Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (23): 4607-4618.doi: 10.3864/j.issn.0578-1752.2024.23.003

• SPECIAL FOCUS: MINING AND UTILIZATION OF CROP DISEASE RESISTANCE AND INSECT-RELATED GENES • Previous Articles     Next Articles

Hydrolase Gene BGIOSGA023826 Involved in Regulation of Resistance Process to Rice Blast

ZHAO Jie1(), ZHAO LongYuan1(), PAN NingHui1, GUAN LiRong3, DU YunLong1,2, LI ChengYun1,2, WANG YunYue1,2, XIE Yong1,2()   

  1. 1 College of Plant Protection, Yunnan Agricultural University, Kunming 650201
    2 State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201
    3 College of Chemical Engineering, Yunnan Open University, Kunming 650223
  • Received:2024-08-13 Accepted:2024-09-19 Online:2024-12-01 Published:2024-12-07

Abstract:

【Objective】 Acuce, currently the predominant cultivating rice landrace at Yuanyang Hani terrace, Yunnan Province, has been continuously planted for more than 100 years. Interestingly, there has never been a major outbreak of rice blast during the past decades. Clarifying the types, quantities, expression characteristics, and phenotypic effects of functional genes involved in the resistance response process so as to exploring the molecular mechanism of Acuce resistance to Magnaporthe oryzae will optimize facilitate the conservation and utilization of rice landrace. 【Method】 The present research focuses on the biological effect of disease resistance-related candidate gene BGIOSGA023826 which screened from Acuce -M. oryzae interaction transcriptome. Initially, biological function of this gene was analyzed by using bioinformatics software and conducted gene cloning. Subsequently, overexpression vector was constructed through Agrobacterium-mediated genetic transformation, then carry out positive identification and disease resistance phenotype analysis of overexpressed plants. Finally, Real-time fluorescence quantitative PCR was used to analyze the expression of PR genes in overexpressed plants, and enzyme-linked immunosorbent assay was used to determine changes in endogenous hormone content. 【Result】 The candidate gene BGIOSGA023826 encodes 354 amino acids figuring unstable hydrophobic characteristic without transmembrane domains, coding a non-membrane and non-secretory protein, classified as a hydrolase gene. The overexpression of BGIOSGA023826 in transgenic plants significantly enhances resistance to M. oryzae compared to Nipponbare. The results of real-time fluorescent quantitative PCR indicate that the relative expression levels of the PR genes PR1b, OsNPR1, and OsAOS2 as well as transcription factors WRKY45 significantly upregulated. Both of the PR1b gene and the key gene OsAOS2 functioning in the JA synthesis pathway continuously upregulated from 12 hpi. Meanwhile, the expression level of the transcription factor gene WRKY45 drastically increased at 24 hpi and reached its peak at 36 hpi, which were nearly two folds higher than that of Nipponbare. As to the results of endogenous hormone content measurement, the JA increased to 263.88 pmol·L-1 at 12 hpi, reaching peak 304 pmol·L-1 at 36 hpi; Similarly, the SA increased to 186.5 pmol·L-1 at 24 hpi, reaching peak 198.88 pmol·L-1 at 36 hpi; At the same time, the content of ROS also rises continually and reached its peak at 36 hpi, MDA also increased from 40.43 nmol·g-1 to 53.94 nmol·g-1; However, SOD did not exhibit significant differences at individual time points in transgenic plant, but showed an upward trend in Nipponbare. 【Conclusion】 Preliminary elucidating of the temporal expression relationship between the hydrolase gene BGIOSGA023826 and the PR genes as well as endogenous hormone levels, demonstrating it involved in the landrace Acuce resistance to M. oryzae infection process.

Key words: Magnaporthe oryzae, rice landraces, disease resistance related genes, genetic transformation, real-time fluorescent quantitative PCR

Table 1

The system for recombinant ligation"

成分
Component
体积
Volume (μL)
Biorun 2×EasyClone Mix 10
pBWA(V)HS-ccdB(D) 5
DNA回收样本DNA recovery samples 5
总计Total 20

Table 2

Primers pairs sequence used in this study"

引物Primer 引物序列Primer sequence (5′-3′) 用途Usage
BGIOSGA023826-1F GTAATTACCTTTTGTTCTCTATTGTGGC 基因全长测序
Complete gene sequencing
BGIOSGA023826-1R GACGTGGTGGGCGATGTTG
BGIOSGA023826-2F GCCGCCTCCAGCCAGTAC
BGIOSGA023826-2R AATATTTCATGGCGTAATTAGGTTC
0238260E-F AACACGGGGGACTTTGCAACATGGGGAGCCTTGGCGGG 过表达载体构建
Overexpression vector construction
023826OE-R TGAAGACAGAGCTAGTTACACTAGCAGTACTTGGGCGGCTTG
pBWA(V)HS-ccdB
HS)35seq
TTCATTTGGAGAGAACACGGGGGAC 阳性植株鉴定
Identification of positive plants
023826(532C) GAACGGCTGCAGCAGGACGA
OsActin-F GAGTATGATGAGTCGGGTCCAG 表达分析
Expression analysis
OsActin-R ACACCAACAATCCCAAACAGAG
OsAOS2-qF CAATACGTGTACTGGTCGAATGG
OsAOS2-qR AAGGTGTCGTACCGGAGGAA
PR1b-qF ACGGGCGTACGTACTGGCTA
PR1b-qR CTCGGTATGGACCGTGAAG
WRKY45-qF GCCGACGACCAGCACGATCACC
WRKY45-qR ACGAGCCGACGCCGCCCTC
OsNPR1-qF AAGCGGTTCAAATCTCAAA
OsNPR1-qR GCCTCCATCGGAAACATA

Fig. 1

Structure diagram of candidate gene BGIOSGA023826"

Fig. 2

Secondary (A) and tertiary structure (B) of BGIOSGA023826 protein"

Fig. 3

Electrophoresis of RNA and BGIOSGA023826 sequence on agarose gel A: The total RNA of L2; B: BGIOSGA023826 gene fragment amplified"

Fig. 4

Overexpression vector pBWA (V) HS-23826 schematic diagram"

Fig. 5

Schematic diagram of BGIOSGA023826 genetic transformation process of Nipponbare"

Fig. 6

PCR identification of T0 BGIOSGA023826 transgenic plants 1-20: BGIOSGA023826 T0 transgenic plants; P: Positive plasmid; H: H2O"

Fig 7

Phenotypic observation of T0 transgenic plants inoculated with Magnaporthe oryzae strain G12-2 A: In vitro inoculation of G12-2; B: In vivo inoculation of G12-2; C: Lesion area comparison. **: Significant level between treatments at P<0.01"

Fig. 8

Changes in the expression of defense-related genes before and after inoculation"

Fig. 9

Changes of endogenous hormone content in transgenic plants after inoculation with G12-2 A: SA; B: JA; C: SOD; D: MDA; E: ROS"

[1]
YU S B, LI S P, WANG W, TANG D Z. OsCAMTA3 negatively regulates disease resistance to Magnaporthe oryzae by associating with OsCAMTAPL in rice. International Journal of Molecular Sciences, 2024, 25(9): 5049.
[2]
周庚, 黄俊, 邹玉莹, 邓吉奇, 李家鑫, 谌强, 郭成龙, 李博文, 车凡昊, 姚威, 黄希来, 刘金灵, 刘雄伦. 分子标记辅助选择Pigm基因改良水稻不育系桃农1A的苗瘟抗性. 华北农学报, 2024, 39(2): 39-46.

doi: 10.7668/hbnxb.20194645
ZHOU G, HUANG J, ZOU Y Y, DENG J Q, LI J X, CHEN Q, GUO C L, LI B W, CHE F H, YAO W, HUANG X L, LIU J L, LIU X L. Improving seedling blast resistance of rice CMS line Taonong 1A through marker-assisted selection of the Pigm gene. Acta Agriculturae Boreali-Sinica, 2024, 39(2): 39-46. (in Chinese)

doi: 10.7668/hbnxb.20194645
[3]
DEAN R, VAN KAN A L, PRETORIUS Z A, HAMMOND- KOSACK K E, DI PIETRO A, SPANU P D, RUDD J J, DICKMAN M, KAHMANN R, ELLIS J, FOSTER G D. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, 13(4): 414-430.

doi: 10.1111/j.1364-3703.2011.00783.x pmid: 22471698
[4]
LI W T, CHERN M, YIN J J, WANG J, CHEN X W. Recent advances in broad-spectrum resistance to the rice blast disease. Current Opinion in Plant Biology, 2019, 50: 114-120.

doi: S1369-5266(18)30180-8 pmid: 31163394
[5]
李永祥. 元阳县志. 昆明: 云南民族出版社, 1990.
LI Y X. Yuanyang County Chronicle. Kunming: Yunnan Ethnic Press, 1990. (in Chinese)
[6]
周月霞. 酿酒高粱EMS突变体库的构建及GID1基因的TILLING分析[D]. 贵阳: 贵州大学, 2020.
ZHOU Y X. Construction of wine sorghum EMS mutant library of brewing Sorghum and TILLING analysis of GID1 gene[D]. Guiyang: Guizhou University, 2020. (in Chinese)
[7]
MINDREBO J T, NARTEY C M, SETO Y, BURKART M D, NOEL J P. Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom. Current Opinion in Structural Biology, 2016, 41: 233-246.

doi: S0959-440X(16)30126-9 pmid: 27662376
[8]
范兴辉, 王惠杉, 何杰华, 叶田, 阳芳, 陈少华. 细菌群体感应淬灭酶及其病害防治研究进展. 生物技术通报, 2017, 33(10): 80-87.
FAN X H, WANG H S, HE J H, YE T, YANG F, CHEN S H. Research progress on microbial quorum quenching enzymes and their control of plant diseases. Biotechnology Bulletin, 2017, 33(10): 80-87. (in Chinese)

doi: 10.13560/j.cnki.biotech.bull.1985.2017-0223
[9]
刘建光, 赵贵元, 赵俊丽, 耿昭, 王永强, 张寒霜. 植物羧酸酯酶的结构、表达调控及生物功能研究进展. 作物杂志, 2018(3): 32-36.
LIU J G, ZHAO G Y, ZHAO J L, GENG Z, WANG Y Q, ZHANG H S. Progress in the structure, expression and function of plant Carboxylesterases. Crops, 2018(3): 32-36. (in Chinese)
[10]
CHROST B, KOLUKISAOGLU U, SCHULZ B, KRUPINSKA K. An alpha-galactosidase with an essential function during leaf development. Planta, 2007, 225(2): 311-320.

pmid: 16845526
[11]
ÖNDER S, TONGUÇ M, ÖNDER D, ERBAŞ S, MUTLUCAN M. Dynamic changes occur in the cell wall composition and related enzyme activities during flower development in Rosa damascena. Frontiers in Plant Science, 2023, 14: 1120098.
[12]
XIANG Y H, YU J J, LIAO B, SHAN J X, YE W W, DONG N Q, GUO T, KAN Y, ZHANG H, YANG Y B, LI Y C, ZHAO H Y, YU H X, LU Z Q, LIN H X. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice. Molecular Plant, 2022, 15(12): 1908-1930.
[13]
夏欣, 陈平, 杨伟, 徐返, 王云月, 李成云, 郑凤萍, 刘永胜, 谢勇. 水稻地方品种‘月亮谷’纯系对田间稻瘟病菌的选择. 植物保护, 2018, 44(4): 74-80.
XIA X, CHEN P, YANG W, XU F, WANG Y Y, LI C Y, ZHENG F P, LIU Y S, XIE Y. Selection of rice landrace ‘Acuce’ pure lines against the phenotype of Magnaporthe oryzae. Plant Protection, 2018, 44(4): 74-80. (in Chinese)
[14]
李海伦, 魏环宇, 杨伟, 李成云, 刘永胜, 王云月, 王扬, 谢勇. 水稻地方品种不同品系对田间稻瘟病菌群体遗传多样性的影响. 植物保护, 2022, 48(3): 142-150, 158.
LI H L, WEI H Y, YANG W, LI C Y, LIU Y S, WANG Y Y, WANG Y, XIE Y. Effects of rice landraces on the population genetic diversity of Magnaporthe oryzae in the field. Plant Protection, 2022, 48(3): 142-150, 158. (in Chinese)
[15]
杨滢洁, 李海伦, 魏环宇, 潘凝辉, 徐返, 李成云, 王云月, 刘永胜, 王扬, 谢勇. 水稻地方品种单粒传纯系对稻瘟菌侵染早期的表型响应与转录组分析. 分子植物育种, [2024-09-18]. http://kns.cnki.net/kcms/detail/46.1068.S.20240424.1454.007.html.
YANG Y J, LI H L, WEI H Y, PAN N H, XU F, LI C Y, WANG Y Y, LIU Y S, WANG Y, XIE Y. Phenotypic response and transcriptome profiling of rice landrace SSD lines to Magnaporthe Oryzae early infection. Molecular Plant Breeding, [2024-09-18]. http://kns.cnki.net/kcms/detail/46.1068.S.20240424.1454.007.html. (in Chinese)
[16]
潘凝辉, 管丽蓉, 李海伦, 赵婕, 李成云, 王云月, 谢勇. 水稻地方品种‘月亮谷’稻瘟病抗性相关候选基因的筛选. 分子植物育种, [2024-09-18]. http://kns.cnki.net/kcms/detail/46.1068.S.20240313.1456.010.html.
PAN N H, GUAN L R, LI H L, ZHAO J, LI C Y, WANG Y Y, XIE Y. Screening of blast resistance-related candidate genes in rice landrace ‘Acuce’. Molecular Plant Breeding, [2024-09-18]. http://kns.cnki.net/kcms/detail/46.1068.S.20240313.1456.010.html. (in Chinese)
[17]
朱加楠, 毕宇, 张悦, 田爽, 周舒扬, 于德水, 甄涛. 根瘤菌HH103效应子NopT影响大豆结瘤固氮及共生早期防御反应. 生物技术, 2024(4): 517-524.
ZHU J N, BI Y, ZHANG Y, TIAN S, ZHOU S Y, YU D S, ZHEN T. Effect of HH103 effector NopT on nitrogen fixation and early symbiotic defense response in soybean nodules. Biotechnology, 2024(4): 517-524. (in Chinese)
[18]
BUI S, GIL-GUERRERO S, VAN DER LINDEN P, CARPENTIER P, CECCARELLI M, JAMBRINA P G, STEINER R A. Evolutionary adaptation from hydrolytic to oxygenolytic catalysis at the α/β- hydrolase fold. Chemical Science, 2023, 14(38): 10547-10560.
[19]
WANG L, WANG B, YU H, GUO H Y, LIN T, KOU L Q, WANG A Q, SHAO N, MA H Y, XIONG G S, LI X Q, YANG J, CHU J F, LI J Y. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature, 2020, 583(7815): 277-281.
[20]
郭宝, 李雪姣, 唐静, 张振华, 罗劲松. 水稻木质部伤流液响应镉胁迫的蛋白组鉴定. 植物营养与肥料学报, 2023, 29(9): 1597-1617.
GUO B, LI X J, TANG J, ZHANG Z H, LUO J S. Proteomic identification of proteins in rice xylem sap in response to cadmium. Journal of Plant Nutrition and Fertilizers, 2023, 29(9): 1597-1617. (in Chinese)
[21]
SONG N, LIN J C, LIU X B, LIU Z H, LIU D B, CHU W, LI J P, CHEN Y M, CHANG S M, YANG Q, LIU X Y, GUO W L, XIN M M, YAO Y Y, PENG H R, NI Z F, XIE C J, SUN Q X, HU Z R. Histone acetyltransferase TaHAG1 interacts with TaPLATZ5 to activate TaPAD4 expression and positively contributes to powdery mildew resistance in wheat. New Phytologist, 2022, 236(2): 590-607.

doi: 10.1111/nph.18372 pmid: 35832009
[22]
ZHOU J M. Plant pathology: A life and death struggle in rice blast disease. Current Biology, 2016, 26(18): R843-R845.
[23]
窦世娟, 关明俐, 李莉云, 刘国振. 水稻的病程相关基因. 科学通报, 2014, 59(3): 245-258.
DOU S J, GUAN M L, LI L Y, LIU G Z. Pathogenesis-related genes in rice. Chinese Science Bulletin, 2014, 59(3): 245-258. (in Chinese)
[24]
SHIMONO M, SUGANO S, NAKAYAMA A, JIANG C J, ONO K, TOKI S, TAKATSUJI H. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. The Plant Cell, 2007, 19(6): 2064-2076.
[25]
MEI C S, QI M, SHENG G Y, YANG Y N. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Molecular Plant-Microbe Interactions, 2006, 19(10): 1127-1137.

doi: 10.1094/MPMI-19-1127 pmid: 17022177
[26]
QIU D Y, XIAO J, DING X H, XIONG M, CAI M, CAO Y L, LI X H, XU C G, WANG S P, OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate- dependent signaling. Molecular Plant-Microbe Interactions, 2007, 20(5): 492-494.
[27]
RAMAMOORTHY R, JIANG S Y, KUMAR N, VENKATESH P N, RAMACHANDRAN S. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant & Cell Physiology, 2008, 49(6): 865-879.
[28]
王磊, 高晓清, 朱苓华, 周永力, 黎志康. 植物WRKY转录因子家族基因抗病相关功能的研究进展. 植物遗传资源学报, 2011, 12(1): 80-85.

doi: 10.13430/j.cnki.jpgr.2011.01.014
WANG L, GAO X Q, ZHU L H, ZHOU Y L, LI Z K. Advances in research on function of WRKY transcription factor genes in plant resistance. Journal of Plant Genetic Resources, 2011, 12(1): 80-85. (in Chinese)
[29]
吴梦露, 李鹏, 于文清, 黄文慧, 熊佳诗, 许诺, 汪文俊, 方子剑, 刘文志. 水稻防御酶与其抗病性关系研究进展. 分子植物育种, 2024, 22(7): 2413-2420.
WU M L, LI P, YU W Q, HUANG W H, XIONG J S, XU N, WANG W J, FANG Z J, LIU W Z. Advances in the research of relationship between defensive enzymes and disease resistance in rice. Molecular Plant Breeding, 2024, 22(7): 2413-2420. (in Chinese)
[30]
李路, 徐以华, 梁梦琦, 王玲, 刘连盟, 侯雨萱, 黎起秦, 黄世文. 水稻对穗枯病的抗病机理初步研究. 中国水稻科学, 2017, 31(5): 551-558.

doi: 10.16819/j.1001-7216.2017.6167 551
LI L, XU Y H, LIANG M Q, WANG L, LIU L M, HOU Y X, LI Q Q, HUANG S W. A primary study on the mechanism behind resistance to bacterial panicle blight of rice. Chinese Journal of Rice Science, 2017, 31(5): 551-558. (in Chinese)

doi: 10.16819/j.1001-7216.2017.6167 551
[31]
贺琳, 张苗苗, 吴紫璇, 孙立强, 杨克军. ZmbZIP76通过减轻活性氧损伤和渗透胁迫增强植物对盐碱胁迫的耐受性. 黑龙江八一农垦大学学报, 2021, 33(4): 7-13, 39.
HE L, ZHANG M M, WU Z X, SUN L Q, YANG K J. ZmbZIP76 enhances plant tolerance to saline-alkali stress by reducing ROS damage and osmotic stress. Journal of Heilongjiang Bayi Agricultural University, 2021, 33(4): 7-13, 39. (in Chinese)
[1] LIU RUI, ZHAO YuHan, GU XinYi, WANG YanXia, JIN XueHui, WU WeiHuai, ZHANG YaLing. Distribution and Variation Analysis of AVR-Pita Family in Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(3): 466-480.
[2] LI li, SUN ling, ZHANG JinHua, ZOU XiaoWei, SUN Hui, REN JinPing, JIANG ZhaoYuan, LIU XiaoMei. Evaluation of Resistance and Analysis of Utilization Value of the Major Japonica Rice Varieties in Jilin Province Based on the Physiological Race Variation of Magnaporthe oryzae [J]. Scientia Agricultura Sinica, 2023, 56(22): 4441-4452.
[3] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[4] XING MiaoMiao, XU YuanYuan, LU YuYu, YAN JiYong, ZENG AiSong. Development of Ogura CMS Restorers of Broccoli via Genetic Transformation of Rfo [J]. Scientia Agricultura Sinica, 2023, 56(15): 2966-2976.
[5] DU JingYa, CHEN KaiYuan, PU Jin, ZHOU HuiYing, ZHU GuangTao, ZHANG ChunZhi, DU Hui. The Modification of Gene Editing Vector for Efficient GFPuv Fluorescence Screening and Its Application in Potato Genetic Transformation [J]. Scientia Agricultura Sinica, 2023, 56(11): 2223-2236.
[6] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[7] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[8] LI XiaoJing,ZHANG SiYu,LIU Di,YUAN XiaoWei,LI XingSheng,SHI YanXia,XIE XueWen,LI Lei,FAN TengFei,LI BaoJu,CHAI ALi. Establishment and Application of Rapid Quantitative Detection of Viable Plasmodiophora brassicae by PMAxx-qPCR Method [J]. Scientia Agricultura Sinica, 2022, 55(10): 1938-1948.
[9] WU YunYu,XIAO Ning,YU Ling,CAI Yue,PAN CunHong,LI YuHong,ZHANG XiaoXiang,HUANG NianSheng,JI HongJuan,DAI ZhengYuan,LI AiHong. Construction and Analysis of Broad-Spectrum Resistance Gene Combination Pattern for Japonica Rice in Lower Region of the Yangtze River, China [J]. Scientia Agricultura Sinica, 2021, 54(9): 1881-1893.
[10] DING Xi,ZHAO KaiXi,WANG YueJin. Expression of Stilbene Synthase Genes from Chinese Wild Vitis quinquangularis and Its Effect on Resistance of Grape to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(2): 310-323.
[11] ZHAO XuSheng,QI YongZhi,ZHEN WenChao. Composition and Distribution Characteristics of Pathogens Causing Wheat Sharp Eyespot in Wheat and Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2020, 53(16): 3269-3279.
[12] MENG Feng,ZHANG YaLing,JIN XueHui,ZHANG XiaoYu,JIANG Jun. Detection and Analysis of Magnaporthe oryzae Avirulence Genes AVR-Pib, AVR-Pik and AvrPiz-t in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2019, 52(23): 4262-4273.
[13] WANG Duo,XIE XueWen,CHAI ALi,SHI YanXia,LI BaoJu. Identification of the Pathogen Causing Cabbage Died in Gansu Province and Detection of Anastomosis Groups [J]. Scientia Agricultura Sinica, 2019, 52(16): 2787-2799.
[14] LIU MengQi,WU FengYing,WANG YueJin. Expression of Stilbene Synthase Gene and Resistance to Powdery Mildew Analysis of Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2019, 52(14): 2436-2449.
[15] WANG WenJuan,SU Jing,YANG JianYuan,WEI XiaoYan,CHEN KaiLing,CHEN Zhen,CHEN Shen,ZHU XiaoYuan. Analysis of Magnaporthe oryzae Avirulent Genes in the Infected Hybrid Rice Combinations Derived from a Sterile Line of Guang 8 A [J]. Scientia Agricultura Sinica, 2018, 51(24): 4633-4646.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!