Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (9): 1881-1893.doi: 10.3864/j.issn.0578-1752.2021.09.006

• PLANT PROTECTION • Previous Articles     Next Articles

Construction and Analysis of Broad-Spectrum Resistance Gene Combination Pattern for Japonica Rice in Lower Region of the Yangtze River, China

WU YunYu1,2(),XIAO Ning1,2,4,YU Ling1,2,CAI Yue1,2,PAN CunHong1,3,LI YuHong1,2,ZHANG XiaoXiang1,2,HUANG NianSheng1,2,JI HongJuan1,2,DAI ZhengYuan1,3,LI AiHong1,2,3()   

  1. 1Lixiahe Institute of Agricultural Sciences of Jiangsu, Yangzhou 225007, Jiangsu
    2Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, Jiangsu
    3Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu
    4State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2020-07-13 Accepted:2020-08-24 Online:2021-05-01 Published:2021-05-10
  • Contact: AiHong LI E-mail:wuyunyuyu@163.com;yzlah@126.com

Abstract:

【Objective】Gene pyramiding is one of the most effective ways to achieve broad-spectrum resistance against Magnaporthe oryzae. The objective of this study is to construct a set of polygene pyramiding lines (PPLs) under the background of japonica rice, to evaluate their resistance performances and analysis the components of their resistance effects using M. oryzae strains collected from lower region of the Yangtze River, China, thus providing broad-spectrum resistance gene combination pattern and germplasm resources for japonica rice resistance breeding in lower region of the Yangtze River, China. 【Method】Monogenic lines with multiple alleles of the Piz locus (Pigm, Pi40, Pi9, Pi2, Pizt and Piz) with the background of japonica rice 07GY31 as the backbone, crossed with other broad-spectrum resistance gene Pi1, Pi54 and Pi33, respectively using the incomplete NCII mating design. A total of 18 different PPLs were constructed using marker-assisted selection (MAS) and agronomic traits screening. Artificial inoculation assays at seedling and heading stage with 109 representative M. oryzae strains collected from lower region of the Yangtze River, combined with natural induction identification under multiple field environments were conducted to evaluate the resistance performances of different PPLs, and to analyze the component factors of the resistance effects of the PPLs. 【Result】Genotyping by sequencing (GBS) analysis shows that the constructed PPLs all have a high background recovery rate, which was ranging from 97.08% (PPL Piz/Pi33) to 99.08% (PPLPigm/Pi1), indicated that the genetic background of all PPLs was almost fully identical to that of the recurrent parent 07GY31. The seedling blast and panicle blast resistance levels of most PPLs were significantly higher than those of monogenic lines under artificial inoculation conditions, the PPLs with better resistance to seedling blast are PPLPigm/Pi1, PPLPigm/Pi54, PPLPigm/Pi33, PPLPi9/Pi33, PPLPi9/Pi54, PPLPi40/Pi54, PPLPi40/Pi33, PPLPi40/Pi1 and PPLPi9/Pi1, respectively, and the PPLs with outstanding performance in panicle blast are PPLPigm/Pi1, PPLPigm/Pi54, PPLPigm/Pi33, PPLPi40/Pi33, PLPi40/Pi54, PPLPi40/Pi1 and PPLPizt/Pi33, respectively. Different resistance gene combinations produced different effects after pyramiding. High complementary effect and which could be fully expressed is the key factor for the improvement of the resistance level of seedling blast and panicle blast of the PPLs. In addition, PPLPigm/Pi1, PPLPigm/Pi54 and PPLPigm/Pi33 displayed broad-spectrum resistance in artificial inoculation at seedling and heading stage, and showed stable broad-spectrum resistance under different disease nurseries. Besides, agronomic traits evaluation also showed PPLs with these three gene combinations were at par to the recurrent parent. Therefore, Pigm/Pi1, Pigm/Pi54 and Pigm/Pi33 are broad-spectrum resistance gene combination patterns suitable for japonica rice resistance breeding in lower region of the Yangtze River, China. 【Conclusion】The combination pattern of resistance genes affects the resistance level of the PPLs, and high complementary effect and which could be fully expressed is the key factor for the improvement of the resistance level of the PPLs in japonica background. In addition, the development of PPLs and component factors analysis in this study provides valuable theoretical support and innovative germplasm resources for the precise breeding broad-spectrum japonica varieties in lower region of the Yangtze River, China.

Key words: lower region of the Yangtze River, japonica rice, Magnaporthe oryzae, rice blast, gene pyramiding, effect analysis

Table 1

Detail information of molecular markers tightly linked to different resistant genes"

基因
Gene
标记
Marker
引物序列
Primer sequence (5′-3′)
退火温度
Annealing temperature (℃)
预期片段大小
Expected size (bp)
Pi2 Pi2-InDel F: GCAGCGGCTAGGGTTTATC 60 110
R: CACCCAGCAACTGATTTGTCA
Pi9 M-Pi9 F: GCTGTGCTCCAAATGAGGAT 55 291
R: GCGATCTCACATCCTTTGCT
Pi40 AP5659-5 F: CTCCTTCAGCTGCTCCTC 55 288
R: TGATGACTTCCAAACGGTAG
Pigm Z4794 F: TGAATGTGAGAGGTTGACTGTGG 55 334
R: CACGCCACCCTTCAATGGAGACT
Pizt AP22 F: GTGCATGAGTCCAGCTCAAA 58 143
R: GTGTACTCCCATGGCTGCTC
Piz S29742 F: CAGTGAAACGAACGCTATG 55 454
R: AATAGGAAGGGTTGATGTTG
Pi1 RM224 F: ATCGATCGATCTTCACGAGG 55 163
R: TGCTATAAAAGGCATTCGGG
Pi54 Pi54-1 F: ATCGATCGATCTTCACGAGG 55 216
R: GCTTCAATCACTGCTAGACC
Pi33 RM72 F: CCGGCGATAAAACAATGAG 55 240
R: GCATCGGTCCTAACTAAGGG

Fig. 1

Graphical SNP maps of the 18 PPLs The circle represents the locus of the R gene"

Fig. 2

Resistance performances of PPLs, NILs and the recurrent parent for seedling and panicle blast resistance under artificial inoculation A、B: Comprehensive comparative analysis on seedling blast and panicle blast RF of PPLs, NILs and the recurrent parent; C、D: Resistance performances of PPLs, NILs and the recurrent parent for seedling blast and panicle blast resistance"

Fig. 3

Analysis of resistance effect of PPLs with sankey diagram"

Table 2

Agronomic performance of 18 PPLs and recurrent parent 07GY31"

品系
Line
抽穗期
Heading date
(d)
株高
Plant height
(cm)
单株有效穗数
Number of panicles per plant
每穗总粒数
Number of grains per panicle
结实率
Seed fertility
(%)
千粒重
1000-grain weight (g)
单株产量
Grain yield per plant
PPLPigm/Pi1 97.2±1.26a 100.55±3.05a 11.38±1.32a 126.32±4.58a 92.02±0.35a 26.32±1.42a 34.81±2.02a
PPLPigm/Pi54 96.5±0.24a 99.82±2.58a 11.22±1.04a 126.25±6.72a 92.52±0.82a 26.04±1.08a 34.12±1.56a
PPLPigm/Pi33 97.0±2.13a 99.65±2.85a 10.78±0.95a 127.95±5.56a 91.89±0.64a 26.54±0.84a 33.63±1.88a
PPLPi40/Pi1 95.5±2.28a 98.75±0.85a 10.95±1.58a 125.85±7.22a 93.25±1.08a 27.06±1.32a 34.77±3.14a
PPLPi40/Pi54 94.7±1.89a 98.28±1.42a 11.32±0.68a 127.46±8.18a 94.28±0.92a 26.38±1.62a 35.89±2.28a
PPLPi40/Pi33 95.2±1.56a 99.12±1.78a 10.56±1.84a 126.28±5.42a 93.75±0.48a 27.59±0.82a 34.49±1.92a
PPLPi9/Pi1 91.8±2.32b 98.30±1.65a 11.24±1.08a 120.24±3.92b 88.32±0.74b 25.88±0.82a 30.89±0.89ab
PPLPi9/Pi54 90.4±1.74b 99.18±1.58a 10.68±0.82a 118.65±7.25b 87.45±0.98b 26.12±1.28a 28.94±1.02b
PPLPi9/Pi33 91.5±1.82b 98.86±0.92a 11.36±1.38a 119.84±6.26b 88.26±1.05b 26.16±0.85a 31.43±1.65ab
PPLPi2/Pi1 98.4±2.16a 102.45±2.37ab 11.69±1.32a 125.38±4.38a 92.45±0.85a 26.64±1.64a 36.10±1.32a
PPLPi2/Pi54 97.5±1.84a 101.84±2.72a 11.88±1.15a 126.56±9.82a 93.28±0.62a 25.98±1.25a 36.43±1.74a
PPLPi2/Pi33 97.2±1.45a 103.22±1.84b 11.21±0.75a 125.58±10.52a 93.75±1.12a 26.49±0.92a 34.96±2.84a
PPLPizt/Pi1 100.5±2.23c 99.48±2.24a 10.95±1.21a 128.25±6.69a 93.55±1.43a 27.18±1.36a 35.71±2.25a
PPLPizt/Pi54 101.8±0.95c 98.95±3.21a 11.22±1.43a 127.84±8.82a 92.45±0.98a 26.52±1.52a 35.16±1.95a
PPLPizt/Pi33 99.6±1.48a 100.24±2.88a 11.47±1.28a 126.57±4.78a 93.12±1.28a 26.35±0.79a 35.62±1.35a
PPLPiz/Pi1 97.5±2.32a 97.32±1.69a 10.98±0.92a 128.48±5.92a 92.88±0.85a 26.38±0.88a 34.56±0.85a
PPLPiz/Pi54 96.5±2.65a 98.48±1.86a 11.22±0.78a 126.32±6.74a 92.05±0.58a 25.94±1.35a 33.84±1.63a
PPLPiz/Pi33 97.2±2.18a 97.85±0.82a 10.92±1.26a 127.62±7.28a 92.69±0.82a 26.36±1.02a 34.05±1.28a
07GY31 96.8±1.24a 98.55±2.52a 11.24±1.34a 126.57±6.28a 92.36±0.74a 26.28±1.28a 34.53±1.56a

Fig. 4

Resistance performances of PPLs in the three blast nurseries"

[1] DEAN R, VAN KAN J A, PRETORIUS Z A, HAMMOND-KOSACK K E, DI PIETRO A, SPANU P D, RUDD J J, DICKMAN M, KAHMANN R, ELLIS J, FOSTER G D. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012,13(4):414-430.
[2] KHUSH G S, JENE K. Current status and future prospects for research on blast resistance in rice (Oryza sativa L.)//Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer, 2009: 1-10.
[3] GOUDA P K, SAIKUMAR S, VARMA C M, NAGESH K, THIPPESWARMY S, SHENOY V, RAMESHA M S, SHASHIDHAR H E. Marker-assisted breeding of Pi-1 and Piz-5 genes imparting resistance to rice blast in PRR78, restorer line of Pusa RH-10 Basmati rice hybrid. Plant Breeding, 2013,132(1):61-69.
[4] ELLUR R K, KHANNA A, YADAV A, PATHANIA S, RAJASHEKARA H, SINGH V K, GOPALA KRISHNAN S, BHOWMICK P K, NAGARAJAN M, VINOD K K, PRAKASH G, MONDAL K K, SINGH N K, VINOD PRABHU K, SINGH A K. Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Science, 2016,242:330-341.
[5] NIKS R E, QI X, MARCEL T C. Quantitative resistance to biotrophic filamentous plant pathogens: Concepts, misconceptions, and mechanisms. Annual Review of Phytopathology, 2015,53:445-470.
[6] WANG G L, MACKILL D J, BONMAN J M, MCCOUCH S R, CHAMPOUX M C, NELSON R J. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 1994,136(4):1421-1434.
[7] LUKASIK E, TAKKEN F L. STANDing strong, resistance proteins instigators of plant defence. Current Opinion in Plant Biology, 2009,12(4):427-436.
[8] RAY S, SINGH P K, GUPTA D K, MAHATO A K, SARKAR C, RATHOUR R, SINGH N K, SHARMA T R. Analysis of Magnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, Pi54. Frontiers in Plant Science, 2016,7:1140.
[9] JIA Y, MCADAMS S A, BRYAN G T, HERSHEY H P, VALENT B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal, 2000,19(15):4004-4014.
[10] PARK C H, SHIRSEKAR G, BELLIZZI M, CHEN S, SONGKUMARN P, XIE X, SHI X, NING Y, ZHOU B, SUTTIVIRIYA P, WANG M, UMEMURA K, WANG G L. The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice. PLoS Pathogens, 2016,12(3):e1005529.
[11] FUJISAKI K, ABE Y, ITO A, SAITOH H, YOSHIDA K, KANZAKI H, KANZAKI E, UTSUSHI H, YAMASHITA T, KAMOUN S, TERAUCHI R. Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity. The Plant Journal, 2015,83(5):875-887.
[12] ASHKANI S, RAFII M, SHABANIMOFRAD M, GHASEMZADEH A, RAVANFAR S A, LATIF M. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): Current status and future considerations. Critical Reviews in Biotechnology, 2016,36(2):353-367.
[13] SHARMA T, RAI A, GUPTA S, VIJAYAN J, DEVANNA B, RAY S. Rice blast management through host-plant resistance: Retrospect and prospects. Agricultural Research, 2012,1(1):37-52.
[14] XIE Z, YAN B X, SHOU J Y, TANG J, WANG X, ZHAI K R, LIU J Y, LI Q, LUO M Z, DENG Y W, HE Z H. A nucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance through physical association in rice. Philosophical Transactions of the Royal Society B, 2019,374(1767):20180308.
[15] WANG B H, EBBOLE D J, WANG Z H. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes. Journal of Integrative Agriculture, 2017,16(12):2746-2760.
[16] ZHAO H J, WANG X Y, JIA Y L, MINKENBERG B, WHEATLEY M, FAN J B, JIA M H, FAMOSO A, EDWARDS J D, WAMISHE Y, VALENT B, WANG G L, YANG Y N. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nature Communications, 2018,9(1):2039.
[17] FUKUOKA S, YAMAMOTO S I, MIZOBUCHI R, YAMANOUCHI U, ONO K, KITAZAWA N, YASUDA N, FUJITA Y, NGUYEN T T, KOIZUMI S, SUGIMOTO K, MATSUMOTO T, YANO M. Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Scientific Reports, 2014,4:4550.
[18] FUKUOKA S, SAKA N, KOGA H, ONO K, SHIMIZU T, EBANA K, HAYASHI N, TAKAHASHI A, HIROCHIKA H, OKUNO K, YANO M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009,325(5943):998-1001.
[19] HAYASHI N, INOUE H, KATO T, FUNAO T, SHIROTA M, SHIMIZU T, KANAMORI H, YAMANE H, HAYANO-SAITO Y, MATSUMOTO T, YANO M, TAKATSUJI H. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. The Plant Journal, 2010,64(3):498-510.
[20] XU X, HAYASHI N, WANG C T, FUKUOKA S, KAWASAKI S, TAKATSUJI H, JIANG C J. Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Molecular Breeding, 2014,34(2):691-700.
[21] INUKAI T, NAGASHIMA S, KATO M. Pid3-I1 is a race-specific partial-resistance allele at the Pid3 blast resistance locus in rice. Theoretical and Applied Genetics, 2019,132(2):395-404.
[22] VARIAR M, CRUZ CV, CARRILLO M, BHATT J, SANGAR R. Rice blast in India and strategies to develop durably resistant cultivars//Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer, 2009: 359-373.
[23] 宛柏杰, 刘凯, 赵绍路, 朱静雯, 刘艳艳, 张桂云, 朱国永, 王爱民, 唐红生, 孙明法, 严国红. 水稻抗稻瘟病基因Pi-taPi-bPigmPi54在骨干亲本中的分布以及对穗颈瘟抗性的作用. 西南农业学报, 2020,33(1):1-6.
WAN B J, LIU K, ZHAO S L, ZHU J W, LIU Y Y, ZHANG G Y, ZHU G Y, WANG A M, TANG H S, SUN M F, YAN G H. Distribution of rice blast resistance genes Pi-ta, Pi-b, Pigm and Pi54 in backbone parent and their relationships with neck blast resistance. Southwest China Journal of Agricultural Sciences, 2020,33(1):1-6. (in Chinese)
[24] 朱勇良, 范方军, 谢裕林, 伍应保, 乔中英, 张建栋. 江苏省迟熟中粳新品系稻瘟病抗病基因检测与抗性评价. 江苏农业科学, 2018,46(19):106-109.
ZHU Y L, FAN F J, XIE Y L, WU Y B, QIAO Z Y, ZHANG J D. Detection and evaluation of blast resistance genes in late mature medium japonica lines in Jiangsu Province. Jiangsu Agricultural Sciences, 2018,46(19):106-109. (in Chinese)
[25] JIANG H C, FENG Y T, BAO L, LI X, GAO G J, ZHANG Q L, XIAO J H, XU C G, HE Y Q. Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Molecular Breeding, 2012,30(4):1679-1688.
[26] XIAO W M, YANG Q Y, HUANG M, GUO T, LIU Y Z, WANG J F, YANG G L, ZHOU J Y, YANG J Y, ZHU X Y, CHEN Z Q, WANG H. Improvement of rice blast resistance by developing monogenic lines, two-gene pyramids and three-gene pyramid through MAS. Rice, 2019,12(1):78.
[27] HITTALMANI S, PARCO A, MEW T, ZEIGLER R, HUANG N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theoretical and Applied Genetics, 2000,100(7):1121-1128.
[28] XIAO N, WU Y Y, PAN C H, YU L, CHEN Y, LIU G Q, LI Y H, ZHANG X X, WANG Z P, DAI Z Y, LIANG C Z, LI A H. Improving of rice blast resistances in japonica by pyramiding major R genes. Frontiers in Plant Science, 2017,7:1918.
[29] WU Y Y, XIAO N, CHEN Y, YU L, PAN C H, LI Y H, ZHANG X X, HUANG N S, JI H J, DAI Z Y, CHEN X J, LI A H. Comprehensive evaluation of resistance effects of pyramiding lines with different broad-spectrum resistance genes against Magnaporthe oryzae in rice (Oryza sativa L.). Rice, 2019,12(1):11.
[30] ZHONG Z H, CHEN M L, LIN L Y, HAN Y J, BAO J D, TANG W, LIN L L, LIN Y H, SOMAI R, LU L, et al. Population genomic analysis of the rice blast fungus reveals specific events associated with expansion of three main clades. The ISME Journal, 2018,12(8):1867-1878.
[31] XIAO N, WU Y Y, WANG Z P, LI Y H, PAN C H, ZHANG X X, YU L, LIU G Q, ZHOU C H, JI H J, HUANG N S, JIANG M, DAI Z Y, LI A H. Improvement of seedling and panicle blast resistance in Xian rice varieties following Pish introgression. Molecular Breeding, 2018,38:142.
[32] 陈波, 周年兵, 郭保卫, 黄大山, 陈忠平, 花劲, 霍中洋, 张洪程. 南方稻区“籼改粳”研究进展. 扬州大学学报 (农业与生命科学版), 2017,38(1):67-72, 88.
CHEN B, ZHOU N B, GUO B W, HUANG D S, CHEN Z P, HUA J, HUO Z Y, ZHANG H C. Progress of “indica rice to japonica rice” in southern China. Journal of Yangzhou University (Agricultural and Life Science Edition), 2017,38(1):67-72, 88. (in Chinese)
[33] 殷敏, 刘少文, 褚光, 徐春梅, 王丹英, 章秀福, 陈松. 长江下游稻区不同类型双季晚粳稻产量与生育特性差异. 中国农业科学, 2020,53(5):890-903.
YIN M, LIU S W, CHU G, XU C M, WANG D Y, ZHANG X F, CHEN S. Differences in yield and growth traits of different japonica varieties in the double cropping late season in the lower reaches of the Yangtze River. Scientia Agricultura Sinica, 2020,53(5):890-903. (in Chinese)
[34] WU Y Y, XIAO N, YU L, PAN C H, LI Y H, ZHANG X X, LIU G Q, DAI Z Y, PAN X B, LI A H. Combination patterns of major R genes determine the level of resistance to the M. oryzae in rice (Oryza sativa L.). PLoS ONE, 2015,10(6):e0126130.
[35] 王小秋, 杜海波, 陈夕军, 李明友, 王嘉楠, 许志文, 冯志明, 陈宗祥, 左示敏. 江苏近年育成粳稻新品种/系的稻瘟病抗性基因及穗颈瘟抗性分析. 中国水稻科学, 2020,34(5):413-424.
WANG X Q, DU H B, CHEN X J, LI M Y, WANG J N, XU Z W, FENG Z M, CHEN Z X, ZUO S M. Analysis of blast resistant genes and neck blast resistance of japonica rice varieties/lines recently developed in Jiangsu Province. Chinese Journal of Rice Science, 2020,34(5):413-424. (in Chinese)
[36] WU Y Y, CHEN Y, PAN C H, XIAO N, YU L, LI Y H, ZHANG X X, PAN X B, CHEN X J, LIANG C Z, DAI Z Y, LI A H. Development and evaluation of near-isogenic lines with different blast resistance alleles at the Piz locus in japonica rice from the lower region of the Yangtze River, China. Plant Disease, 2017,101(7):1283-1291.
[37] PURI K D, SHRESTHA S M, CHHETRI G B K, JOSHI K D. Leaf and neck blast resistance reaction in tropical rice lines under green house condition. Euphytica, 2009,165(3):523-532.
[38] 卢扬江, 郑康乐. 提取水稻DNA的一种简易方法. 中国水稻科学, 1992,6(1):47-48.
LU Y J, ZHENG K L. A simple method for isolation of rice DNA. Chinese Journal of Rice Science, 1992,6(1):47-48. (in Chinese)
[39] POLAND J A, BROWN P J, SORRELLS M E, JANNINK J L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE, 2012,7(2):e32253.
[40] KAWAHARA Y, DE LA BASTIDE M, HAMILTON J P, KANAMORI H, MCCOMBIE W R, OUYANG S, SCHWARTZ D C, TANAKA T, WU J, ZHOU S, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, 2013,6(1):4.
[41] WALKER M A, PEDAMALLU C S, OJESINA A I, BULLMAN S, SHARPE T, WHELAN C W, MEYERSON M. GATK PathSeq: A customizable computational tool for the discovery and identification of microbial sequences in libraries from eukaryotic hosts. Bioinformatics, 2018,34(24):4287-4289.
[42] MACKILL D, BONMAN J. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology, 1992,82(7):746-749.
[43] WU Y Y, YU L, PAN C H, DAI Z Y, LI Y H, XIAO N, ZHANG X X, JI H J, HUANG N S, ZHAO B H, et al. Development of near-isogenic lines with different alleles of Piz locus and analysis of their breeding effect under Yangdao 6 background. Molecular Breeding, 2016,36(2):12.
[44] 彭洪江, 张杰, 饶宗文, 彭士钟, 吴先丽. 不同生态区的稻瘟病调查. 西南农业学报, 1995,8(1):59-64.
PENG H J, ZHANG J, RAO Z W, PENG S Z, WU X L. Investigation on rice blast in different ecological areas. Southwest China Journal of Agricultural Sciences, 1995,8(1):59-64. (in Chinese)
[45] DIVYA B, BISWAS A, ROBIN S, RABINDRAN R, JOEL A J. Gene interactions and genetics of blast resistance and yield attributes in rice (Oryza sativa L.). Journal of Genetics, 2014,93(2):415-424.
[46] CHAIPANYA C, TELEBANCO-YANORIA M J, QUIME B, LONGYA A, KORINSAK S, KORINSAK S, TOOJINDA T, VANAVICHIT A, JANTASURIYARAT C, ZHOU B. Dissection of broad-spectrum resistance of the Thai rice variety Jao Hom Nin conferred by two resistance genes against rice blast. Rice, 2017,10(1):18.
[47] CHEN X L, JIA Y L, JIA M H, PINSON S R M, WANG X Y, WU B M. Functional interactions between major rice blast resistance genes, Pi-ta and Pi-b, and minor blast resistance quantitative trait loci. Phytopathology, 2018,108(9):1095-1103.
[48] LI W, DENG Y W, NING Y S, HE Z H, WANG G L. Exploiting broad-spectrum disease resistance in crops: From molecular dissection to breeding. Annual Review of Plant Biology, 2020,71:575-603.
[49] XU X, LV Q M, SHANG J J, PANG Z Q, ZHOU Z Z, WANG J, JIANG G H, TAO Y, XU Q, LI X B, ZHAO X F, LI S G, XU J C, ZHU L H. Excavation of Pid3 orthologs with differential resistance spectra to Magnaporthe oryzae in rice resource. PLoS ONE, 2014,9(3):e93275.
[50] PRADHAN S K, NAYAK D K, MOHANTY S, BEHERA L, BARIK S R, PANDIT E, LENKA S, ANANDAN A. Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice, 2015,8(1):51.
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[3] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[4] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[5] SHA YueXia, HUANG ZeYang, MA Rui. Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice [J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328.
[6] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
[7] MENG Feng,ZHANG YaLing,JIN XueHui,ZHANG XiaoYu,JIANG Jun. Detection and Analysis of Magnaporthe oryzae Avirulence Genes AVR-Pib, AVR-Pik and AvrPiz-t in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2019, 52(23): 4262-4273.
[8] HU Lei,ZHU Ying,XU Dong,CHEN ZhiFeng,HU BingQiang,HAN Chao,QIU Shi,WU Pei,ZHANG HongCheng,WEI HaiYan. Characteristics of Good Taste and High Yield Type of Single Cropping Late Japonica Rice in Southern China [J]. Scientia Agricultura Sinica, 2019, 52(2): 215-227.
[9] SHA YueXia,SUI ShuTing,ZENG QingChao,SHEN RuiQing. Biocontrol Potential of Bacillus velezensis Strain E69 Against Rice Blast and Other Fungal Diseases [J]. Scientia Agricultura Sinica, 2019, 52(11): 1908-1917.
[10] WANG WenJuan,SU Jing,YANG JianYuan,WEI XiaoYan,CHEN KaiLing,CHEN Zhen,CHEN Shen,ZHU XiaoYuan. Analysis of Magnaporthe oryzae Avirulent Genes in the Infected Hybrid Rice Combinations Derived from a Sterile Line of Guang 8 A [J]. Scientia Agricultura Sinica, 2018, 51(24): 4633-4646.
[11] LIU LiNa, YANG Jing, XU LiuYan, LI ChengYun. Genetic Diversity Analysis of Pi-ta Gene 3′-UTR in Rice Landraces [J]. Scientia Agricultura Sinica, 2017, 50(15): 2851-2860.
[12] WANG Gen-Ping, DU Wen-Ming, XIA Lan-Qin. Current Status of Transgenic Technologies for Safety Consideration in Plants and Future Perspectives [J]. Scientia Agricultura Sinica, 2014, 47(5): 823-843.
[13] JIANG Zhao-Yuan-1, 2 , 3 , REN Jin-Ping-1, 2 , 3 , LIU Xiao-Mei-1, 2 , 3 , ZOU Xiao-Wei-1, 2 , 3 , GUO Xiao-Li-1, 2 , 3 , WANG Ji-Chun-1, 2 , 3 , WEN Jia-Wei-2, LIU Wen-Ping-2, XIA Hai-Feng-4, HONG De-Zhi-5. Comparative Analysis of Gene Expression Profiles of Rice Responding to Different Races of Magnaporthe grisea [J]. Scientia Agricultura Sinica, 2013, 46(24): 5123-5131.
[14] LIU Lu-ning,TU Yan-la,ZHANG Jing-ze . Biocontrol Potential of Trichoderma virens Strain TY009 Against Rice Sheath Blight and Other Main Fungal Diseases
[J]. Scientia Agricultura Sinica, 2010, 43(10): 2031-2038 .
[15]

. [J]. Scientia Agricultura Sinica, 2008, 41(8): 2258-2262 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!