Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (7): 1296-1310.doi: 10.3864/j.issn.0578-1752.2025.07.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Plant Type Improvement on Root-Canopy Characteristics and Grain Yield of Spring Maize Under High Density Condition

ZHAO Yao1(), CHENG Qian1,2(), XU TianJun3, LIU Zheng1, WANG RongHuan3, ZHAO JiuRan3, LU DaLei2(), LI CongFeng1()   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081
    2 Agricultural College of Yangzhou University/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou 225009, Jiangsu
    3 Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097
  • Received:2024-08-08 Accepted:2024-12-05 Online:2025-04-08 Published:2025-04-08
  • Contact: LU DaLei, LI CongFeng

Abstract:

【Objective】Increasing planting density is a key agronomic strategy to enhance maize yield; however, excessive density may result in an imbalanced population structure, reduced utilization efficiency of limited resources (e.g., light), and suppressed yield potential. Gene editing can optimize canopy architecture through targeted improvement of maize plant type, thereby enhancing adaptability to high-density planting and boosting yield. Elucidating the effects of plant type improvement on root-shoot characteristics, grain yield, and density response in spring maize, as well as the underlying mechanisms, will provide theoretical and technical foundations for optimizing plant type and achieving high-yield dense planting in spring maize.【Method】The field experiment was conducted at Gongzhuling farm in Jilin, China. In this study, two maize hybrids, includding Jingke 968 and the improved plant types Jingke Y968, were grown with 60 000 plants/hm2 (D1), 75 000 plants/hm2 (D2) and 90 000 plants/hm2 (D3) in 2019 and 2020, respectively. The effects of two plant types of spring maize of the same genetic background on the root-canopy characteristics and yield of spring maize were studied.【Result】Under normal density conditions (D1), there were no significant differences in leaf area index (LAI), net photosynthetic rate (Pn), PAR utilization (PUE), dry matter accumulation and grain yield between the two different plant types spring maize cultivars. However, compared with Jingke 968, under D3 conditions, the improved plant type Jingke Y968 had a relatively high number of main roots (7.2%) and a relatively large weight of root dry matter (6.0%), which promoted the absorption of nutrients; furthermore, under D2 and D3 conditions, Jingke Y968 significantly improved the canopy structure of maize, so that the upper, middle and lower parts had relatively low leaf angles, higher leaf orientation and LAI, and the excellent canopy structure increased the Pn of mid-to-late ear leaves of (7.5% (D2) and 7.7% (D3)) and PUE (4.3% (D2) and 10.8% (D3)). The structural equation results showed that higher leaf direction values and LAI could positively and directly increase the accumulation of dry matter in the aboveground, thereby increasing grain yield (8.7% (D2) and 11.2% (D3)).【Conclusion】In summary, the improvement of plant type enabled Jingke Y968 to have higher main root number and larger root dry matter weight under high-density conditions, which was conducive to nutrient absorption in the underground part. Meanwhile, its leaves were more compact, Pn was significantly increased, PUE was effectively improved, and root-canopy characteristics were more reasonable, which promoted dry matter accumulation in the above-ground part. Thus, the relatively high grain yield could be obtained.

Key words: spring maize, planting density, plant type improvement, root characteristics, canopy structure

Table 1

Effects of planting density on yield and yield components of spring maize for different plant types"

年份
Year
密度
Density
株型
Plant type
百粒重
100-kernel weight (g)
穗粒数
Kernel numbers per ear
产量
Yield (kg·hm-2)
2019 D1 Y968 31.75a 531.9a 8277.3c
968 31.58ab 535.9a 8294.3c
D2 Y968 31.50ab 515.5b 10054.7b
968 30.23bc 508.8b 9521.7b
D3 Y968 29.02c 512.1b 11119.8a
968 27.31d 478.9c 9787.4b
2020 D1 Y968 33.68a 533.8a 8813.3cd
968 32.56b 534.5a 8531.0d
D2 Y968 32.52b 506.3b 10195.1b
968 28.99d 508.0b 9118.1c
D3 Y968 30.08c 500.6b 11266.1a
968 28.54d 484.9c 10356.9b
方差分析
ANOVA
年份 (Y) ** NS *
密度 (D) ** ** **
株型 (P) ** ** **
Y×D ** NS *
Y×P * NS NS
D×P ** ** **
Y×D×P NS NS NS

Table 2

Effects of planting density on leaf angle and leaf orientation value of spring maize for different plant types"

年份
Year
密度
Density
株型
Plant type
叶夹角Leaf angle (°) 叶向值 Leaf orientation value
上层
Upper layer
中层
Middle layer
下层
Lower layer
上层
Upper layer
中层
Middle layer
下层
Lower layer
2019 D1 Y968 28.87d 33.28c 38.65d 43.70a 40.17c 38.77a
968 42.44a 41.56a 44.99a 37.42b 35.76d 33.04b
D2 Y968 26.26d 33.94c 38.03de 44.73a 44.35ab 38.38a
968 36.77b 37.40b 42.33b 35.19b 39.24cd 34.93b
D3 Y968 20.44e 29.06d 36.71e 44.84a 46.88a 39.67a
968 32.22c 34.08c 40.47c 40.15ab 41.25bc 35.37b
2020 D1 Y968 27.14d 31.91d 37.81d 47.89bc 46.26c 40.56c
968 41.80a 40.89a 44.52a 38.53d 40.66e 36.59d
D2 Y968 23.70e 31.93d 36.33e 51.20b 48.10b 42.75b
968 36.82b 37.48b 42.81b 41.68d 43.56d 39.00c
D3 Y968 18.92f 27.14e 35.73e 55.06a 51.61a 45.02a
968 32.25c 34.24c 41.07c 45.79c 46.31c 40.36c
方差分析
ANOVA
年份 (Y) * * NS ** ** **
密度 (D) ** ** ** ** ** **
株型 (P) ** ** ** ** ** **
Y×D NS NS NS ** NS NS
Y×P NS NS * NS NS NS
D×P NS ** * NS NS NS
Y×D×P NS NS NS NS NS NS

Fig. 1

Effect of planting density on leaf area index of spring maize for different plant types"

Fig. 2

Effects of planting density on photosynthetic characteristic of spring maize for different plant types"

Fig. 3

Effects of planting density on PAR and PAR utilization of spring maize for different plant types"

Fig. 4

Effects of planting density on dry matter accumulation of spring maize for different plant types"

Fig. 5

Effects of planting density on fraction of dry matter in maize organs for different plant types"

Table 3

Effects of planting density on root characteristics of spring maize for different plant types"

密度
Density
株型
Plant type
主根条数Number of roots 根干物重 Root weight (g) 根冠比
Root shoot ratio
0—10 cm 10—20 cm 20—40 cm 总重 Total weight
D1 Y968 31.33a 14.72a 4.68a 0.48b 19.87a 0.10a
968 30.33a 13.89ab 3.39b 0.67a 17.95ab 0.08ab
D2 Y968 29.00b 12.81ab 1.54c 0.34bc 14.69bc 0.08ab
968 26.33c 12.16b 1.13cd 0.41b 13.70cb 0.07bc
D3 Y968 25.00d 9.01c 1.05de 0.18c 10.24cd 0.07bc
968 23.33e 8.82c 0.64e 0.20c 9.66e 0.06c
方差分析ANOVA 密度 (D) ** ** ** ** ** **
株型 (P) ** NS ** NS ** **
D×P NS NS * NS NS NS

Fig. 6

Structural equation models (SEM) explaining leaf orientation value, Pn, root characteristics, dry matter accumulation and grain yield throughout all treatments of this study in 2020 图中R2表示可以用结构方程解释变量的比例 The R2 numbers within the circles denote the proportion of variance that can be explained by the corresponding variable in the structural equation mode。实线表示2个变量之间正相关,而虚线表示2个变量之间负相关;线条粗细表示路径系数大小 The solid lines represent positive paths, while the dashed line indicates a negative correlation between the 2 variables; The width of arrows is proportional to the strength of path coefficients adjacent to the numbers"

Fig. 7

Correlation analysis among leaf angle, leaf orientation value, PAR utilization (PUE), root characteristics, dry matter accumulation and grain yield throughout all treatments of this study in 2020"

[1]
PIAO L, QI H, LI C F, ZHAO M. Optimized tillage practices and row spacing to improve grain yield and matter transport efficiency in intensive spring maize. Field Crops Research, 2016, 198: 258-268.
[2]
VAN WART J, KERSEBAUM K C, PENG S B, MILNER M, CASSMAN K G. Estimating crop yield potential at regional to national scales. Field Crops Research, 2013, 143: 34-43.
[3]
TIAN X Y, ENGEL B A, QIAN H Y, HUA E, SUN S K, WANG Y B. Will reaching the maximum achievable yield potential meet future global food demand? Journal of Cleaner Production, 2021, 294: 126285.
[4]
LIU G Z, YANG Y S, LIU W M, GUO X X, XIE R Z, MING B, XUE J, ZHANG G Q, LI R F, WANG K R, HOU P, LI S K. Optimized canopy structure improves maize grain yield and resource use efficiency. Food and Energy Security, 2022, 11(2): e375.
[5]
LIU Z, SHA Y, HUANG Y W, HAO Z H, GUO W Q, KE L H, CHEN F J, YUAN L X, MI G H. Efficient nitrogen allocation and reallocation into the ear in relation to the superior vascular system in low-nitrogen tolerant maize hybrid. Field Crops Research, 2022, 284: 108580.
[6]
YU X F, ZHANG Q, GAO J L, WANG Z G, BORJIGIN Q, HU S P, ZHANG B L, MA D L. Planting density tolerance of high-yielding maize and the mechanisms underlying yield improvement with subsoiling and increased planting density. Agronomy, 2019, 9(7): 370.
[7]
ZHANG G X, CUI C G, LV Y F, WANG X Y, WANG X F, ZHAO D H, HU F S, WEN X X, HAN J, LIAO Y C. Is it necessary to increase the maize planting density in China? European Journal of Agronomy, 2024, 159: 127235.
[8]
ATKIN O K, MILLAR A H, GARDESTRÖM P, DAY D A. Photosynthesis, carbohydrate metabolism and respiration in leaves of higher plants. Photosynthesis. Dordrecht: Springer Netherlands, 2000: 153-175.
[9]
ANTONIETTA M, FANELLO D D, ACCIARESI H A, GUIAMET J J. Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina. Field Crops Research, 2014, 155: 111-119.
[10]
ZHEN X X, SHAO H, ZHANG W N, HUO W G, BATCHELOR W D, HOU P, WANG E L, MI G H, MIAO Y X, LI H G, ZHANG F S. Testing a bell-shaped function for estimation of fully expanded leaf area in modern maize under potential production conditions. The Crop Journal, 2018, 6(5): 527-537.
[11]
VALENTINUZ O R, TOLLENAAR M. Effect of genotype, nitrogen, plant density, and row spacing on the area-per-leaf profile in maize. Agronomy Journal, 2006, 98(1): 94-99.
[12]
LI J, XIE R Z, WANG K R, MING B, GUO Y Q, ZHANG G Q, LI S K. Variations in maize dry matter, harvest index, and grain yield with plant density. Agronomy Journal, 2015, 107(3): 829-834.
[13]
TRACHSEL S, SAN VICENTE F M, SUAREZ E A, RODRIGUEZ C S, ATLIN G N. Effects of planting density and nitrogen fertilization level on grain yield and harvest index in seven modern tropical maize hybrids (Zea mays L.). The Journal of Agricultural Science, 2016, 154(4): 689-704.
[14]
CAO Y Y, ZHONG Z J, WANG H Y, SHEN R X. Leaf angle: A target of genetic improvement in cereal crops tailored for high-density planting. Plant Biotechnology Journal, 2022, 20(3): 426-436.

doi: 10.1111/pbi.13780 pmid: 35075761
[15]
ABELEDO L G, SAVIN R, SLAFER G A. Maize senescence under contrasting source-sink ratios during the grain filling period. Environmental and Experimental Botany, 2020, 180: 104263.
[16]
LI R F, ZHANG G Q, LIU G Z, WANG K R, XIE R Z, HOU P, MING B, WANG Z G, LI S K. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure. Food and Energy Security, 2021, 10(4): e312.
[17]
SHAO H, WU X B, DUAN J H, ZHU F B, CHI H H, LIU J H, SHI W J, XU Y, WEI Z B, MI G H. How does increasing planting density regulate biomass production, allocation, and remobilization of maize temporally and spatially: A global meta-analysis. Field Crops Research, 2024, 315: 109430.
[18]
李少昆, 王崇桃. 中国玉米生产技术的演变与发展. 中国农业科学, 2009, 42(6): 1941-1951. doi: 10.3864/j.issn.0578-1752.2009.06.009.
LI S K, WANG C T. Evolution and development of maize production techniques in China. Scientia Agricultura Sinica, 2009, 42(6): 1941-1951. doi: 10.3864/j.issn.0578-1752.2009.06.009. (in Chinese)
[19]
付健, 杨克军, 王玉凤, 张翼飞, 王智慧, 赵莹, 谷英楠, 杨系玲, 刘慧迪, 张发明. 种植方式和密度对寒地高产玉米品种产量及光合物质生产特性的影响. 玉米科学, 2014, 22(6): 84-90.
FU J, YANG K J, WANG Y F, ZHANG Y F, WANG Z H, ZHAO Y, GU Y N, YANG X L, LIU H D, ZHANG F M. Effects of plant arrangement patterns and planting density on grain yield and photosynthesis production characteristics of high-yielding maize variety in cold region. Journal of Maize Sciences, 2014, 22(6): 84-90. (in Chinese)
[20]
唐丽媛, 马玮, 李连禄, 赵明. 不同耐密性玉米品种对密度的光谱特征响应. 光谱学与光谱分析, 2013, 33(3): 770-775.
TANG L Y, MA W, LI L L, ZHAO M. Spectra characteristic effect of different density-resistant maize variety on planting density. Spectroscopy and Spectral Analysis, 2013, 33(3): 770-775. (in Chinese)
[21]
王志刚, 高聚林, 任有志, 赵明, 董志强, 李少昆, 杨凤山. 春玉米超高产群体冠层结构的研究. 玉米科学, 2007, 15(6): 51-56.
WANG Z G, GAO J L, REN Y Z, ZHAO M, DONG Z Q, LI S K, YANG F S. Study on canopy structure of super-high yield colony in spring maize. Journal of Maize Sciences, 2007, 15(6): 51-56. (in Chinese)
[22]
邬小春. 密度对不同株型夏玉米单株生产力与群体产量的影响[D]. 杨凌: 西北农林科技大学, 2016.
WU X C. Effects on density on individual productivity and yield of different plant types corn[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
[23]
柏延文. 种植密度对不同株型玉米生理特性及产量的影响[D]. 杨凌: 西北农林科技大学, 2020.
BAI Y W. Effects of planting density on physiological characteristics and grain yield of different plant types of maize[D]. Yangling: Northwest A&F University, 2020. (in Chinese)
[24]
赵刚, 王淑英, 樊廷录, 党翼, 王磊, 张建军, 李尚中, 程万莉. 西北旱塬区不同株型玉米增密对产量的影响. 干旱地区农业研究, 2018, 36(4): 101-108.
ZHAO G, WANG S Y, FAN T L, DANG Y, WANG L, ZHANG J J, LI S Z, CHENG W L. Effects of planting density of different plant type maize on yield in northwest dry highland of Loess Plateau. Agricultural Research in the Arid Areas, 2018, 36(4): 101-108. (in Chinese)
[25]
QIAN C R, YU Y, GONG X J, JIANG Y B, ZHAO Y, YANG Z L, HAO Y B, LI L, SONG Z W, ZHANG W J. Response of grain yield to plant density and nitrogen rate in spring maize hybrids released from 1970 to 2010 in NorthEast China. The Crop Journal, 2016, 4(6): 459-467.
[26]
徐宗贵, 孙磊, 王浩, 王淑兰, 王小利, 李军. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017, 50(13): 2463-2475. doi: 10.3864/j.issn.0578-1752.2017.13.006.
XU Z G, SUN L, WANG H, WANG S L, WANG X L, LI J. Effects of different planting densities on photosynthetic characteristics and yield of different variety types of spring maize on dryland. Scientia Agricultura Sinica, 2017, 50(13): 2463-2475. doi: 10.3864/j.issn.0578-1752.2017.13.006. (in Chinese)
[27]
NIU L, YAN Y Y, HOU P, BAI W B, ZHAO R L, WANG Y H, LI S K, DU T S, ZHAO M, SONG J Q, ZHOU W B. Influence of plastic film mulching and planting density on yield, leaf anatomy, and root characteristics of maize on the Loess Plateau. The Crop Journal, 2020, 8(4): 548-564.
[28]
王帅丽, 穆心愿, 杨豫龙, 徐佳敏, 刘天学, 温涛, 付景, 郑玉珍, 赵亚丽, 李鸿萍, 张改平, 赵霞. 供氮水平对不同氮效率玉米品种氮素吸收、干物质形成及产量的影响. 玉米科学, 2023, 31(4): 118-130.
WANG S L, MU X Y, YANG Y L, XU J M, LIU T X, WEN T, FU J, ZHENG Y Z, ZHAO Y L, LI H P, ZHANG G P, ZHAO X. Effects of nitrogen supply levels on nitrogen uptake, dry matter production and yield of maize varieties with different nitrogen efficiency. Journal of Maize Sciences, 2023, 31(4): 118-130. (in Chinese)
[29]
胡巍巍, 赵会杰, 李洪岐, 袁利刚, 赵雪娟, 郑静静. 种植密度对夏玉米冠层光合特性的影响. 河南农业科学, 2013, 42(1): 23-27.
HU W W, ZHAO H J, LI H Q, YUAN L G, ZHAO X J, ZHENG J J. Effect of planting density on canopy photosynthesis of summer maize. Journal of Henan Agricultural Sciences, 2013, 42(1): 23-27. (in Chinese)
[30]
FILYUSHIN M A, KHATEFOV E B, KOCHIEVA E Z, SHCHENNIKOVA A V. Comparative analysis of transcription factor genes liguleless1 and liguleless1-like in teosinte and modern maize accessions. Russian Journal of Genetics, 2022, 58(3): 296-306.
[31]
赵久然, 宋伟, 苏爱国, 邢锦丰, 张如养, 王元东, 王继东, 王帅帅. 分子标记辅助快速缩小玉米叶夹角改良京科968株型的方法. CN201810151660.8[P]. 2021-04-27.
ZHAO J R, SONG W, SU A G, XING J F, ZHANG R Y, WANG Y D, WANG J D, WANG S S. Method of molecular marker-assisted rapid reduction of maize leaf angle to improve the plant type of Jingke 968. CN201810151660.8[P]. 2021-04-27. (in Chinese)
[32]
FAN P P, LI Y Y, EVERS J B, MING B, WANG C X, LI S K, XIE R Z. A new empirical equation to describe the vertical leaf distribution profile of maize. The Journal of Agricultural Science, 2020, 158(8-9): 676-686.
[33]
LIU F S, SONG Q F, ZHAO J K, MAO L X, BU H Y, HU Y, ZHU X G. Canopy occupation volume as an indicator of canopy photosynthetic capacity. New Phytologist, 2021, 232(2): 941-956.

doi: 10.1111/nph.17611 pmid: 34245568
[34]
吕丽华, 王璞, 易镇邪, 魏凤桐, 刘明. 密度对夏玉米品种光合特性和产量性状的影响. 玉米科学, 2007, 15(2): 79-81.
L H, WANG P, YI Z X, WEI F T, LIU M. Effects of plant density on photosynthetic character and yield trait in summer corn. Journal of Maize Sciences, 2007, 15(2): 79-81. (in Chinese)
[35]
董树亭, 胡昌浩, 岳寿松, 王群瑛, 高荣岐, 潘子龙. 夏玉米群体光合速率特性及其与冠层结构、生态条件的关系. 植物生态学与地植物学学报, 1992, (4): 372-378.
DONG S T, HU C H, YUE S S, WANG Q Y, GAO R Q, PAN Z L. Photosynthetic rate characteristics of summer maize population and their relationship with canopy structure and ecological conditions. Chinese Journal of Plant Ecology, 1992, (4): 372-378. (in Chinese)
[36]
徐彤, 吕艳杰, 邵玺文, 耿艳秋, 王永军. 不同时期化控对密植玉米冠层结构及籽粒灌浆特性的影响. 作物学报, 2023, 49(2): 472-484.

doi: 10.3724/SP.J.1006.2023.23028
XU T, Y J, SHAO X W, GENG Y Q, WANG Y J. Effect of different times of spraying chemical regulator on the canopy structure and grain filling characteristics of high planting densities. Acta Agronomica Sinica, 2023, 49(2): 472-484. (in Chinese)

doi: 10.3724/SP.J.1006.2023.23028
[37]
申丽霞, 王璞, 张红芳, 易镇邪. 施氮对夏玉米不同部位籽粒灌浆的影响. 作物学报, 2005, 31(4): 532-534.
SHEN L X, WANG P, ZHANG H F, YI Z X. Effect of nitrogen supply on grain filling at different ear position in summer maize. Acta Agronomica Sinica, 2005, 31(4): 532-534. (in Chinese)
[38]
齐华, 梁熠, 赵明, 王敬亚, 吴亚男, 刘明. 栽培方式对玉米群体结构的调控效应. 华北农学报, 2010, 25(3): 134-139.

doi: 10.7668/hbnxb.2010.03.029
QI H, LIANG Y, ZHAO M, WANG J Y, WU Y N, LIU M. The effects of cultivation ways on population structure of maize. Acta Agriculturae Boreali-Sinica, 2010, 25(3): 134-139. (in Chinese)

doi: 10.7668/hbnxb.2010.03.029
[39]
刘月, 明博, 李姚姚, 王克如, 侯鹏, 薛军, 李少昆, 谢瑞芝. 基于根冠协调发展的东北春玉米高产种植密度分析. 作物学报, 2023, 49(3): 795-807.

doi: 10.3724/SP.J.1006.2023.23026
LIU Y, MING B, LI Y Y, WANG K R, HOU P, XUE J, LI S K, XIE R Z. Analysis on high yield planting density of spring maize in NorthEast China from root and shoot coordinated development. Acta Agronomica Sinica, 2023, 49(3): 795-807. (in Chinese)

doi: 10.3724/SP.J.1006.2023.23026
[40]
李栋浩, 姜雪连, 佟玲. 种植密度对制种玉米根冠生长及耗水量的影响. 排灌机械工程学报, 2014, 32(12): 1091-1097.
LI D H, JIANG X L, TONG L. Effect of planting density on root- shoot growth and water utilization efficiency of seed corn. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(12): 1091-1097. (in Chinese)
[41]
杨胜飞, 肖金宝, 王佩, 白延倩, 杨任涛, 刘铁宁, 韩清芳, 贾志宽. 减源对密植夏玉米光合性能及根系特性调控效应研究. 山西农业大学学报(自然科学版), 2023, 43(6): 62-79.
YANG S F, XIAO J B, WANG P, BAI Y Q, YANG R T, LIU T N, HAN Q F, JIA Z K. Regulation effects of leaf source reduction on the photosynthetic performance and root characteristics of densely planted summer maize. Journal of Shanxi Agricultural University (Natural Science Edition), 2023, 43(6): 62-79. (in Chinese)
[42]
朴琳. 综合栽培措施对春玉米密植群体冠-根调节机制研究[D]. 武汉: 华中农业大学, 2016.
PIAO L. Effects of integrated cultivation measures on shoot-root regulatory mechanisms in intensive spring maize[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[43]
张亮. 黄土高原旱作春玉米根-冠协同关系及其调控[D]. 杨凌: 西北农林科技大学, 2020.
ZHANG L. The root-shoot coordination and regulation of rain-fed spring maize on the Loess Plateau[D]. Yangling: Northwest A&F University, 2020. (in Chinese)
[44]
NING P, LI S, YU P, ZHANG Y, LI C J. Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity. Field Crops Research, 2013, 144: 19-27.
[45]
CHEN F J, LIU J C, LIU Z G, CHEN Z, REN W, GONG X P, WANG L F, CAI H G, PAN Q C, YUAN L X, ZHANG F S, MI G H. Chapter Four Breeding for high-yield and nitrogen use efficiency in maize: Lessons from comparison between Chinese and US cultivars. Advances in Agronomy, 2021, 166: 251-275.
[46]
LIU G Z, HOU P, XIE R Z, MING B, WANG K R, XU W J, LIU W M, YANG Y S, LI S K. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg·ha-1. Field Crops Research, 2017, 213: 221-230.
[47]
赵江, 张怡明, 牛兴奎, 刘鑫, 李少昆, 张凤路. 不同密度条件下春玉米根系性状在不同土层中的分布研究. 华北农学报, 2011, 26(S1): 99-103.

doi: 10.7668/hbnxb.2011.S1.021
ZHAO J, ZHANG Y M, NIU X K, LIU X, LI S K, ZHANG F L. Studies on the distribution of maize root characteristics at different soil layers, densities. Acta Agriculturae Boreali-Sinica, 2011, 26(S1): 99-103. (in Chinese)
[48]
WINTERHALTER L, MISTELE B, SCHMIDHALTER U. Assessing the vertical footprint of reflectance measurements to characterize nitrogen uptake and biomass distribution in maize canopies. Field Crops Research, 2012, 129: 14-20.
[49]
REN H, JIANG Y, ZHAO M, QI H, LI C F. Nitrogen supply regulates vascular bundle structure and matter transport characteristics of spring maize under high plant density. Frontiers in Plant Science, 2021, 11: 602739.
[50]
FAN P P, MING B, EVERS J B, LI Y Y, LI S K, XIE R Z, ANTEN N P R. Nitrogen availability determines the vertical patterns of accumulation, partitioning, and reallocation of dry matter and nitrogen in maize. Field Crops Research, 2023, 297: 108927.
[51]
YU T, XIN Y N, LIU P. Exogenous abscisic acid (ABA) improves the filling process of maize grains at different ear positions by promoting starch accumulation and regulating hormone levels under high planting density. BMC Plant Biology, 2024, 24(1): 80.

doi: 10.1186/s12870-024-04755-9 pmid: 38291371
[1] CAO WenZhuo, YU ZhenWen, ZHANG YongLi, ZHANG Zhen, SHI Yu, WANG YongJun. The Difference of Grain Starch Accumulation Dynamics and Yield Formation of Spring Maize Under Different Nitrogen Application Rates in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(22): 4431-4443.
[2] TIAN LongBing, SHEN ZhaoYin, ZHAO XiaoTian, ZHANG Fang, HOU WenFeng, GAO Qiang, WANG Yin. Interactive Effects of Planting Density and Nitrogen Application Rate on Plant Grain Yield and Water Use Efficiency of Two Maize Cultivars [J]. Scientia Agricultura Sinica, 2024, 57(21): 4221-4237.
[3] LEI XinHui, WU YiXin, WANG JiaLe, TAO JinCai, WAN ChenXi, WANG Meng, GAO XiaoLi, FENG BaiLi, GAO JinFeng. Effects of Planting Density and Fertilization Level on Photosynthesis, Yield and Lodging Resistance of Common Buckwheat [J]. Scientia Agricultura Sinica, 2024, 57(2): 264-277.
[4] LIU Han, DING Di, WANG JiangTao, ZHENG Bin, WANG XiaoXiao, ZHU ChenXu, LIU Juan, LIU Ling, FU GuoZhan, JIAO NianYuan. Coordinated Effects of Maize Ear Type and Planting Density on Interspecific Competition in Maize-Peanut Intercropping System [J]. Scientia Agricultura Sinica, 2024, 57(19): 3758-3769.
[5] LU KeDan, LU Yuan, WANG Rui, DANG TingHui. Effects of Different Nitrogen Application Patterns on Yield and Nitrous Oxide Emission of Spring Maize in Dryland Farming of the Loess Plateau [J]. Scientia Agricultura Sinica, 2024, 57(18): 3642-3653.
[6] YANG WangHua, LIU ZhiJuan, GONG JingJin, FU ZhenZhen, ZHANG TaiLin, ZHANG XiaoLong, SHEN YanJun, YANG XiaoGuang. Drought Risk for Spring Maize in the Future and Response to Climate Change in the Northeast China [J]. Scientia Agricultura Sinica, 2024, 57(12): 2336-2349.
[7] QIN Feng, WANG XiaoFei, WU Zhen, HU YiBo, WANG XiaoQin, ZHANG JiaWei, CAI Tie. Effects of Planting Density and Row Spacing Configuration on Sugar Accumulation and Lodging Performance of Wheat Stem Under Rainfall Harvesting Planting Mode [J]. Scientia Agricultura Sinica, 2024, 57(1): 65-79.
[8] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[9] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[10] WANG YongLiang, XU ZiHang, LI Shen, LIANG ZheMing, XUE XiaoRong, BAI Ju, YANG ZhiPing. Straw Returning and Post-Silking Irrigating Improve the Grain Yield and Utilization of Water and Nitrogen of Spring Maize [J]. Scientia Agricultura Sinica, 2023, 56(18): 3599-3614.
[11] JIAO ZhiHui, CHEN GuiPing, FAN Hong, ZHANG JinDan, YIN Wen, LI HanTing, WANG QiMing, HU FaLong, CHAI Qiang. Water Use Characteristics of Increased Plant Density and Reduced Nitrogen Application Maize in Oasis Irrigated Area [J]. Scientia Agricultura Sinica, 2023, 56(16): 3088-3099.
[12] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[13] XIONG WeiYi, XU KaiWei, LIU MingPeng, XIAO Hua, PEI LiZhen, PENG DanDan, CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[14] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[15] GENG WenJie, LI Bin, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!