Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (5): 1010-1022.doi: 10.3864/j.issn.0578-1752.2024.05.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

The Potential and Mechanisms of Apigenin to Relieve Heat Stress and Hypoxia in Dairy Cows Based on Network Pharmacology and Molecular Docking

LIU ZhuoLin(), LIU HongYun()   

  1. College of Animal Science, Zhejiang University, The Institute of Dairy Science, Hangzhou 310058
  • Received:2023-05-12 Accepted:2023-07-27 Online:2024-03-06 Published:2024-03-06
  • Contact: LIU HongYun

Abstract:

【Objective】 The study aimed to predict the mechanisms of apigenin in relieving heat stress and hypoxia stress in dairy cows by using network pharmacology and molecular docking so as to provide a reference for the application of apigenin.【Method】 Firstly, the targets related to apigenin, heat stress, and hypoxia stress were obtained from TCMSP and GeneCards databases, and apigenin targets in relieving dual stress were obtained by Venn intersection. The protein-protein interaction (PPI) network was constructed using the STRING database, and the core targets were identified by analyzing the network node centrality using the CytoNCA plugin in Cytoscape 3.9.1 software. Autodock vina program was used to perform molecular docking of apigenin with the identified targets. Perform gene ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the top 30 ranked targets based on degree centrality using Functional Annotation, the analysis tool of David database. Additionally, Molecular complex detection analysis (MCODE) of the above targets yielded the core gene clusters, then GO and KEGG analysis were performed. Apigenin-dual stress targets-signaling pathway network model were constructed through the KEGG pathway enrichment results and core target information. Finally, apigenin was docked to the core targets using the Autodock vina program, and the results were visualized using the Pymol software and the PLIP website.【Result】 The TCMSP database retrieved 68 targets of apigenin, 6 661 hypoxia-related genes and 9 046 heat stress-related genes were obtained in GeneCards database, and 56 apigenin targets in relieving dual stress were obtained. The number of nodes in the target PPI network was 56, the number of edges was 436, the average node degree value was 15.6, the mean local clustering coefficient was 0.728, and PPI enrichment P value was less than 1.0×10-16. The core targets were AKT1 (RAC-alpha serine/ threonine-protein kinase), TP53 (Cellular tumor antigen p53), TNF (Tumor necrosis factor), CASP3 (Caspase-3), INS (Insulin), BCL2L1 (Bcl-2-like protein 1), VEGFA (Vascular endothelial growth factor A), HIF1A (Hypoxia-inducible factor 1-alpha), PTGS2 (Prostaglandin G/H synthase 2), and SREPINE1 (Plasminogen activator inhibitor 1). The molecular docking results showed that apigenin could be stably bound to the above core targets. A total of 54 Biological Processes (BP), 6 Molecular Functions (MF), and 11 Cellular Components (CC) were obtained by GO functional enrichment analysis (P<0.01), and KEGG were enriched to 98 signaling pathways. MCODE analysis showed two major gene clusters. 【Conclusion】 Apigenin mainly regulated cell proliferation, apoptosis, oxygen sensing and inflammation through PI3K-AKT, p53, HIF-1, NF-kappa B and other pathways, to further alleviate heat stress and hypoxia stress. The study provided a theoretical reference for the application of apigenin and apigenin-rich plants in dairy cow production.

Key words: apigenin, dairy cow, heat stress, hypoxia, network pharmacology, molecular docking

Fig. 1

Venn diagram of apigenin targets in relieving dual stress"

Table 1

Information on the core targets of apigenin in relieving dual stress"

序号 Serial number 基因 Gene Uniport ID 名称 Name
1 AKT1 Q01314 RAC-α 丝氨酸/苏氨酸蛋白激酶 RAC-alpha serine/threonine-protein kinase
2 TP53 P67939 细胞肿瘤抗原p53 Cellular tumor antigen p53
3 TNF Q06599 肿瘤坏死因子 Tumor necrosis factor
4 CASP3 Q08DY9 细胞凋亡蛋白酶3 Caspase-3
5 INS P01317 胰岛素 Insulin
6 BCL2L1 Q05KJ0 BCL-2样蛋白1 BCL-2-like protein 1
7 VEGFA P15691 血管内皮生长因子A Vascular endothelial growth factor A
8 HIF1A Q9XTA5 缺氧诱导因子 1-α Hypoxia-inducible factor 1-alpha
9 PTGS2 O62698 前列腺素 G/H 合酶 2 Prostaglandin G/H synthase 2
10 SERPINE1 P13909 纤溶酶原激活物抑制剂 1 Plasminogen activator inhibitor 1

Fig. 2

Network diagram of apigenin targets in relieving dual stress"

Fig. 3

Ranking of TOP 30 degree values for apigenin targets in relieving dual stress"

Fig. 4

Results of GO functional enrichment analysis"

Fig. 5

Results of KEGG enrichment analysis"

Fig. 6

Target protein localization rendering in KEGG enriched pathways"

Fig. 7

Top two gene clusters in MCODE analysis"

Table 2

GO functional analysis of the key gene clusters"

基因簇 Gene Cluster GO条目 GO Term 描述 Description Log10 (P)
MCODE1 GO:0006915 凋亡进程Apoptotic process -6.56
GO:1902004 β-淀粉样蛋白形成的正向调控Positive regulation of amyloid-beta formation -6.45
GO:0005125 细胞因子活性Cytokine activity -5.98
MCODE2 GO:0008353 RNA聚合酶II羧基末端结构域激酶活性
RNA polymerase II CTD heptapeptide repeat kinase activity
-2.45
GO:0010971 有丝分裂细胞周期G2/M转变的正向调控
Positive regulation of G2/M transition of mitotic cell cycle
-2.20
GO:0004693 细胞周期蛋白依赖性蛋白丝氨酸/苏氨酸激酶活性
Cyclin-dependent protein serine/threonine kinase activity
-2.17

Fig. 8

Apigenin-dual stress targets-signaling pathway network model"

Table 3

The binding ability of apigenin to the core targets"

配体
Ligand
受体
Receptor
结合自由能
Free energy of banding (kcal·mol-1)
芹菜素
Apigenin
AKT1 -7.9
TP53 -7.2
TNF -6.1
CASP3 -6.8
INS -7.2
BCL2L1 -7.3
VEGFA -5.9
HIF1A -7.5
PTGS2 -7.6
SERPINE1 -7.2

Fig. 9

Molecular docking results of apigenin to the core targets"

[1]
汤文洁, 姜冰. 中国乳制品加工与消费回顾. 乳品与人类, 2023(1): 10-19.
TANG W J, JIANG B. Review of dairy processing and consumption in China. Dairy and Humankind, 2023(1): 10-19. (in Chinese)
[2]
BERNABUCCI U, LACETERA N, BAUMGARD L H, RHOADS R P, RONCHI B, NARDONE A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal, 2010, 4(7): 1167-1183.

doi: 10.1017/S175173111000090X pmid: 22444615
[3]
韩佳良, 刘建新, 刘红云. 热应激对奶牛泌乳性能的影响及其机制. 中国农业科学, 2018, 51(16): 3162-3170. doi: 10.3864/j.issn.0578-1752.2018.16.012.
HAN J L, LIU J X, LIU H Y. Effect of heat stress on lactation performance in dairy cows. Scientia Agricultura Sinica, 2018, 51(16): 3162-3170. doi: 10.3864/j.issn.0578-1752.2018.16.012. (in Chinese)
[4]
吕美, 刘红云. 热应激对奶牛乳蛋白合成的影响机制. 中国畜牧杂志, 2023, 59(4): 63-68.
M, LIU H Y. Mechanism of heat stress affecting milk protein synthesis in dairy cows. Chinese Journal of Animal Science, 2023, 59(4): 63-68. (in Chinese)
[5]
曾佳, 徐连彬, 张晨, 刘红云. 热应激对反刍动物乳中脂肪酸合成的影响及其机制. 动物营养学报, 2022, 34(11): 6904-6910.

doi: 10.3969/j.issn.1006-267x.2022.11.010
ZENG J, XU L B, ZHANG C, LIU H Y. Effects of heat stress on fatty acid synthesis in lactating ruminants and its mechanism. Chinese Journal of Animal Nutrition, 2022, 34(11): 6904-6910. (in Chinese)

doi: 10.3969/j.issn.1006-267x.2022.11.010
[6]
DAVIS A J, FLEET I R, GOODE J A, HAMON M H, WALKER F M, PEAKER M. Changes in mammary function at the onset of lactation in the goat: correlation with hormonal changes. The Journal of Physiology, 1979, 288: 33-44.

doi: 10.1113/jphysiol.1979.sp012682
[7]
SHAO Y, ZHAO F Q. Emerging evidence of the physiological role of hypoxia in mammary development and lactation. Journal of Animal Science and Biotechnology, 2014, 5(1): 9.

doi: 10.1186/2049-1891-5-9 pmid: 24444333
[8]
HAN J L, SHAO J J, CHEN Q, SUN H Z, GUAN L L, LI Y X, LIU J X, LIU H Y. Transcriptional changes in the hypothalamus, pituitary, and mammary gland underlying decreased lactation performance in mice under heat stress. FASEB Journal, 2019, 33(11): 12588-12601.

doi: 10.1096/fj.201901045R pmid: 31480864
[9]
MA L, YANG Y X, ZHAO X W, WANG F, GAO S T, BU D P. Heat stress induces proteomic changes in the liver and mammary tissue of dairy cows independent of feed intake: an iTRAQ study. PLoS ONE, 2019, 14(1): e0209182.

doi: 10.1371/journal.pone.0209182
[10]
成登苗, 李兆君, 张雪莲, 冯瑶, 张树清. 畜禽粪便中兽用抗生素削减方法的研究进展. 中国农业科学, 2018, 51(17): 3335-3352. doi: 10.3864/j.issn.0578-1752.2018.17.009.
CHENG D M, LI Z J, ZHANG X L, FENG Y, ZHANG S Q. Removal of veterinary antibiotics in livestock and poultry manure: a review. Scientia Agricultura Sinica, 2018, 51(17): 3335-3352. doi: 10.3864/j.issn.0578-1752.2018.17.009. (in Chinese)
[11]
卢德勋. 饲料营养活性物质(nutricines): 一个亟待重新审视的研究领域. 饲料工业, 2020, 41(3): 1-5.
LU D X. Feed nutricines: A research area that is worth to examine closely. Feed Industry, 2020, 41(3): 1-5. (in Chinese)
[12]
DI CARLO G, MASCOLO N, IZZO A A, CAPASSO F. Flavonoids: Old and new aspects of a class of natural therapeutic drugs. Life Sciences, 1999, 65(4): 337-353.

doi: 10.1016/s0024-3205(99)00120-4 pmid: 10421421
[13]
MIDDLETON E Jr, KANDASWAMI C, THEOHARIDES T C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 2000, 52(4): 673-751.

pmid: 11121513
[14]
HAVSTEEN B H. The biochemistry and medical significance of the flavonoids. Pharmacology & Therapeutics, 2002, 96(2/3): 67-202.
[15]
YAN X H, QI M, LI P F, ZHAN Y H, SHAO H J. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell & Bioscience, 2017, 7: 50.
[16]
FANG J, ZHOU Q, LIU L Z, XIA C, HU X W, SHI X L, JIANG B H. Apigenin inhibits tumor angiogenesis through decreasing HIF-1alpha and VEGF expression. Carcinogenesis, 2007, 28(4): 858-864.

pmid: 17071632
[17]
MIRZOEVA S, KIM N D, CHIU K, FRANZEN C A, BERGAN R C, PELLING J C. Inhibition of HIF-1 alpha and VEGF expression by the chemopreventive bioflavonoid apigenin is accompanied by Akt inhibition in human prostate carcinoma PC3-M cells. Molecular Carcinogenesis, 2008, 47(9): 686-700.

doi: 10.1002/mc.20421 pmid: 18240292
[18]
KIM T W, LEE H G. Apigenin induces autophagy and cell death by targeting EZH2 under hypoxia conditions in gastric cancer cells. International Journal of Molecular Sciences, 2021, 22(24): 13455.

doi: 10.3390/ijms222413455
[19]
黄光红. 西芹菜饲喂泌乳奶牛的试验研究. 养殖与饲料, 2011(11): 37-39.
HUANG G H. Experimental study on feeding lactating cows with celery. Animals Breeding and Feed, 2011(11): 37-39. (in Chinese)
[20]
马玉胜, 赵书峰, 孟繁江. 芹菜用于饲喂产蛋鸡的效果试验. 中国禽业导刊, 1999, 16(22): 20.
MA Y S, ZHAO S F, MENG F J. Effect of celery on laying hens. Guide to Chinese Poultry, 1999, 16(22): 20. (in Chinese)
[21]
OSADA M, IMAOKA S, FUNAE Y. Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1α protein. FEBS Letters, 2004, 575(1/2/3): 59-63.

doi: 10.1016/j.febslet.2004.08.036
[22]
VOSS O H, ARANGO D, TOSSEY J C, VILLALONA CALERO M A, DOSEFF A I. Splicing reprogramming of TRAIL/DISC-components sensitizes lung cancer cells to TRAIL-mediated apoptosis. Cell Death & Disease, 2021, 12(4): 287.
[23]
HOPKINS A L. Network pharmacology: The next paradigm in drug discovery. Nature Chemical Biology, 2008, 4(11): 682-690.

doi: 10.1038/nchembio.118
[24]
BARDOU P, MARIETTE J, ESCUDIÉ F, DJEMIEL C, KLOPP C. Jvenn: An interactive Venn diagram viewer. BMC Bioinformatics, 2014, 15(1): 293.

doi: 10.1186/1471-2105-15-293
[25]
HSIN K Y, GHOSH S, KITANO H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS ONE, 2013, 8(12): e83922.

doi: 10.1371/journal.pone.0083922
[26]
LIN Y, SUN X X, HOU X M, QU B, GAO X J, LI Q Z. Effects of glucose on lactose synthesis in mammary epithelial cells from dairy cow. BMC Veterinary Research, 2016, 12: 81.

doi: 10.1186/s12917-016-0704-x pmid: 27229304
[27]
LU W C, OMARI R, RAY H, WANG J, WILLIAMS I, JACOBS C, HOCKADEN N, BOCHMAN M L, CARPENTER R L. AKT 1 mediates multiple phosphorylation events that functionally promote HSF1 activation. The FEBS Journal, 2022, 289(13): 3876-3893.

doi: 10.1111/febs.v289.13
[28]
SHUKLA S, BHASKARAN N, BABCOOK M A, FU P F, MACLENNAN G T, GUPTA S. Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis, 2014, 35(2): 452-460.

doi: 10.1093/carcin/bgt316 pmid: 24067903
[29]
LEVINE A J. p53, the cellular gatekeeper for growth and division. Cell, 1997, 88(3): 323-331.

doi: 10.1016/s0092-8674(00)81871-1 pmid: 9039259
[30]
ISLAM M A, NOGUCHI Y, TANIGUCHI S, YONEKURA S. Protective effects of 5-aminolevulinic acid on heat stress in bovine mammary epithelial cells. Animal Bioscience, 2021, 34(6): 1006-1013.

doi: 10.5713/ajas.20.0349
[31]
HOOPER H B, DOS S SILVA P, DE OLIVEIRA S A, MERINGHE G K F, LACASSE P, NEGRÃO J A. Effect of heat stress in late gestation on subsequent lactation performance and mammary cell gene expression of Saanen goats. Journal of Dairy Science, 2020, 103(2): 1982-1992.

doi: S0022-0302(19)31025-2 pmid: 31759600
[32]
HAN Y W, ZHANG T T, SU J Y, ZHAO Y, LI X M. Apigenin attenuates oxidative stress and neuronal apoptosis in early brain injury following subarachnoid hemorrhage. Journal of Clinical Neuroscience, 2017, 40: 157-162.

doi: S0967-5868(16)30748-2 pmid: 28342702
[33]
MIN L, ZHENG N, ZHAO S G, CHENG J B, YANG Y X, ZHANG Y D, YANG H J, WANG J Q. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis. Biochemical and Biophysical Research Communications, 2016, 471(2): 296-302.

doi: 10.1016/j.bbrc.2016.01.185 pmid: 26851364
[34]
ZHANG F, LI F C, CHEN G. Neuroprotective effect of apigenin in rats after contusive spinal cord injury. Neurological Sciences, 2014, 35(4): 583-588.

doi: 10.1007/s10072-013-1566-7 pmid: 24166720
[35]
WOODGETT J R. Recent advances in the protein kinase B signaling pathway. Current Opinion in Cell Biology, 2005, 17(2): 150-157.

doi: 10.1016/j.ceb.2005.02.010 pmid: 15780591
[36]
EDWARDS L A, THIESSEN B, DRAGOWSKA W H, DAYNARD T, BALLY M B, DEDHAR S. Inhibition of ILK in PTEN-mutant human glioblastomas inhibits PKB/Akt activation, induces apoptosis, and delays tumor growth. Oncogene, 2005, 24(22): 3596-3605.

doi: 10.1038/sj.onc.1208427 pmid: 15782140
[37]
PORE N, JIANG Z B, SHU H K, BERNHARD E, KAO G D, MAITY A. Akt 1 activation can augment hypoxia-inducible factor- 1alpha expression by increasing protein translation through a mammalian target of rapamycin-independent pathway. Molecular Cancer Research, 2006, 4(7): 471-479.

doi: 10.1158/1541-7786.MCR-05-0234
[38]
BANERJEE MUSTAFI S, CHAKRABORTY P K, DEY R S, RAHA S. Heat stress upregulates chaperone heat shock protein 70 and antioxidant manganese superoxide dismutase through reactive oxygen species (ROS), p38MAPK, and Akt. Cell Stress & Chaperones, 2009, 14(6): 579-589.

doi: 10.1007/s12192-009-0109-x
[39]
CHEN F, SUN Z Q, ZHU X G, MA Y L. Astilbin inhibits high glucose-induced autophagy and apoptosis through the PI3K/Akt pathway in human proximal tubular epithelial cells. Biomedicine & Pharmacotherapy, 2018, 106: 1175-1181.

doi: 10.1016/j.biopha.2018.07.072
[40]
GREEN K A, STREULI C H. Apoptosis regulation in the mammary gland. Cellular and Molecular Life Sciences, 2004, 61(15): 1867-1883.

doi: 10.1007/s00018-004-3366-y pmid: 15289930
[41]
GU Z T, WANG H, LI L, LIU Y S, DENG X B, HUO S F, YUAN F F, LIU Z F, TONG H S, SU L. Heat stress induces apoptosis through transcription-independent p53-mediated mitochondrial pathways in human umbilical vein endothelial cell. Scientific Reports, 2014, 4: 4469.

doi: 10.1038/srep04469 pmid: 24667845
[42]
YANG J, HU Q C, WANG J P, REN Q Q, WANG X P, LUORENG Z M, WEI D W, MA Y. RNA-seq reveals the role of miR-29c in regulating inflammation and oxidative stress of bovine mammary epithelial cells. Frontiers in Veterinary Science, 2022, 9: 865415.

doi: 10.3389/fvets.2022.865415
[43]
HUANG C H, KUO P L, HSU Y L, CHANG T T, TSENG H I, CHU Y T, KUO C H, CHEN H N, HUNG C H. The natural flavonoid apigenin suppresses Th1- and Th2-related chemokine production by human monocyte THP-1 cells through mitogen-activated protein kinase pathways. Journal of Medicinal Food, 2010, 13(2): 391-398.

doi: 10.1089/jmf.2009.1229
[44]
NICHOLAS C, BATRA S, VARGO M A, VOSS O H, GAVRILIN M A, WEWERS M D, GUTTRIDGE D C, GROTEWOLD E, DOSEFF A I. Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-kappaB through the suppression of p65 phosphorylation. Journal of Immunology, 2007, 179(10): 7121-7127
[45]
AL-AMARAT W, ABUKHALIL M H, ALRUHAIMI R S, ALQHTANI H A, ALDAWOOD N, ALFWUAIRES M A, ALTHUNIBAT O Y, ALADAILEH S H, ALGEFARE A I, ALANEZI A A, ABOUEL-EZZ A M, AHMEDA A F, MAHMOUD A M. Upregulation of Nrf2/HO-1 signaling and attenuation of oxidative stress, inflammation, and cell death mediate the protective effect of apigenin against cyclophosphamide hepatotoxicity. Metabolites, 2022, 12(7): 648.

doi: 10.3390/metabo12070648
[46]
LEE P, CHANDEL N S, SIMON M C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nature Reviews Molecular Cell Biology, 2020, 21(5): 268-283.

doi: 10.1038/s41580-020-0227-y pmid: 32144406
[47]
MADUNIĆ J, MADUNIĆ I V, GAJSKI G, POPIĆ J, GARAJ- VRHOVAC V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Letters, 2018, 413: 11-22.

doi: S0304-3835(17)30678-X pmid: 29097249
[1] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[2] FU ZhenZhen, ZHU GuangXin, LIU ZhiJuan, GUO ShiBo, LI E, YANG XiaoGuang. Spatial-Temporal Variations of High Temperature During Flowering Period in Maize-Producing Areas of China Under Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(14): 2686-2700.
[3] NIAN HeFen, ZHANG YuXi, LI BoLiao, CHEN XiuLin, LUO Kun, LI GuangWei. Expression and Ligand Binding Characteristics of GfunOBP2 from Grapholita funebrana [J]. Scientia Agricultura Sinica, 2023, 56(12): 2302-2316.
[4] CHEN YuMei, ZHANG CongCong, HU LiRong, FANG Hao, DOU JinHuan, GUO Gang, WANG Yan, LIU QiaoXiang, WANG YaChun, XU Qing. Effect of Heat Stress on DNA Methylation of GNAS Promoter Region in Dairy Cows [J]. Scientia Agricultura Sinica, 2023, 56(12): 2395-2406.
[5] SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830.
[6] LI GuiXiang,LI XiuHuan,HAO XinChang,LI ZhiWen,LIU Feng,LIU XiLi. Sensitivity of Corynespora cassiicola to Three Common Fungicides and Its Resistance to Fluopyram from Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1359-1370.
[7] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[8] WANG XueJie,XING Shuang,ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai. Effects of Heat Stress on Ileal Microbiota of Broilers [J]. Scientia Agricultura Sinica, 2022, 55(17): 3450-3460.
[9] LIU RuiYao,HUANG GuoHong,LI HaiYan,LIANG MinMin,LU MingHui. Screening and Functional Analysis in Heat-Tolerance of the Upstream Transcription Factors of Pepper CaHsfA2 [J]. Scientia Agricultura Sinica, 2022, 55(16): 3200-3209.
[10] XiaoHe LIU,GuiSheng QIU,ZhaoGuo TONG,HuaiJiang ZHANG,WenTao YAN,Qiang YUE,LiNa SUN. Ligands Binding Characteristics of Chemosensory Protein CsasCSP16 of Carposina sasakii [J]. Scientia Agricultura Sinica, 2021, 54(5): 945-958.
[11] QIN JianHui,LI JinQiao,ZHAO Xu,LI KeBin,CAO YaZhong,YIN Jiao. Expression, Purification and Functional Analysis of Odorant Binding Protein 11 (OBP11) in Anomala corpulenta [J]. Scientia Agricultura Sinica, 2021, 54(14): 3017-3028.
[12] LI ZuRen,LUO DingFeng,BAI HaoDong,XU JingJing,HAN JinCai,XU Qiang,WANG RuoZhong,BAI LianYang. Cloning and Expression Analysis of Light Harvesting Chlorophyll a/b Protein Gene CcLhca-J9 in Conyza canadensis [J]. Scientia Agricultura Sinica, 2021, 54(1): 86-94.
[13] CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
[14] Min LIU,Yulin FANG. Effects of Heat Stress on Physiological Indexes and Ultrastructure of Grapevines [J]. Scientia Agricultura Sinica, 2020, 53(7): 1444-1458.
[15] ZHANG AiJing,LI LinQiong,WANG PengJie,GAO YuLong. Effects of Heat Stress on Cell Membrane and Membrane Protein of Escherichia coli [J]. Scientia Agricultura Sinica, 2020, 53(5): 1046-1057.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!