Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (7): 1284-1295.doi: 10.3864/j.issn.0578-1752.2025.07.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of Near Infrared Spectrometry Model for Flavonoids Content of Peanut with Red and Black Testa

LI XinYu(), HOU MingYu(), CUI ShunLi, LIU YingRu, LI XiuKun, LIU LiFeng()   

  1. College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China for Crop Improvement and Regulation, Baoding 071000, Hebei
  • Received:2024-08-07 Accepted:2024-10-21 Online:2025-04-08 Published:2025-04-08
  • Contact: HOU MingYu, LIU LiFeng

Abstract:

【Objective】Flavonoid content is one of the critical quality indicators for peanut seed. Near-infrared spectroscopy (NIR) is an effective method for rapid detection of flavonoid content in peanut. However, the differences of testa color may affect the accuracy of the detection results. Therefore, the construction of NIR prediction models for peanuts with red and black testa can provide a guarantee for efficient and rapid detection of flavonoid content in special peanut kernels. 【Method】In this study, 232 peanut germplasms with different testa colors were selected as materials, including 108 peanut with red testa and 124 peanut with black testa. The total flavonoid content was determined by aluminum chloride chromogenic method, with rutin serving as the standard (RT: rutin). Using the Swedish Broadcom DA7250 Diode Array Analyzer for spectral acquisition, within a scanning spectral range of 950-1 650 nm. Employing the Unscrambler X10.4 modeling software, various calibration models were established through both single and composite processing, utilizing diverse derivative and scattering spectral preprocessing methods, based on full-band partial least squares (PLS) modeling. By comparing the correlation coefficients and errors among different models, the optimal processing method was selected to establish a prediction model for flavonoid content in both red and black peanut kernels. For model external validation, materials were derived from a recombinant inbred line population derived from the parents of Silihong and Jinonghei 3, with 30 lines with red testa and 30 lines with black testa each undergoing external cross-validation.【Result】The results showed that flavonoid content of peanut with red testa was between 60.33-122.49 mg RT/100 g, with an average of 94.34 mg RT/100 g. The flavonoid content of peanut with black testa was between 64.98-121.55 mg RT/100 g, with an average of 95.59 mg RT/100 g. The best spectral pretreatment method of the peanut with red testa prediction model was “Derivative Savitzky-Golay+ SNV+Detrend”, yielding a correction correlation coefficient (Rc) of 0.9022, a root means square error of cross validation (RMSECV) of 1.9101, a prediction correlation coefficient (Rp) of 0.9021, and a root mean square error of prediction (RMSEP) of 1.9606 mg RT/100 g. The external validation correlation coefficient (R2) was 0.923, with a prediction model deviation range of -4.86-8.47 mg/100 g. The best spectral pre-treatment method for the peanut with black testa prediction model was “Derivative Savitzky-Golay+SNV+Deresolve”,resulting in an Rc of 0.9521, an RMSECV of 1.6978, the correlation coefficient (Rp) of the peanut with black testa prediction model was 0.915, and RMSEP of 2.292 mg RT/100 g, the correlation coefficient R2 of external verification was 0.907, with a prediction model deviation range of -4.56-2.87 mg/100 g. Cross-validation was carried out with non-corresponding color models, and the correlation coefficient was between 0.0015-0.0975. 【Conclusion】The testa color strongly affected the accuracy of detection, and the near-infrared prediction models constructed in this study are suitable for the detection of flavonoid content in peanuts with red and black testa,which provide an important selection method for breeding characteristic peanuts with high flavonoids.

Key words: peanut with red testa, peanut with black testa, flavonoid content, testa color, near infrared model

Table 1

Chemical determination results of flavonoid content in peanut seeds"

种皮颜色
Testa color
平均值
Mean (mg RT/100 g)
标准差
SD
最大值
Max (mg RT/100 g)
最小值
Min (mg RT/100 g)
变异系数
CV (%)
红色Red 94.34 11.13 122.49 60.33 11.80
黑色Black 95.59 9.57 121.55 64.98 10.01

Fig. 1

The NIR spectra of the sample set a: Near infrared spectrum of peanut with red testa; b: Near infrared spectrum of peanut with black testa"

Fig. 2

NIR model for peanut flavonoid content a: Peanut with black testa; b: Peanut with red testa"

Table 2

Different spectral pretreatments of the flavonoid content of peanut"

种皮颜色
Testa color
预处理方法
Pre-processing method
校正相关系数
Rc
交叉验证均方根误差
RMSECV
预测相关系数
Rp
预测均方根误差
RMSEP
黑色
Black
原始数据Original data 0.488 5.960 0.456 6.309
Derivative Savitzky-Golay 0.759 4.056 0.636 4.969
Normalize 0.661 4.899 0.550 5.568
Baseline 0.629 5.049 0.538 5.608
SNV 0.705 4.552 0.630 5.065
Spectroscopic 0.572 5.082 0.528 5.303
Detrend 0.693 4.626 0.679 4.788
Deresolve 0.669 4.581 0.602 5.071
Derivative Savitzky-Golay+Baseline 0.909 2.252 0.853 2.868
Derivative Savitzky-Golay+Baseline+Detrend 0.910 2.406 0.864 3.015
Derivative Savitzky-Golay+SNV 0.904 2.457 0.846 3.337
Derivative Savitzky-Golay+Deresolve 0.901 2.655 0.851 3.301
Derivative Savitzky-Golay+SNV+Deresolve 0.952 1.698 0.915 2.292
红色
Red
原始数据Original data 0.589 4.216 0.488 4.702
Derivative Savitzky-Golay 0.751 3.300 0.631 4.027
Baseline 0.594 4.797 0.510 5.297
SNV 0.607 5.105 0.530 5.679
Spectroscopic 0.581 5.052 0.510 5.559
Detrend 0.619 4.884 0.532 5.484
Deresolve 0.575 5.135 0.456 6.079
Derivative Savitzky-Golay+SNV 0.873 2.235 0.808 2.830
Derivative Savitzky-Golay+Deresolve 0.900 2.009 0.834 2.635
Derivative Savitzky-Golay+Detrend 0.890 2.124 0.828 2.614
Derivative Savitzky-Golay+Deresolve+SNV 0.904 1.888 0.851 2.372
Derivative Savitzky-Golay+Detrend+Baseline 0.909 1.855 0.841 2.841
Derivative Savitzky-Golay+SNV+Detrend 0.902 1.910 0.902 1.961

Table 3

Comparison of chemical measurement values and NIR model prediction values for peanut with red testa"

序号
No.
化学
测定值
Chemical measured value
预测值
Predicted value
测定值与预测值差异
Difference between measured and predicted values
红色花生籽仁
黄酮含量近红外
检测模型
NIR detection model of peanut with red testa flavonoids
黑色花生籽仁
黄酮含量近红外
检测模型
NIR detection model of peanut with black testa flavonoids
粉色花生籽仁
黄酮含量近红外
检测模型
NIR detection model of peanut with pink testa flavonoids
红色花生籽仁
黄酮含量近红外
检测模型
NIR detection model of peanut with red testa flavonoids
黑色花生籽仁
黄酮含量近红外
检测模型
NIR detection model of peanut with black testa flavonoids
粉色花生籽仁
黄酮含量近红外
检测模型
NIR detection model of peanut with pink testa flavonoids
1 100.74 96.72 87.41 71.49 4.02 13.33 29.25
2 84.22 86.78 87.87 72.10 -2.57 -3.65 12.12
3 100.08 97.89 106.09 72.90 2.18 -6.01 27.18
4 94.53 94.88 99.54 73.76 -0.35 -5.01 20.77
5 95.74 95.04 85.89 66.43 0.70 9.85 29.31
6 100.27 98.43 101.71 67.43 1.83 -1.44 32.84
7 113.03 110.78 120.98 83.73 2.25 -7.95 29.30
8 109.22 100.75 97.99 67.83 8.47 11.23 41.39
9 85.60 90.46 94.87 74.01 -4.86 -9.27 11.59
10 116.74 113.57 101.54 67.86 3.18 15.20 48.89
11 91.98 92.62 94.07 74.48 -0.64 -2.09 17.50
12 88.67 89.12 94.61 81.95 -0.45 -5.94 6.72
13 86.53 88.12 85.95 59.10 -1.59 0.58 27.43
14 93.24 94.46 102.72 81.53 -1.21 -9.47 11.71
15 104.03 100.76 116.03 84.30 3.27 -12.00 19.73
16 120.84 118.80 101.60 76.40 2.04 19.24 44.44
17 101.96 99.77 103.84 83.99 2.19 -1.88 17.97
18 96.24 90.60 93.52 62.27 5.65 2.72 33.97
19 96.93 95.27 90.01 70.93 1.67 6.93 26.01
20 106.60 103.08 93.51 73.04 3.52 13.09 33.56
21 94.17 96.36 87.50 67.48 -2.20 6.67 26.69
22 91.25 94.58 80.39 64.07 -3.34 10.86 27.17
23 100.50 98.38 114.62 78.86 2.13 -14.11 21.64
24 91.55 95.78 129.40 81.78 -4.22 -37.85 9.77
25 124.08 120.05 96.84 70.82 4.02 27.24 53.26
26 102.53 100.78 103.08 66.34 1.75 -0.55 36.19
27 95.50 92.89 95.32 65.63 2.61 0.18 29.87
28 102.65 98.00 97.11 66.28 4.65 5.53 36.37
29 113.36 114.68 93.47 66.82 -1.32 19.89 46.54
30 86.17 89.95 84.89 62.40 -3.78 1.28 23.77

Table 4

Comparison of chemical measurement values and NIR model prediction values for peanut with black testa"

序号
No.
化学
测定值
Chemical measured value
预测值
Predicted value
测定值与预测值差异
Difference between measured and predicted values
红色花生籽仁黄酮含量近红外检测模型NIR detection model of peanut with red testa flavonoids 黑色花生籽仁黄酮含量近红外检测模型NIR detection model of peanut with black testa flavonoids 粉色花生籽仁黄酮含量近红外检测模型NIR detection model of peanut with pink testa flavonoids 红色花生籽仁黄酮含量近红外检测模型NIR detection model of peanut with red testa flavonoids 黑色花生籽仁黄酮含量近红外检测模型NIR detection model of peanut with black testa flavonoids 粉色花生籽仁黄酮含量近红外检测模型NIR detection model of peanut with pink testa flavonoids
1 99.46 90.86 100.96 69.73 8.60 -1.50 29.73
2 95.36 89.75 98.49 70.84 5.61 -3.12 24.52
3 99.03 94.34 99.59 66.64 4.69 -0.56 32.39
4 77.50 94.26 79.70 62.99 -16.76 -2.19 14.51
5 92.84 90.49 96.11 65.57 2.35 -3.27 27.27
6 89.24 90.45 87.09 70.72 -1.21 2.15 18.52
7 86.31 91.69 87.29 76.02 86.31 -0.97 10.30
8 100.93 93.69 101.97 67.91 7.24 -1.04 33.02
9 85.55 85.86 86.79 61.57 -0.31 -1.23 23.99
10 100.46 94.98 101.10 74.34 5.48 -0.64 26.12
11 93.98 89.00 97.79 69.67 4.98 -3.82 24.31
12 82.65 93.53 83.31 69.66 -10.89 -0.67 12.99
13 91.22 116.75 93.21 85.81 -25.53 -1.99 5.41
14 94.81 89.57 96.50 68.09 5.24 -1.68 26.73
15 95.96 104.26 93.76 72.79 -8.30 2.20 23.16
16 102.03 90.35 100.34 68.13 11.68 1.69 33.90
17 102.08 94.85 99.21 72.56 7.23 2.87 29.52
18 84.74 91.18 89.30 63.85 -6.44 -4.56 20.89
19 90.81 94.40 89.79 65.71 -3.58 1.02 25.11
20 90.03 104.64 97.99 71.88 -14.61 -7.96 18.15
21 88.39 94.55 88.55 71.45 -6.16 -0.16 16.94
22 93.26 93.58 94.09 66.59 -0.32 -0.83 26.67
23 82.84 89.47 81.51 77.70 -6.63 1.33 5.14
24 81.46 98.13 81.06 68.72 -16.67 0.39 12.74
25 87.89 95.14 89.06 66.02 -7.25 -1.18 21.87
26 95.74 89.68 93.14 65.51 6.07 2.60 30.23
27 97.10 105.47 98.04 72.53 -8.37 -0.94 24.58
28 90.06 101.49 93.24 82.16 -11.42 -3.18 7.90
29 92.31 102.18 93.13 76.84 -9.87 -0.81 15.47
30 84.98 95.88 87.78 70.50 -10.90 -2.80 14.48

Fig. 3

External validation of the NIR detection model for flavoid content in peanut seeds a: Peanut with red testa; b: Peanut with black testa. 1: NIR detection model of peanut with red testa flavonoids, 2: NIR detection of peanut with black testa flavonoids, 3: NIR detection model of peanut with pink testa flavonoids"

[1]
赵星, 张嘉楠, 张一鸣, 金欣欣, 苏俏, 宋亚辉, 李玉荣, 王瑾. 花生籽仁蔗糖含量近红外光谱快速测定方法研究. 中国油料作物学报, 2024, 1(8): 1007-9084.
ZHAO X, ZHANG J N, ZHANG Y M, JIN X X, SU Q, SONG Y H, LI Y R, WANG J. Rapid determination of sucrose content in peanut kernel by near infrared spectroscopy. Chinese Journal of Oil Crop Sciences, 2024, 1(8): 1007-9084. (in Chinese)
[2]
李振, 侯名语, 崔顺立, 陈淼, 刘盈茹, 李秀坤, 陈焕英, 刘立峰. 花生籽仁黄酮含量近红外分析检测方法. 光谱学与光谱分析, 2024, 44(4): 1112-1116.
LI Z, HOU M Y, CUI S L, CHEN M, LIU Y R, LI X K, CHEN H Y, LIU L F. Rapid detection method of flavonoid content in peanut seed based on near infrared technology. Spectroscopy and Spectral Analysis, 2024, 44(4): 1112-1116. (in Chinese)
[3]
LIU W X, FENG Y, YU S H, FAN Z Q, LI X L, LI J Y, YIN H F. The flavonoid biosynthesis network in plants. International Journal of Molecular Sciences, 2021, 22(23): 12824.
[4]
林春草, 陈大伟, 戴均贵. 黄酮类化合物合成生物学研究进展. 药学学报, 2022, 57(5): 1322-1335.
LIN C C, CHEN D W, DAI J G. Advances of synthetic biology of flavonoids. Acta Pharmaceutica Sinica, 2022, 57(5): 1322-1335. (in Chinese)
[5]
OUYANG L, LIU Y, YAO R N, HE D L, YAN L Y, CHEN Y N, HUAI D X, WANG Z H, YU B L, KANG Y P, JIANG H F, LEI Y, LIAO B S, WANG X. Genome-wide analysis of UDP- glycosyltransferase gene family and identification of a flavonoid 7-O-UGT (AhUGT75A) enhancing abiotic stress in peanut (Arachis hypogaea L.). BMC Plant Biology, 2023, 23(1): 626.
[6]
HARUNA S A, LI H H, WEI W Y, GENG W H, LUO X F, ZAREEF M, YAO-SAY SOLOMON ADADE S, IVANE N M A, ISA A, CHEN Q S. Simultaneous quantification of total flavonoids and phenolic content in raw peanut seeds via NIR spectroscopy coupled with integrated algorithms. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 285: 121854.
[7]
翟晨, 高曼, 栾鑫鑫, 钱承敬, 张巍巍, 史晓梅, 罗云敬, 吕朝政. 稻米加工副产品营养指标的近红外预测模型的建立. 饲料研究, 2024, 47(4): 126-131.
ZHAI C, GAO M, LUAN X X, QIAN C J, ZHANG W W, SHI X M, LUO Y J, C Z. Establishment of near infrared prediction model for nutritional indexes of rice processing by-products. Feed Research, 2024, 47(4): 126-131. (in Chinese)
[8]
LITTARRU E, MODESTI M, ALFIERI G, PETTINELLI S, FLORIDIA G, BELLINCONTRO A, SANMARTIN C, BRIZZOLARA S. Optimising the winemaking process: NIR spectroscopy and e-nose analysis for the online monitoring of fermentation. Journal of the Science of Food and Agriculture, 2024, 105(3): 1465-1475.
[9]
褚小立, 陈瀑, 李敬岩, 刘丹, 许育鹏. 近红外光谱分析技术的最新进展与展望. 分析测试学报, 2020, 39(10): 1181-1188.
CHU X L, CHEN P, LI J Y, LIU D, XU Y P. Progresses and perspectives of near infrared spectroscopy analytical technology. Journal of Instrumental Analysis, 2020, 39(10): 1181-1188. (in Chinese)
[10]
邵晨阳, 赵一墨, 鹿莉莉, 齐星宇, 王子栋, 陈澍奇, 田野, 马跃龙. 近红外光谱快速分析技术的应用研究进展. 化学通报, 2024, 87(8): 898-912.
SHAO C Y, ZHAO Y M, LU L L, QI X Y, WANG Z D, CHEN S Q, TIAN Y, MA Y L. Progress in the application of near-infrared spectroscopy for rapid analysis. Chemistry, 2024, 87(8): 898-912. (in Chinese)
[11]
魏子朝, 卢苗, 雷文晔, 王浩宇, 魏子渊, 高攀, 王东, 陈煦, 胡瑾. 一种融合叶绿素荧光技术与可见-近红外光谱的番茄幼苗热胁迫无损检测方法. 光谱学与光谱分析, 2024, 44(6): 1613-1619.
WEI Z C, LU M, LEI W Y, WANG H Y, WEI Z Y, GAO P, WANG D, CHEN X, HU J. Visible-NIR spectroscopy for detecting the severity of heat stress on tomato seedlings. Spectroscopy and Spectral Analysis, 2024, 44(6): 1613-1619. (in Chinese)
[12]
张北举, 陈松树, 李魁印, 李鲁华, 徐如宏, 安畅, 熊富敏, 张燕, 董俐利, 任明见. 基于近红外光谱的高粱籽粒直链淀粉、支链淀粉含量检测模型的构建与应用. 中国农业科学, 2022, 55(1): 26-35. doi: 10.3864/j.issn.0578-1752.2022.01.003.
ZHANG B J, CHEN S S, LI K Y, LI L H, XU R H, AN C, XIONG F M, ZHANG Y, DONG L L, REN M J. Construction and application of detection model for amylose and amylopectin content in Sorghum grains based on near infrared spectroscopy. Scientia Agricultura Sinica, 2022, 55(1): 26-35. doi: 10.3864/j.issn.0578-1752.2022.01.003. (in Chinese)
[13]
吕都, 唐健波, 姜太玲, 陈中爱, 潘牧. 基于近红外光谱技术快速检测稻谷水分含量. 食品与机械, 2022, 38(2): 51-56, 63.
D, TANG J B, JIANG T L, CHEN Z A, PAN M. Research on rapid prediction model of rice moisture content based on near infrared spectroscopy. Food & Machinery, 2022, 38(2): 51-56, 63. (in Chinese)
[14]
刘孝全, 郝经文, 陈乃东, 张莉, 秦朝凤. 基于近红外光谱法的定量分析模型快速预测蕨菜中总黄酮的含量. 理化检验-化学分册, 2023, 59(11): 1271-1275.
LIU X Q, HAO J W, CHEN N D, ZHANG L, QIN C F. Rapid prediction of total flavonoids in Pteridium aquilinum by quantitative analysis model based on near infrared spectroscopy. Physical Testing and Chemical Analysis (Part B (Chemical Analysis)), 2023, 59(11): 1271-1275. (in Chinese)
[15]
冯昱龙, 彭娟, 贺小刚, 于佳萍, 韩想, 楚刚辉. 基于近红外光谱快速测定雪菊的总黄酮含量. 化学试剂, 2022, 44(2): 279-284.
FENG Y L, PENG J, HE X G, YU J P, HAN X, CHU G H. Rapid determination of total flavonoids in snow Chrysanthemum based on near infrared spectroscopy. Chemical Reagents, 2022, 44(2): 279-284. (in Chinese)
[16]
HAO J W, CHEN N D, FAN X X, WANG W T, JIANG H H, ZHANG Z Y, GONG R Z, RUAN X L, CHEN X. Rapid determination of total flavonoid content, xanthine oxidase inhibitory activities, and antioxidant activity in Prunus mume by near-infrared spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2024, 246: 116164.
[17]
纪红昌, 胡畅丽, 邱晓臣, 吴兰荣, 李晶晶, 李鑫, 李晓婷, 刘雨函, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁品质性状高通量表型分析模型的构建. 作物学报, 2023, 49(3): 869-876.

doi: 10.3724/SP.J.1006.2023.24030
JI H C, HU C L, QIU X C, WU L R, LI J J, LI X, LI X T, LIU Y H, TANG Y Y, ZHANG X J, WANG J S, QIAO L X. High-throughput phenotyping models for quality traits in peanut kernels. Acta Agronomica Sinica, 2023, 49(3): 869-876. (in Chinese)
[18]
王志伟, 王秀贞, 马浪, 刘婷, 唐月异, 吴琪, 孙全喜, 王传堂. 花生籽仁食用感官品质近红外分析模型构建. 花生学报, 2022, 51(3): 77-82.
WANG Z W, WANG X Z, MA L, LIU T, TANG Y Y, WU Q, SUN Q X, WANG C T. Construction of near infrared spectroscopy models on prediction of eating quality of peanut kernel. Journal of Peanut Science, 2022, 51(3): 77-82. (in Chinese)
[19]
李建国, 薛晓梦, 张照华, 王志慧, 晏立英, 陈玉宁, 万丽云, 康彦平, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生主要脂肪酸含量近红外预测模型的建立及其应用. 作物学报, 2019, 45(12): 1891-1898.

doi: 10.3724/SP.J.1006.2019.94016
LI J G, XUE X M, ZHANG Z H, WANG Z H, YAN L Y, CHEN Y N, WAN L Y, KANG Y P, HUAI D X, JIANG H F, LEI Y, LIAO B S. Establishment and applicant of near-infrared reflectance spectroscopy models for predicting main fatty acid contents of single seed in peanut. Acta Agronomica Sinica, 2019, 45(12): 1891-1898. (in Chinese)
[20]
秦利, 刘华, 杜培, 董文召, 黄冰艳, 韩锁义, 张忠信, 齐飞艳, 张新友. 基于近红外光谱法的花生籽仁中蔗糖含量的测定. 中国油料作物学报, 2016, 38(5): 666-671.

doi: 10.7505/j.issn.1007-9084.2016.05.018
QIN L, LIU H, DU P, DONG W Z, HUANG B Y, HAN S Y, ZHANG Z X, QI F Y, ZHANG X Y. Determination of sucrose content in peanut seed kernel based on near infrared spectroscopy. Chinese Journal of Oil Crop Sciences, 2016, 38(5): 666-671. (in Chinese)

doi: 10.7505/j.issn.1007-9084.2016.05.018
[21]
陈淼, 侯名语, 崔顺立, 李振, 穆国俊, 刘盈茹, 李秀坤, 刘立峰. 不同种皮颜色花生糖含量近红外模型的构建. 光谱学与光谱分析, 2022, 42(9): 2896-2902.
CHEN M, HOU M Y, CUI S L, LI Z, MU G J, LIU Y R, LI X K, LIU L F. Construction of near-infrared model of peanut sugar content in different seed coat colors. Spectroscopy and Spectral Analysis, 2022, 42(9): 2896-2902. (in Chinese)
[22]
姚鑫淼, 卢淑雯, 解铁民, 孟庆虹, 周野, 张瑞英, 苏萍, 马永华, 李宛. 玉米子粒颜色对近红外模型预测其淀粉含量的影响. 玉米科学, 2013, 21(4): 153-156.
YAO X M, LU S W, XIE T M, MENG Q H, ZHOU Y, ZHANG R Y, SU P, MA Y H, LI W. Effect of kernel color on corn starch content by near-infrared transmittance spectroscopy. Journal of Maize Sciences, 2013, 21(4): 153-156. (in Chinese)
[23]
吴紫萱, 薛其勤, 杨会, 刘风珍. 花生种皮颜色研究进展. 山东农业科学, 2022, 54(1): 152-156.
WU Z X, XUE Q Q, YANG H, LIU F Z. Research progress on testa color of peanut. Shandong Agricultural Sciences, 2022, 54(1): 152-156. (in Chinese)
[24]
陈庭木, 方兆伟, 王宝祥, 刘艳, 邢运高, 徐大勇. 高黄酮水稻品种资源的鉴定与筛选. 中国稻米, 2020, 26(2): 41-43.

doi: 10.3969/j.issn.1006-8082.2020.02.010
CHEN T M, FANG Z W, WANG B X, LIU Y, XING Y G, XU D Y. Identification and screening of high flavonoid rice variety resources. China Rice, 2020, 26(2): 41-43. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2020.02.010
[25]
张智猛, 万书波, 戴良香, 陈静, 苗华荣. 不同类型花生品种籽仁部位抗氧化能力及功能成分研究. 食品与生物技术学报, 2009, 28(6): 741-747.
ZHANG Z M, WAN S B, DAI L X, CHEN J, MIAO H R. Study on the anti-oxidation function and functional compositions in parts of kernel of different peanut varieties. Journal of Food Science and Biotechnology, 2009, 28(6): 741-747. (in Chinese)
[26]
侯名语, 崔顺立, 穆国俊, 杨鑫雷, 刘立峰. 花生种子黄酮及多酚含量的生态差异分析. 华北农学报, 2017, 32(3): 155-160.

doi: 10.7668/hbnxb.2017.03.024
HOU M Y, CUI S L, MU G J, YANG X L, LIU L F. Ecologic difference of flavonoid and polyphenol content in peanut seeds. Acta Agriculturae Boreali-Sinica, 2017, 32(3): 155-160. (in Chinese)

doi: 10.7668/hbnxb.2017.03.024
[27]
侯名语, 胡晓辉, 陈静, 刘立峰. 花生籽仁黄酮含量遗传模式分析. 花生学报, 2016, 45(4): 25-29.
HOU M Y, HU X H, CHEN J, LIU L F. Inheritance analysis of flavonoid content in peanut seed. Journal of Peanut Science, 2016, 45(4): 25-29. (in Chinese)
[28]
WANG M L, CHEN C Y, TONNIS B, BARKLEY N A, PINNOW D L, PITTMAN R N, DAVIS J, HOLBROOK C C, STALKER H T, PEDERSON G A. Oil, fatty acid, flavonoid, and resveratrol content variability and FAD2A functional SNP genotypes in the U.S. peanut mini-core collection. Journal of Agricultural and Food Chemistry, 2013, 61(11): 2875-2882.

doi: 10.1021/jf305208e pmid: 23379758
[29]
HOU M Y, MU G J, ZHANG Y J, CUI S L, YANG X L, LIU L F. Evaluation of total flavonoid content and analysis of related EST-SSR in Chinese peanut germplasm. Crop Breeding and Applied Biotechnology, 2017, 17(3): 221-227.
[30]
纪红昌, 邱晓臣, 柳文浩, 胡畅丽, 孔铭, 胡晓辉, 黄建斌, 杨雪, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁含油量近红外模型的构建及其应用. 中国油料作物学报, 2022, 44(5): 1089-1097.

doi: 10.19802/j.issn.1007-9084.2021205
JI H C, QIU X C, LIU W H, HU C L, KONG M, HU X H, HUANG J B, YANG X, TANG Y Y, ZHANG X J, WANG J S, QIAO L X. Construction and application of near infrared ray model for oil content prediction in peanut kernel. Chinese Journal of Oil Crop Sciences, 2022, 44(5): 1089-1097. (in Chinese)
[31]
胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立. 作物学报, 2023, 49(9): 2498-2504.

doi: 10.3724/SP.J.1006.2023.24241
HU M L, ZHI C Y, XUE X M, WU J, WANG J, YAN L Y, WANG X, CHEN Y N, KANG Y P, WANG Z H, HUAI D X, JIANG H F, LEI Y, LIAO B S. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut. Acta Agronomica Sinica, 2023, 49(9): 2498-2504. (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!