Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (24): 5156-5174.doi: 10.3864/j.issn.0578-1752.2025.24.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Regulation of Fertilization and Kernel Set Characteristics in Summer Maize by Planting Density Under Drip Fertigation Conditions

WANG TongChao1(), YU NingNing1(), CUI Dong1, REN BaiZhao1, ZHAO Bin1, LIU Peng1, REN Hao1, XIONG Wei2, ZHANG JiWang1,*()   

  1. 1 College of Agronomy, Shandong Agricultural University, Taian 271018, Shandong, China
    2 International Maize and Wheat Improvement Center (CIMMYT), Texcoco 56237, Mexico
  • Received:2025-05-26 Accepted:2025-08-26 Online:2025-12-22 Published:2025-12-22
  • Contact: ZHANG JiWang

Abstract:

【Objective】The purpose of this study was to elucidate the regulatory mechanisms of planting density on fertilization and kernel-setting characteristics in summer maize under drip fertigation conditions, and to clarify the relationship between planting density and kernel number per ear as well as yield formation under integrated water-fertilizer management.【Method】In 2023-2024, this experiment selected the medium-large ear type maize variety Denghai 605 (DH605) and the small ear type maize variety MY73 as test materials. It set up a traditional water and fertilizer management method (QG) with border irrigation and one-time base application of fertilizer before sowing, as well as a drip irrigation integrated water and fertilizer management method (DG). With a gradient of 15 000 plants/hm2, a total of 8 planting densities ranging from 15 000 to 120 000 plants/hm2 were set up to explore the impact of planting density on the fertilization and seed-setting characteristics and yield formation of summer maize under the integrated water and fertilizer management of drip irrigation.【Result】Compared with the QG treatment, the plant height and specific leaf area density (SDLA) of both DH605 and MY73 varieties increased under QG treatment, and the differentiation process of male and female spikes accelerated. The number of florets on the male spike increased, while the abortion rate decreased. The number of filaments, total florets, and fertilized florets on the female spike increased, and the seed setting rate and total seed setting rate improved too. The anthesis-silking interval (ASI) shortened by about 1 day, the empty spike rate decreased, and the maximum yields increased by 7.6% and 6.4%, respectively. Under different water and fertilizer management conditions, as planting density increased, the plant height and SDLA of both varieties increased, but the development of male and female spikes was inhibited: the number of florets on the male spike decreased, and the abortion rate increased; the number of silk-spinning and fertilized florets on the female spike decreased, and the fertilization rate and total fertilization rate of florets first increased and then decreased; under high-density conditions, the ASI extended by about 1 day, the empty spike rate and bald tip length increased, and the yield showed a trend of first increasing and then decreasing. In addition, the differentiation process of male and female spikes in MY73 was faster than that in DH605, with a shorter ASI, lower plant height, and larger SDLA. The decrease in the seed setting rate and total seed setting rate with increasing SDLA was not significant, and the planting density for achieving maximum yield was higher.【Conclusion】Under the conditions of this experiment, excessive planting density would have a significant negative impact on fertilization and fruiting characteristics, thereby affecting the establishment of grain number per ear and hindering yield improvement. Compared with traditional irrigation methods, drip irrigation water fertilizer integration technology could effectively alleviate the negative impact of high-density conditions on the fertilization and fruiting characteristics of summer maize, thereby increasing yield. DH605 and MY73 reached their maximum yields at planting densities of 60 000 plants/hm2 and 75 000 plants/hm2, respectively.

Key words: summer maize, integrated drip irrigation and water fertilizer, planting density, fertilization and fruiting characteristics, yield

Fig. 1

Plant height and SDLA on the upper part of the female ear of maize QG:传统水肥管理方式 Traditional water and fertilizer management method;DG:滴灌水肥一体化管理方式 Drip irrigation water and fertilizer integrated management method;T1:1.5万株/hm2 15 000 plants/hm2;T2:3.0万株/hm2 30 000 plants/hm2;T3:4.5万株/hm2 45 000 plants/hm2;T4:6.0万株/hm2 60 000 plants/hm2;T5:7.5万株/hm2 75 000 plants/hm2;T6:9.0万株/hm2 90 000 plants/hm2;T7:10.5万株/hm2 105 000 plants/hm2;T8,12.0万株/hm2 120 000 plants/hm2。下同 The same as below"

Fig. 2

Length and width of tassel and ear of maize at different growth stages"

Table 1

Effects of water-fertilizer management practices and planting densities on ASI of two summer maize cultivars"

年份
Year
水肥管理方式
Water and fertilizer management method
品种
Hybrid
种植密度
Planting density
散粉日期
Powder dispersal date
(Month-date)
吐丝日期
Silk emergence date
(Month-date)
雌雄间隔
Male and female interval (d)
2023 QG DH605 T1 08-15 08-18 3
T2 08-15 08-18 3
T3 08-15 08-18 3
T4 08-16 08-19 3
T5 08-16 08-19 3
T6 08-16 08-20 4
T7 08-17 08-20 4
T8 08-17 08-21 4
MY73 T1 08-14 08-16 2
T2 08-14 08-16 2
T3 08-14 08-16 2
T4 08-15 08-17 2
T5 08-15 08-17 2
T6 08-15 08-18 3
T7 08-16 08-18 3
T8 08-16 08-18 3
DG DH605 T1 08-12 08-14 2
T2 08-12 08-14 2
T3 08-12 08-14 2
T4 08-13 08-15 2
T5 08-13 08-16 3
T6 08-13 08-16 3
T7 08-14 08-17 3
T8 08-14 08-17 3
MY73 T1 08-12 08-14 2
T2 08-12 08-14 2
T3 08-12 08-14 2
T4 08-12 08-14 2
T5 08-12 08-14 2
T6 08-12 08-14 2
T7 08-13 08-15 2
T8 08-13 08-15 2
2024 QG DH605 T1 08-12 08-15 3
T2 08-12 08-15 3
T3 08-12 08-15 3
T4 08-13 08-16 3
T5 08-13 08-16 3
T6 08-13 08-16 3
T7 08-14 08-18 4
T8 08-14 08-18 4
MY73 T1 08-11 08-13 2
T2 08-11 08-13 2
T3 08-11 08-13 2
T4 08-11 08-13 2
T5 08-12 08-14 2
T6 08-12 08-15 3
T7 08-13 08-16 3
T8 08-13 08-16 3
BG DH605 T1 08-10 08-12 2
T2 08-10 08-12 2
T3 08-10 08-12 2
T4 08-11 08-13 2
T5 08-11 08-14 3
T6 08-11 08-15 3
T7 08-12 08-15 3
T8 08-12 08-15 3
MY73 T1 08-09 08-11 2
T2 08-09 08-11 2
T3 08-09 08-11 2
T4 08-10 08-12 2
T5 08-10 08-12 2
T6 08-10 08-12 2
T7 08-11 08-13 2
T8 08-11 08-13 2

Table 2

Effects of water-fertilizer management practices and planting densities on tassel floret number and abortion rate of maize"

年份
Year
水肥管理方式
Water and fertilizer management method
品种
Hybrid
处理
Treatment
雄穗小花数
No. of tassel flowers
雄穗小花败育数
No. of aborted tassel flowers
败育率
Abortion rate (%)
2023 QG DH605 T1 920a 10g 1.1g
T2 874a 16g 1.9g
T3 822b 25f 3.0f
T4 768c 54e 7.0e
T5 727c 72d 9.9d
T6 648d 87c 13.4c
T7 610d 96b 15.7b
T8 521e 129a 24.8a
MY73 T1 799a 15f 1.9g
T2 764b 18f 2.4fg
T3 758b 22e 2.9f
T4 628c 32d 5.1e
T5 623c 49c 7.9d
T6 614c 65b 10.6c
T7 535d 66b 12.3b
T8 509e 71a 13.9a
DG DH605 T1 942a 11f 1.2g
T2 905b 17ef 1.9fg
T3 848c 23e 2.7f
T4 821c 43d 5.2e
T5 783d 65c 8.3d
T6 714e 71c 9.9c
T7 637f 89b 14.0b
T8 577g 114a 19.8a
MY73 T1 832a 8f 1.0g
T2 823ab 9f 1.1g
T3 783b 20e 2.6f
T4 665c 26d 3.9e
T5 635d 42c 6.6d
T6 620de 50b 8.1c
T7 546f 51b 9.3b
T8 522g 60a 11.5a
2024 QG DH605 T1 923a 9f 0.1g
T2 893a 11f 1.2f
T3 819b 20e 2.4e
T4 765c 37d 4.9d
T5 714d 38d 5.2d
T6 643e 46c 7.0c
T7 595f 95b 15.9b
T8 508g 107a 21.0a
MY73 T1 801a 10e 1.2f
T2 774a 19d 2.7e
T3 778a 20d 2.3e
T4 631b 23d 3.7e
T5 631b 45c 7.0d
T6 630b 55b 9.0c
T7 494c 60b 12.3b
T8 518c 75a 14.3a
DG DH605 T1 949a 11f 1.2g
T2 917b 18f 2g
T3 893bc 27e 3f
T4 823cd 49d 6e
T5 779d 62c 8d
T6 656e 68c 10.3c
T7 626e 96b 15.3b
T8 558f 113a 20.3a
MY73 T1 851a 4f 0.5e
T2 823ab 10e 1.2e
T3 803b 16d 2.0d
T4 680c 35bc 5.0cd
T5 655c 41bc 6.3bcd
T6 630c 46abc 7.0bcd
T7 546d 47ab 8.7b
T8 497e 56a 11.7a
ANOVA
WF * * *
PD ** ** **
Y ns ns ns
H ** ** **
WF×PD ** ** **
WF×H ** ** **
PD×H ** ** **
WF×PD×H ** ** **
WF×PD×Y×H ns ns ns

Fig. 3

Dynamic of female maize ear silking"

Table 3

Effects of water-fertilizer management practices and planting densities on fertilization and kernel-setting characteristics of maize"

年份
Year
水肥管理方式
Water and fertilizer management method
品种
Hybrid
处理
Treatment
总小花数
No. of total florets
受精小花数
No. of fertilized florets
小花结实率
The floret setting rate (%)
总结实率
The total rate (%)
穗粒数
No. of grains per ear
2023 QG DH605 T1 877.75a 806.52a 72c 67e 585d
T2 827.40b 799.31a 83a 80b 662a
T3 786.51c 769.66b 83a 81b 635b
T4 734.83d 725.54c 82a 82a 606c
T5 715.14e 699.05d 81b 79c 563e
T6 689.74f 676.49e 73c 71d 492f
T7 672.24g 645.15f 66d 64f 427g
T8 655.88h 603.25g 65d 61g 397h
MY73 T1 930.83a 892.57a 69g 67h 619a
T2 907.34b 858.94b 71f 67g 612ab
T3 765.08c 746.86d 79ab 78c 596b
T4 749.52d 731.88e 81a 79a 591bc
T5 741.92e 733.08e 79b 79b 585c
T6 743.34f 725.42e 78c 77d 572d
T7 730.34g 721.43f 77d 77de 562e
T8 708.77h 699.44g 72e 71f 505g
DG DH605 T1 878.42a 821.75a 73c 68c 601d
T2 830.30b 804.97a 83a 80a 665a
T3 797.07c 767.73b 83a 80a 636b
T4 745.47d 732.13c 83a 81a 606c
T5 715.17e 699.83d 81ab 79ab 564e
T6 699.47ef 675.13e 79b 76b 532f
T7 682.95fg 646.95f 72c 68c 466g
T8 654.65g 641.38f 70c 66c 432h
MY73 T1 931.54a 893.26a 70g 67h 626a
T2 892.65b 856.94b 72f 69g 617b
T3 753.01d 735.29e 82ab 80ab 600c
T4 746.73de 729.16f 82a 80a 595cd
T5 735.44e 726.68f 81b 80ab 586d
T6 738.05e 729.16f 80c 79c 581de
T7 724.02g 715.19e 79d 78d 563e
T8 722.22g 712.71e 73e 72f 520f
2024 QG DH605 T1 857.67a 811.00a 69d 65d 561d
T2 826.33b 794.33b 82a 79a 653a
T3 763.33c 747.67c 80c 78a 597b
T4 746.00d 722.67d 81b 78a 582c
T5 718.00e 691.67e 79c 76b 545e
T6 697.00f 675.33f 69d 67c 469f
T7 658.00g 633.67g 63e 61e 401g
T8 626.00h 589.33h 63e 59f 370h
MY73 T1 914.75a 889.68a 69g 67g 617a
T2 872.38b 837.95b 72e 69f 605b
T3 790.13d 752.06d 79ab 75c 593c
T4 756.09e 746.98e 79a 78a 589c
T5 753.73f 735.57f 79ab 77ab 580d
T6 751.31f 732.99f 78b 76b 571e
T7 724.85g 706.95g 77c 75c 544f
T8 696.14h 678.05h 73d 71e 496h
DG DH605 T1 835.67a 813.67a 69d 68e 564d
T2 819.00b 802.33b 81a 79a 651a
T3 771.67c 763.33c 80b 79ab 612b
T4 743.33d 731.00d 80b 79bc 584c
T5 713.33e 696.33e 80b 78c 559e
T6 694.67f 674.67f 78c 76d 529f
T7 660.67g 643.33g 69d 67e 445g
T8 669.00g 626.33h 65e 61f 408h
MY73 T1 914.02a 888.98a 70f 68g 623a
T2 876.14b 830.62b 74e 70f 614b
T3 791.13c 753.01d 80ab 76c 600c
T4 762.60d 735.36e 81a 78a 593d
T5 748.45e 730.42f 80b 78a 582e
T6 745.88e 727.91f 80bc 78a 580e
T7 723.95f 706.30g 79c 77b 556f
T8 720.83f 684.33h 76d 72e 519h
ANOVA
WF * * * ** **
PD ** ** ** ** **
Y ns ns ns ns *
H ** ** * * **
WF×PD * * ** ** **
WF×H ** ** ** ** **
PD×H ** ** ** ** **
WF×PD×H ** ** ** ** **
WF×PD×Y×H ns ns ns ns *

Fig. 4

Barren stalk rate of maize under different water-fertilizer management practices and planting densities"

Fig. 5

Tip barrenness length of maize ear under different water-fertilizer management practices and planting densities"

Table 4

Effects of water-fertilizer management practices and planting densities on yield and yield components of summer maize"

年份
Year
水肥管理方式
Water and fertilizer management method
品种
Hybrid
种植密度
Planting density
穗数
Ear number (ears/hm2)
穗粒数
No.of grains
千粒重
1000-grain mass
(g)
籽粒产量
Yield
(kg·hm-2)
2023 QG DH605 T1 33467h 585d 400a 7827g
T2 36496g 662a 406a 9806f
T3 46161f 635b 390b 11449e
T4 57322e 606c 381c 13234c
T5 69609d 563e 366d 14362a
T6 81868c 492f 346e 13941b
T7 89917b 427g 338f 12961c
T8 93874a 397h 323g 12057d
MY73 T1 30239g 560e 306c 5191g
T2 35089f 516f 324b 5866f
T3 43504e 596a 331a 8587e
T4 53040d 591b 327ab 10246d
T5 66709c 585c 319b 12445c
T6 77292b 572d 306c 13523a
T7 79568ab 562e 299c 13371b
T8 87850a 505g 281d 12475c
DG DH605 T1 33333h 601d 399a 7992f
T2 37129g 665a 401a 9897e
T3 46147f 636b 394b 11572d
T4 58313e 606c 381c 13474c
T5 69892d 564e 369d 14551b
T6 82606c 532f 346e 15173a
T7 93403b 466g 332f 14468b
T8 99653a 432h 322g 13862c
MY73 T1 35203g 563e 312d 6174g
T2 36417g 531f 321c 6207g
T3 44113f 600a 335a 8868f
T4 53245e 595b 330b 10470e
T5 65040d 586c 324c 12358d
T6 77329c 581d 311d 13947b
T7 84841b 563e 302e 14441a
T8 90325a 520g 283f 13302c
2024 QG DH605 T1 30833h 561d 394a 6819g
T2 31667g 653a 395a 8174f
T3 45560f 597b 379b 10346e
T4 59511e 582c 365c 12657b
T5 72078d 545e 343d 13465a
T6 84083c 469f 326e 12846b
T7 91600b 401g 324e 11912c
T8 91889a 370h 319f 10861d
MY73 T1 30611h 560e 284e 4867f
T2 38111g 524g 287d 5732e
T3 47801f 593a 298a 8434d
T4 58423e 589b 294b 10106c
T5 72587d 580c 291c 12233b
T6 86678c 571d 268f 13274a
T7 92974b 544f 262g 13237a
T8 96178a 496h 256h 12235b
DG DH605 T1 30838h 564d 395a 6882f
T2 32124g 651a 396a 8278e
T3 45684f 612b 391a 10918d
T4 59811e 584c 373b 13044c
T5 73133d 559e 343c 14012b
T6 84300c 529f 335d 14952a
T7 98011b 445g 319e 13941b
T8 101511a 408h 317e 13137c
MY73 T1 35644g 562d 286d 5724g
T2 39222f 536f 288d 6053f
T3 48167e 600a 303a 8755e
T4 58739d 593b 299b 10400d
T5 73988c 582c 292c 12564c
T6 86799b 581c 271e 13682b
T7 95568ab 556e 267f 14180a
T8 98644a 520g 258g 13233bc
ANOVA
WF * ** * **
PD ** ** ** **
Y ns ** ** **
H ** ** ** **
WF×PD ns ** ** **
WF×H ** ** ** **
PD×H ** ** ** **
WF×PD×H ** ** ** **
WF×PD×Y×H ns * ns ns
[1]
FAO. World Food and Agriculture - Statistical Yearbook 2022. Food and Agriculture Organization, 2022.
[2]
National Bureau of Statistics. China statistical yearbook 2022. China Statistics Press, 2023.
[3]
WU D L, XU X X, CHEN Y L, SHAO H, SOKOLOWSKI E, MI G H. Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China. Agricultural Water Management, 2019, 213: 200-211.

doi: 10.1016/j.agwat.2018.10.018
[4]
GRASSINI P, ESKRIDGE K M, CASSMAN K G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications, 2013, 4: 2918.

doi: 10.1038/ncomms3918 pmid: 24346131
[5]
买丽金. 玉米自交系结实特性研究[D]. 泰安: 山东农业大学, 2022.
MAI L J. Study on seed setting characteristics of maize inbred lines[D]. Taian: Shandong Agricultural University, 2022. (in Chinese)
[6]
GUO H, WANG X H, WANG Y H, LI S E. Effect of mulched drip irrigation on crop biomass and carbon fluxes in maize field. Agricultural Water Management, 2024, 303: 109016.

doi: 10.1016/j.agwat.2024.109016
[7]
MA W D, CHEN G Y, ZHANG X Z, ZHANG X J, ZHANG C Y, LI Z X, SU H T, WANG X, LI X N, WEI C Z. Potential of establishing the universal critical nitrogen dilution curve for drip-irrigated maize. Field Crops Research, 2025, 329: 109929.

doi: 10.1016/j.fcr.2025.109929
[8]
DI Y F, YANG H B, ZHANG H L, LI F. Nitrogen management indicators for sustainable crop production in an intensive potato system under drip irrigation. Journal of Environmental Management, 2024, 361: 121270.

doi: 10.1016/j.jenvman.2024.121270
[9]
ZHANG T B, ZOU Y F, KISEKKA I, BISWAS A, CAI H J. Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area. Agricultural Water Management, 2021, 243: 106497.

doi: 10.1016/j.agwat.2020.106497
[10]
ABDELRAOUF R E, RAGAB R. Applying partial root drying drip irrigation in the presence of organic mulching. Is that the best irrigation practice for arid regions? Field and modelling study using the saltmed model. Irrigation and Drainage, 2018, 67(4): 491-507.

doi: 10.1002/ird.v67.4
[11]
GUO H, LI S E. A review of drip irrigation's effect on water, carbon fluxes, and crop growth in farmland. Water, 2024, 16(15): 2206.

doi: 10.3390/w16152206
[12]
YAN Z H, LIU Y, GAO S, YANG H Y, FENG D Y, GAO K X, LU Y, MING B, WANG K R, ZHOU Z G, XIE R Z, LI S K. Enhancing maize high-density population uniformity and yield through timely drip irrigation after sowing. Journal of Integrative Agriculture, doi: 10.1016/j.jia.2025.05.014.
[13]
林珊, 陈先敏, 吴巩. 同步授粉对玉米穗粒数和籽粒早期生长的影响. 中国农业大学学报, 2019, 24 (11): 1-7.
LIN S, CHEN X M, WU G. The effect of synchronous pollination on the number of grains per ear and early growth of maize grains. Journal of China Agricultural University, 2019, 24 (11): 1-7. (in Chinese)
[14]
李晶晶. 玉米自交系及杂交种雌穗分化与结实特性关系[D]. 泰安: 山东农业大学, 2024.
LI J J. The relationship between panicle differentiation and fruiting characteristics of maize inbred lines and hybrids[D]. Taian: Shandong Agricultural University, 2024. (in Chinese)
[15]
于宁宁. 综合农艺管理对冬小麦-夏玉米两熟制农田土壤特性和产量形成的影响[D]. 泰安: 山东农业大学, 2023.
YU N N. Effects of integrated agronomic practices management on field soil characteristics and yield formation of winter wheat-summer maize double cropping system[D]. Taian: Shandong Agricultural University, 2023. (in Chinese)
[16]
REN B Z, ZHANG J W, DONG S T, LIU P, ZHAO B. Root and shoot responses of summer maize to waterlogging at different stages. Agronomy Journal, 2016, 108(3): 1060-1069.

doi: 10.2134/agronj2015.0547
[17]
HOU Y P, XU X P, KONG L L, ZHANG Y T, ZHANG L, WANG L C. Film-mulched drip irrigation achieves high maize yield and low N losses in semi-arid areas of northeastern China. European Journal of Agronomy, 2023, 146: 126819.

doi: 10.1016/j.eja.2023.126819
[18]
SHAH A N, TANVEER M, ABBAS A, YILDIRIM M, ALI SHAH A, AHMAD M I, WANG Z W, SUN W W, SONG Y H. Combating dual challenges in maize under high planting density: Stem lodging and kernel abortion. Frontiers in Plant Science, 2021, 12: 699085.

doi: 10.3389/fpls.2021.699085
[19]
WANG Y Y, TAO H B, TIAN B J, SHENG D C, XU C C, ZHOU H M, HUANG S B, WANG P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environmental and Experimental Botany, 2019, 158: 80-88.

doi: 10.1016/j.envexpbot.2018.11.007
[20]
林珊, 张莉, 吴巩. 增密对玉米花丝受精结实能力及衰老进程的影响. 华北农学报, 2020, 35(1), 89-95.

doi: 10.7668/hbnxb.20190106
LIN S, ZHANG L, WU G. The effect of densification on the fertilization and fruiting ability as well as the aging process of maize filaments. Huabei Agricultural Journal, 2020, 35(1): 89-95. (in Chinese)
[21]
LAI Z L, LIAO Z Q, LIU Y Y, KOU H T, LI Z J, FAN J L. Optimized planting density and nitrogen rate improved grain yield of drip- fertigated maize by enhancing canopy structure and photosynthetic capacity. Journal of Agriculture and Food Research, 2025, 21: 101813.

doi: 10.1016/j.jafr.2025.101813
[22]
KHORSAND A, REZAVERDINEJAD V, ASGARZADEH H, MAJNOONI-HERIS A, RAHIMI A, BESHARAT S. Irrigation scheduling of maize based on plant and soil indices with surface drip irrigation subjected to different irrigation regimes. Agricultural Water Management, 2019, 224: 105740.

doi: 10.1016/j.agwat.2019.105740
[23]
GUO X X, LIU W M, YANG Y S, LIU G Z, MING B, XIE R Z, WANG K R, LI S K, HOU P. Optimal nitrogen distribution in maize canopy can synergistically improve maize yield and nitrogen utilization efficiency while reduce environmental risks. Agriculture, Ecosystems & Environment, 2025, 383: 109540.

doi: 10.1016/j.agee.2025.109540
[24]
ZHOU B Y, SUN X F, DING Z S, MA W, ZHAO M. Multisplit nitrogen application via drip irrigation improves maize grain yield and nitrogen use efficiency. Crop Science, 2023, 57(3): 1687-1703.

doi: 10.2135/cropsci2016.07.0623
[25]
SILVA P C, SÁNCHEZ A C, OPAZO M A, MARDONES L A, ACEVEDO E A. Grain yield, anthesis-silking interval, and phenotypic plasticity in response to changing environments: Evaluation in temperate maize hybrids. Field Crops Research, 2022, 285: 108583.

doi: 10.1016/j.fcr.2022.108583
[26]
宋凤斌, 戴俊英. 玉米对干旱胁迫的反应和适应性 Ⅱ.玉米雌穗和雄穗生长发育对干旱胁迫的反应. 吉林农业大学学报, 2005, 27(1): 1-5, 10.
SONG F B, DAI J Y. Response and adaptability of maize to drought stress Ⅱ. responses of ear and tassel growth and development of maize to drought stress. Journal of Jilin Agricultural University, 2005, 27(1): 1-5, 10. (in Chinese)
[27]
WANG Z W, YU Y, HU Z Y, WU Y B, SUN W W, LI Y Y, SONG Y H. Modelling maize silk extension using segmented exponential and linear functions. European Journal of Agronomy, 2024, 159: 127269.

doi: 10.1016/j.eja.2024.127269
[28]
WANG H Q, SUN J, REN H, ZHAO B, LI Y T, ZHANG Z S, REN B Z, KHAN A, ZHANG J W, CHEN Y L, LIU P. Increased hormone activity promotes silk development and heat tolerance during the floret differentiation stage in maize. The Crop Journal, 2025, 13(2): 545-555.

doi: 10.1016/j.cj.2024.12.019
[29]
LI H W, TANG Y L, MENG F Z, ZHOU W Q, LIANG W W, YANG J W, WANG Y C, WANG H, GUO J M, YANG Q H, SHAO R X. Transcriptome and metabolite reveal the inhibition induced by combined heat and drought stress on the viability of silk and pollen in summer maize. Industrial Crops and Products, 2025, 226: 120720.

doi: 10.1016/j.indcrop.2025.120720
[30]
YAN Y Y, DUAN F Y, LI X, ZHAO R L, HOU P, ZHAO M, LI S K, WANG Y H, DAI T B, ZHOU W B. Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density. Plant Physiology, 2024, 195(4): 2652-2667.

doi: 10.1093/plphys/kiae204 pmid: 38590166
[31]
LU Y L, MA R S, GAO W, YOU Y L, JIANG C Z, ZHANG Z X, KAMRAN M, YANG X L. Optimizing the nitrogen application rate and planting density to improve dry matter yield, water productivity and N-use efficiency of forage maize in a rainfed region. Agricultural Water Management, 2024, 305: 109125.

doi: 10.1016/j.agwat.2024.109125
[32]
MA Y N, REN J W, YANG S J, DING R S, DU T S, KANG S Z, TONG L. Enhancing maize yield and water productivity through coordinated root-shoot growth under mild water stress in dense planting. Field Crops Research, 2025, 323: 109786.

doi: 10.1016/j.fcr.2025.109786
[33]
JIAO F L, DING R S, DU T S, KANG J, TONG L, GAO J, SHAO J. Multi-growth stage regulated deficit irrigation improves maize water productivity in an arid region of China. Agricultural Water Management, 2024, 297: 108827.

doi: 10.1016/j.agwat.2024.108827
[34]
ZHAO J Y, GENG W J, XUE Y Q, ALAM S, LIU P, ZHAO B, REN B Z, ZHANG J W. Optimizing plant morphology to enhance canopy light distribution improves lodging resistance and grain yield in densely planted maize. Journal of Integrative Agriculture, doi: 10.1016/j.jia.2025.03.012.
[35]
FRANCO-LUESMA S, CAVERO J, ÁLVARO-FUENTES J. Relevance of the irrigation and soil management system to optimize maize crop production under semiarid Mediterranean conditions. Agricultural Water Management, 2025, 307: 109272.

doi: 10.1016/j.agwat.2024.109272
[36]
孟佳佳. 种植密度对玉米雌雄穗分化及籽粒发育的影响[D]. 泰安: 山东农业大学, 2013.
MENG J J. Effects of planting density on male and female ear differentiation and grain development of maize[D]. Taian: Shandong Agricultural University, 2013. (in Chinese)
[37]
金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响. 作物学报, 2020, 46 (4): 614-630.

doi: 10.3724/SP.J.1006.2020.93034
JIN R, LI Z, YANG Y, ZHOU F, DU L J, LI X L, KONG F L, YUAN J C. Effects of density and plant row spacing on light distribution and male and female ear differentiation of summer maize population in hilly area of central Sichuan. Journal of Crop Science, 2020, 46 (4): 614-630. (in Chinese)
[38]
LI H W, TIWARI M, TANG Y L, WANG L J, YANG S, LONG H C, GUO J M, WANG Y C, WANG H, YANG Q H, KRISHNA JAGADISH S V, SHAO R X. Metabolomic and transcriptomic analyses reveal that sucrose synthase regulates maize pollen viability under heat and drought stress. Ecotoxicology and Environmental Safety, 2022, 246: 114191.

doi: 10.1016/j.ecoenv.2022.114191
[39]
ABUBAKAR S A, HAMANI A K M, CHEN J S, TRAORE A, ABUBAKAR N A, USMAN IBRAHIM A, WANG G S, GAO Y, DUAN A W. Optimized drip fertigation scheduling improves nitrogen productivity of winter wheat in the North China Plain. Journal of Soil Science and Plant Nutrition, 2022, 22(3): 2955-2968.

doi: 10.1007/s42729-022-00859-z
[40]
DJAMAN K, ALLEN S, DJAMAN D S, KOUDAHE K, IRMAK S, PUPPALA N, DARAPUNENI M K, ANGADI S V. Planting date and plant density effects on maize growth, yield and water use efficiency. Environmental Challenges, 2022, 6: 100417.

doi: 10.1016/j.envc.2021.100417
[41]
ZHANG X-F, LUO C-L, MO F, REN H-X, MBURU D, KAVAGI L, DAI R-Z, WESLY K, REN A-T, NYENDE A B, XIONG Y-C. Density-dependent maize (Zea mays L.) yield increase in trade-off in reproductive allocation and water use under ridge-furrow plastic- mulching. Field Crops Research, 2021, 264: 108102.

doi: 10.1016/j.fcr.2021.108102
[42]
胡令琪. 种植密度对不同夏玉米品种边际效应的调控作用[D]. 泰安: 山东农业大学, 2023.
HU L Q. Moderating effects of planting density on the marginal effects of different summer maize hybrids[D]. Taian: Shandong Agricultural University, 2023. (in Chinese)
[43]
刘佳敏. 施氮量与密度对玉米光合特性及群体生产力的影响[D]. 郑州: 河南农业大学, 2021.
LIU J M. Effects of nitrogen application rate and density on photosynthetic characteristics and population productivity of maize[D]. Zhengzhou: Henan Agricultural University, 2021. (in Chinese)
[44]
王庆国, 张学鹏, 林松明, 刘灵艳, 褚鹏飞, 孟维伟. 不同株高玉米配置对玉豆复合种植模式下玉米光合特性及产量的影响. 山东农业科学, 2025, 57(9): 51-63.
WANG Q G, ZHANG X P, LIN S M, LIU L Y, CHU P F, MENG W W. Effects of different plant height configurations on photosynthetic characteristics and yield of corn under CornSoybean complex planting pattern. Shandong Agricultural Sciences, 2025, 57(9): 51-63. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] ZHAO Yao, CHENG Qian, XU TianJun, LIU Zheng, WANG RongHuan, ZHAO JiuRan, LU DaLei, LI CongFeng. Effects of Plant Type Improvement on Root-Canopy Characteristics and Grain Yield of Spring Maize Under High Density Condition [J]. Scientia Agricultura Sinica, 2025, 58(7): 1296-1310.
[10] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[11] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[12] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[13] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[14] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[15] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!