvation energy (kJ·mol-1)
非极性溶剂化能
Nonpolar solvation energy (kJ·mol-1)
结合能
Binding energy (kJ·mol-1)
水杨酸甲酯
Methyl salicylate
-82.466
(0.682)
-18.084
(0.850)
61.336
(0.750)
-11.103
(0.055)
-50.264
(0.702)
6-甲基-5-庚烯-2酮
6-methyl-5-hepten-2-one
-93.570
(0.927)
-16.158
(1.325)
55.604
(0.973)
-11.428
(0.061)
-65.551
(1.080 )
十五烷
Pentadecane
-164.748
(0.845)
-0.969
(0.069)
49.259
(0.848)
-19.537
(0.089)
-136.035
(1.047)
庚酸丁酯
Butyl heptanoate
-109.800
(0.787)
-1.567
(0.211)
33.365
(0.782)
-15.787
( 0.079)
-93.805
(1.191)

Fig. 7

The key residues of the different ligands that interact with CsasCSP16 (two dimensional)"

Fig. 8

The key residues of the different ligands that interact with CsasCSP16 (three dimensional)"

Fig. 9

Single residue of CsasCSP16 energy decomposition spectrogram The X-axis denotes the residue number of the CsasCSP16 and the Y-axis denotes the interaction energy between the ligand and the CsasCSP16 residues. The important residues for binding are marked by corresponding texts"

Table 3

Binding energy contributions of some main residues"

气味分子
Volatile ligand
相互作用能 Interaction energy (kJ·mol-1)
范围
Range (>2.0 )
范围
Range (-1.0—-3.0 )
范围
Range (-3.0—-5.0)
范围
Range (<-5.0 )
水杨酸甲酯 Methyl salicylate Tyr28, Gln64, Thr68 Leu45, Ala52, Cys57, Cys60, Val71 - Ile49
6-甲基-5-庚烯-2酮
6-methyl-5-hepten-2-one
Arg50 Met32, Ile49, Leu53, Ile72, Leu75, Trp83, Leu86, Thr87, Tyr96, Val 97, Tyr100 Thr90 -
十五烷 Pentadecane Asp91, His94 Leu15, Ile18, Leu19, Met32, Leu45, Leu53, Leu75, Trp83, Leu86, Thr87, Tyr96, Val97 Ile72, Tyr90 Ile49, Val71
庚酸丁酯 Butyl heptanoate - Leu15, Leu25, Ile29, Met32, Leu45, Leu53, Cys57, Thr68, Val71, Trp83, Leu86, Val97, Tyr100 Ile72, Tyr90 Ile49
[1] 孙丽娜, 田志强, 张怀江, 李艳艳, 闫文涛, 岳强, 仇贵生. 氯虫苯甲酰胺干扰桃小食心虫交配的转录组分析. 中国农业科学, 2018,51(15):2925-2936.
SUN L N, TIAN Z Q, ZHANG H J, LI Y Y, YAN W T, YUE Q, QIU G S. Transcriptome analysis of disruption of mating in the peach fruit moth (Carposina sasakii) by chlorantraniliprole. Scientia Agricultura Sinica, 2018,51(15):2925-2936. (in Chinese)
[2] OLSSON S B, The Bengaluru Consortium. New frontiers for chemical ecology: Reaffirming a commitment to the Göteborg resolution. Journal of Chemical Ecology, 2017,43(1):2-3.
[3] PELOSI P, ZHU J, KNOLL W. Odorant-binding proteins as sensing elements for odour monitoring. Sensors, 2018,18(10):3248.
[4] 杜立啸, 刘杨, 王桂荣. 昆虫外周嗅觉系统信号转导机制研究进展. 中国科学: 生命科学, 2016,46(5):573-583.
DU L X, LIU Y, WANG G R. Molecular mechanisms of signal transduction in the peripheral olfactory system of insects. Scientia Sinica Vitae, 2016,46(5):573-583. (in Chinese)
[5] PELOSI P, IOVINELLA I, ZHU J, WANG G, DANI F R. Beyond chemoreception: Diverse tasks of soluble olfactory proteins in insects. Biological Reviews of the Cambridge Philosophical Society, 2018,93(1):184-200.
doi: 10.1111/brv.12339 pmid: 28480618
[6] MEI T, FU W B, LI B, HE Z B, CHEN B. Comparative genomics of chemosensory protein genes (CSPs) in twenty-two mosquito species (Diptera: Culicidae): Identification, characterization, and evolution. PLoS ONE, 2018,13(1):e0190412.
[7] ZHANG Y N, ZHU X Y, ZHANG Q, YIN C Y, DONG Z P, ZUO L H, DENG D G, SUN L, LI X M. De novo assembly and characterization of antennal transcriptome reveal chemosensory system in Nysius ericae. Journal of Asia-Pacific Entomology, 2016,19(4):1077-1087.
[8] ZHANG Y N, KANG K, XU L, ZHU X Y, QIAN J L, ZHANG Z J, HE P, LI X M. Deep sequencing of antennal transcriptome from Callosobruchus chinensis to characterize odorant binding protein and chemosensory protein genes. Journal of Stored Products Research, 2017,74:13-21.
[9] CAMPANACCI V, LARTIGUE A, HÄLLBERG B M, JONES T A, GIUDICI-ORTICONI M T, TEGONI M, CAMBILLAU C. Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(9):5069-5074.
[10] LARTIGUE A, CAMPANACCI V, ROUSSEL A, LARSSON A M, JONES T A, TEGONI M, CAMBILLAU C. X-ray structure and ligand binding study of a moth chemosensory protein. The Journal of Biological Chemistry, 2002,277(35):32094-32098.
[11] MCKENNA M P, HEKMAT-SCAFE D S, GAINES P, CARLSON J R. Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. The Journal of Biological Chemistry, 1994,269(23):16340-16347.
[12] KITABAYASHI A N, ARAI T, KUBO T, NATORI S. Molecular cloning of cDNA for p10, a novel protein that increases in the regenerating legs of Periplaneta americana (American cockroach). Insect Biochemistry and Molecular Biology, 1998,28(10):785-790.
[13] CHENG D, LU Y, ZENG L, LIANG G, HE X. Si-CSP9 regulates the integument and moulting process of larvae in the red imported fire ant, Solenopsis invicta. Scientific Reports, 2015,5:9245.
[14] XUAN N, GUO X, XIE H Y, LOU Q N, LU X B, LIU G X, PICIMBON J F. Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. Insect Science, 2015,22(2):203-219.
doi: 10.1111/1744-7917.12116 pmid: 24677614
[15] BAUTISTA M A, BHANDARY B, WIJERATNE A J, MICHEL A P, HOY C W, MITTAPALLI O. Evidence for trade-offs in detoxification and chemosensation gene signatures in Plutella xylostella. Pest Management Science, 2015,71(3):423-432.
pmid: 24796243
[16] GUO W, WANG X, MA Z, XUE L, HAN J, YU D, KANG L. CSP and takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust. PLoS Genetics, 2011,7(2):e1001291.
[17] ZHU J, IOVINELLA I, DANI F R, LIU Y L, HUANG L Q, LIU Y, WANG C Z, PELOSI P, WANG G. Conserved chemosensory proteins in the proboscis and eyes of Lepidoptera. International Journal of Biological Science, 2016,12(11):1394-1404.
[18] DANI F R, MICHELUCCI E, FRANCESE S, MASTROBUONI G, CAPPELLOZZA S, LA MARCA G, NICCOLINI A, FELICIOLI A, MONETI G, PELOSI P. Odorant-binding proteins and chemosensory proteins in pheromone detection and release in the silkmoth Bombyx mori. Chemical Senses, 2011,36(4):335-344.
pmid: 21220518
[19] IOVINELLA I, DANI F R, NICCOLINI A, SAGONA S, MICHELUCCI E, GAZZANO A, TURILLAZZI S, FELICIOLI A, PELOSI P. Differential expression of odorant-binding proteins in the mandibular glands of the honey bee according to caste and age. Journal of Proteome Research, 2011,10(8):3439-3449.
pmid: 21707107
[20] JACQUIN-JOLY E, VOGT R G, FRANCOIS M C, NAGNAN-LE MEILLOUR P. Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae. Chemical Senses, 2001,26(7):833-844.
[21] WARIS M I, YOUNAS A, ADEEL M M, DUAN S G, QUERSHI S R, KALEEM ULLAH R M, WANG M Q. The role of chemosensory protein 10 in the detection of behaviorally active compounds in brown planthopper, Nilaparvata lugens. Insect Science, 2020,27(3):531-544.
pmid: 30593726
[22] TIAN Z, QIU G, LI Y, ZHANG H, YAN W, YUE Q, SUN L. Molecular characterization and functional analysis of pheromone binding proteins and general odorant binding proteins from Carposina sasakii Matsumura (Lepidoptera: Carposinidae). Pest Management Science, 2019,75(1):234-245.
doi: 10.1002/ps.5107 pmid: 29869368
[23] TIAN Z, SUN L, LI Y, QUAN L, ZHANG H, YAN W, YUE Q, QIU G. Antennal transcriptome analysis of the chemosensory gene families in Carposina sasakii (Lepidoptera: Carposinidae). BMC Genomics, 2018,19(1):544.
pmid: 30029592
[24] 刘孝贺, 孙丽娜, 张怀江, 闫文涛, 岳强, 仇贵生. 桃小食心虫成虫化学感受蛋白CSPs的基因克隆及表达谱分析. 中国果树, 2020(2):91-96.
LIU X H, SUN L N, ZHANG H J, YAN W T, YUE Q, QIU G S. Cloning and expression profile of Carposina sasakii adults chemosensory protein. China Friuts, 2020(2):91-96. (in Chinese)
[25] QUAN L F, QIU G S, ZHANG H J, SUN L N, LI Y Y, YAN W T. Sublethal concentration of beta-cypermethrin influences fecundity and mating behavior of Carposina sasakii (Lepidoptera: Carposinidae) adults. Journal of Economic Entomology, 2016,109(5):2196-2204.
doi: 10.1093/jee/tow170 pmid: 27498114
[26] 李玲, 谭瑶, 周晓榕, 庞保平. 沙葱萤叶甲气味结合蛋白GdauOBP20的基因克隆、原核表达及其结合特性. 中国农业科学, 2019,52(20):3705-3712.
LI L, TAN Y, ZHOU X R, PANG B P. Molecular cloning, prokaryotic expression and binding characterization of odorant binding protein GdauOBP20 in Galeruca daurica. Scientia Agricultura Sinica, 2019,52(20):3705-3712. (in Chinese)
[27] 李都, 牛长缨, 李峰奇, 罗晨. 斑翅果蝇气味结合蛋白OBP56h与小分子化合物的结合特征. 中国农业科学, 2019,52(15):2616-2623.
LI D, NIU C Y, LI F Q, LUO C. Binding characterization of odorant binding protein OBP56h in Drosophila suzukii with small molecular compounds. Scientia Agricultura Sinica, 2019,52(15):2616-2623. (in Chinese)
[28] MORRIS G M, HUEY R, LINDSTROM W, SANNER M F, BELEW R K, GOODSELL D S, OLSON A J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 2009,30(16):2785-2791.
pmid: 19399780
[29] LIU Y, GRIMM M, DAI W T, HOU M C, XIAO Z X, CAO Y. CB-Dock: A web server for cavity detection-guided protein-ligand blind docking. Acta Pharmacologica Sinica, 2020,41(1):138-144.
doi: 10.1038/s41401-019-0228-6 pmid: 31263275
[30] PRONK S, PALL S, SCHULZ R, LARSSON P, BJELKMAR P, APOSTOLOV R, SHIRTS M R, SMITH J C, KASSON P M, VAN DER SPOEL D, HESS B, LINDAHL E. GROMACS 4.5: A high- throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 2013,29(7):845-854.
doi: 10.1093/bioinformatics/btt055 pmid: 23407358
[31] HUANG J, RAUSCHER S, NAWROCKI G, RAN T, FEIG M, DE GROOT B L, GRUBMULLER H, MACKERELL A D, JR. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 2017,14(1):71-73.
pmid: 27819658
[32] 张贺, 卢俊瑞, 穆江蓓, 刘金彪, 杨旭云, 王美君, 张瑞波. 3MBA类FtsZ蛋白抑制剂的分子动力学模拟及抗菌作用机制. 物理化学学报, 2015,31(3):566-575.
ZHANG H, LU J R, MU J B, LIU J B, YANG X Y, WANG M J, ZHANG R B. Molecular dynamics simulation and antibacterial mechanism of 3MBA derivatives as FtsZ protein inhibitors. Acta Physico-Chimica Sinica, 2015,31(3):566-575. (in Chinese)
[33] KUMARI R, KUMAR R, Open Source Drug Discovery Consortium, LYNN A. g_mmpbsa-a GROMACS tool for high-throughput MM- PBSA calculations. Journal of Chemical Information and Modeling, 2014,54(7):1951-1962.
doi: 10.1021/ci500020m pmid: 24850022
[34] HOU T, ZHANG W, CASE D A, WANG W. Characterization of domain-peptide interaction interface: A case study on the amphiphysin-1 SH3 domain. Journal of Molecular Biology, 2008,376(4):1201-1214.
pmid: 18206907
[35] GU S H, WANG S Y, ZHANG X Y, JI P, LIU J T, WANG G R, WU K M, GUO Y Y, ZHOU J J, ZHANG Y J. Functional characterizations of chemosensory proteins of the alfalfa plant bug Adelphocoris lineolatus indicate their involvement in host recognition. PLoS ONE, 2012,7(8):e42871.
pmid: 22900060
[36] LI H L, NI C X, TAN J, ZHANG L Y, , HU F L. Chemosensory proteins of the eastern honeybee, Apis cerana: Identification, tissue distribution and olfactory related functional characterization. Comparative Biochemistry and Physiology. PartB: Biochemistry and Molecular Biology, 2016,194/195:11-19.
[37] ZHOU S H, ZHANG J, ZHANG S G, ZHANG L. Expression of chemosensory proteins in hairs on wings of Locusta migratoria (Orthoptera: Acrididae). Journal of Applied Entomology, 2008,132(6):439-450.
[38] TIAN Z, LIU J Y, ZHANG Y L. Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentially active semiochemicals. Scientific Reports, 2016,6:22336.
pmid: 26928635
[39] VENTHUR H, MACHUCA J, GODOY R, PALMA-MILLANAO R, ZHOU J J, LARAMA G, BARDEHLE L, QUIROZ A, CEBALLOS R, MUTIS A. Structural investigation of selective binding dynamics for the pheromone-binding protein 1 of the grapevine moth, Lobesia botrana. Archives of Insect Biochemistry and Physiology, 2019,101(3):e21557.
pmid: 31062883
[40] FAN J, XUE W X, DUAN H X, JIANG X, ZHANG Y, YU W J, JIANG S S, SUN J R, CHEN J L. Identification of an intraspecific alarm pheromone and two conserved odorant-binding proteins associated with (E)-beta-farnesene perception in aphid Rhopalosiphum padi. Journal of Insect Physiology, 2017,101:151-160.
doi: 10.1016/j.jinsphys.2017.07.014 pmid: 28778653
[41] SANDLER B H, NIKONOVA L, LEAL W S, CLARDY J. Sexual attraction in the silkworm moth: Structure of the pheromone- binding-protein-bombykol complex. Chemistry and Biology, 2000,7(2):143-151.
pmid: 10662696
[42] 周强, 徐涛, 张古忍, 古德祥, 张文庆. 虫害诱导的水稻挥发物对褐飞虱的驱避作用. 昆虫学报, 2003,46(6):739-744.
ZHOU Q, XU T, ZHANG G R, GU D X, ZHANG W Q. Repellent effects of herbivore-induced rice volatiles on the brown planthopper, Nilaparvata lugens Stål. Acta Entomologica Sinica, 2003,46(6):739-744. (in Chinese)
[43] CHEN G L, PAN Y F, MA Y F, WANG J, HE M, HE P. Binding affinity characterization of an antennae-enriched chemosensory protein from the white-backed planthopper, Sogatella furcifera (Horvath), with host plant volatiles. Pesticide Biochemistry and Physiology, 2018,152:1-7.
doi: 10.1016/j.pestbp.2018.09.006 pmid: 30497699
[1] LI GuiXiang,LI XiuHuan,HAO XinChang,LI ZhiWen,LIU Feng,LIU XiLi. Sensitivity of Corynespora cassiicola to Three Common Fungicides and Its Resistance to Fluopyram from Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1359-1370.
[2] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[3] QIN JianHui,LI JinQiao,ZHAO Xu,LI KeBin,CAO YaZhong,YIN Jiao. Expression, Purification and Functional Analysis of Odorant Binding Protein 11 (OBP11) in Anomala corpulenta [J]. Scientia Agricultura Sinica, 2021, 54(14): 3017-3028.
[4] LI ZuRen,LUO DingFeng,BAI HaoDong,XU JingJing,HAN JinCai,XU Qiang,WANG RuoZhong,BAI LianYang. Cloning and Expression Analysis of Light Harvesting Chlorophyll a/b Protein Gene CcLhca-J9 in Conyza canadensis [J]. Scientia Agricultura Sinica, 2021, 54(1): 86-94.
[5] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[6] BI KeRan,LI Yin,HAN KaiKai,ZHAO DongMin,LIU QingTao,LIU YuZhuo,HUANG XinMei,YANG Jing. Prokaryotic Expression and Polyclonal Antibody Preparation of Duck Oligoadenylate Synthase-Like Protein [J]. Scientia Agricultura Sinica, 2019, 52(23): 4429-4436.
[7] Ling LI,Yao TAN,XiaoRong ZHOU,BaoPing PANG. Molecular Cloning, Prokaryotic Expression and Binding Characterization of Odorant Binding Protein GdauOBP20 in Galeruca daurica [J]. Scientia Agricultura Sinica, 2019, 52(20): 3705-3712.
[8] LI Du, NIU ChangYing, LI FengQi, LUO Chen. Binding Characterization of Odorant Binding Protein OBP56h in Drosophila suzukii with Small Molecular Compounds [J]. Scientia Agricultura Sinica, 2019, 52(15): 2616-2623.
[9] WANG Hui,CHAI ZhiXin,ZHU JiangJiang,ZHONG JinCheng,ZHANG ChengFu,Xin JinWei. Cloning and Identification of Long-Chain Non-Coding RNA Linc24063 and Its Correlation with the Expression Level of miRNAs in Yak [J]. Scientia Agricultura Sinica, 2019, 52(14): 2538-2547.
[10] YI Min,LÜ Qing,LIU KeKe,WANG LiJun,WU YuJiao,ZHOU ZeYang,LONG MengXian. Expression, Purification and Localization Analysis of Polar Tube Protein 2 (NbPTP2) from Nosema bombycis [J]. Scientia Agricultura Sinica, 2019, 52(10): 1830-1838.
[11] ZHANG Kui,LI ChongYang,SU JingJing,TAN Juan,XU Man,CUI HongJuan. Expression, Purification and Immunologic Function of Integrin β2 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(1): 181-190.
[12] ZHAO Jie, REN SuWei, LIU Ning, AI XinYu, MA Ji, LIU XiaoNing. Cloning and Expression of Phosphatidylethanolamine Binding Protein in Helicoverpa armigera [J]. Scientia Agricultura Sinica, 2018, 51(8): 1493-1503.
[13] ZHI Shuang, REN YanHong, TANG Xing, XU FengXiang, WANG ChuanHong, ZHAO AiChun, WANG XiLing. Molecular Cloning and Expression Analysis of Genes MaGDHs Encoding Glutamate Dehydrogenase in Mulberry [J]. Scientia Agricultura Sinica, 2018, 51(4): 758-769.
[14] ZHENG XiuPing, DING HaoJie, GUO XiaoLu, YANG Yi, HUANG Yan, CHEN XueQiu, ZHOU QianJin, DU AiFang. Characteristics of Hc-daf-22 Gene from Haemonchus contortus: Crokaryotic Expression and Its Enzymatic Activity [J]. Scientia Agricultura Sinica, 2017, 50(8): 1535-1542.
[15] WEI YuanJie, WANG YaMei, HUANG LiNa, LIU Ning, ZHAO Jie, AI XinYu, LIU XiaoNing. Cloning, Prokaryotic Expression and Preparation of the Polyclonal Antibody Against CYP6CY3 from Aphis gossypii [J]. Scientia Agricultura Sinica, 2017, 50(7): 1351-1360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!